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Abstract  
The volume data is generally in the form of the large array of numbers. In order to render the 
object hidden in the volume, we need to reconstruct or interpolate data values between the 
samples. The novelty presented in this paper is B-spline interpolation in the volumetric space. 
We show that this approach is better then currently used methods. 

To enhance quality during the volume visualization process it is important to enhance 
a quality of the reconstruction. It is of crucial importance to explore different undesired 
effects. If better reconstruction is performed the more accurate result of volume visualization 
process is achieved. 
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1 Introduction 
The volume visualization is based on the three-dimensional scalar or vector field. Object that 
should be visualized is represented by the array of discrete samples. During rendering of the 
object it is necessary to reconstruct the continuous three-dimensional function, defined by the 
samples, for any applied method. Classification of the methods for the volume visualization 
can be done regarding to the space where they basically work. Development of the new 
methods extent the basic classification proposed by Kaufman (Kaufman, 1990). There are 
three groups of methods: the object space methods, the image space methods and methods 
that are based on transformed object space. 

The object space methods mainly creates polygons or classic geometric primitives and 
projects them in the projection plane (Lorensen, 1987). Methods that are based on the image 
space start from the image plane and cast the rays from each picture element into the scene 
(Levoy, 1988). Methods that are based on the transformed object space work in transformed 
space, for example in the frequency domain (Totsuka, 1993) or in the wavelet domain (Gross, 
1996). There are also some hybrid methods that employ coherency characteristics from 
different spaces. The object space is first traversed to reorganize data to be prepared for 
traversing in the image space. During traversing the image space, rays are cast from each 
picture element in the object space (Lacroute, 1995). Organization of the volume elements is 
very important because significant performance benefits can be achieved if volume elements 
can be easily fetched along cast ray. 
 During the volume rendering there are several layers where reconstruction is 
necessary, and the error caused by reconstruction may occur. Reconstruction is done in the 
three-dimensional space based on the values of the volume elements. Numeric integration 
along the ray path uses reconstructed values as sample points. To calculate value assigned to 
the ray, values in the sample points along the ray are accumulated. Final reconstruction is 
done based on each ray in order to produce the final image (Fig. 1). 
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Fig. 1. Reconstruction in the volume rendering. 

It is important to be aware of limitations of the reconstruction because it can 
significantly influence the accuracy of the result. Investigation of the reconstruction or the 
interpolation is required to achieve compromise between different undesired artifacts and 
achieving optimal result. 

2 Reconstruction in the computer graphics 
Development of new rendering algorithms for visualization of the three-dimensional scalar 
fields is recent area of research. Usually, related papers put the main accent on the proposal of 
new methods, while to the problem of reconstruction is given less attention. 
 Aliasing is problem present in many areas of computer graphics. Objects are usually 
defined procedurally and they are synthetic. Prefiltering of such representation is not 
practical. Further more, transformation between continuous and discrete representation is 
often required. Aliasing may occur on every transformation of representations, and this 
problem also appears when resampling is required. Multilayer resampling is often required 
and each layer may cause additional error. This problem is well recognized in the computer 
graphics, and investigated by many authors. 
 Display of the computer generated image is input object to our visual system, and it is 
not completely understood how our visual system works. Sensitivity of the human eye is 
specific, so minimal deviation in mathematics sense differs from the most pleasant result for 
our perceptual system. Even a little distortion in gray levels can cause unpleasant 
psychovisual result, especially in the areas with smooth changes. 
 In the analysis based on the perceptual approach, rather than mathematics, some 
authors prefer little aliasing in order to avoid other visual defects, that results from trying to 
remove alias completely. The appearance of aliasing is investigated when family of piece-
wise cubic filters is applied to image reconstruction (Mitchell, 1988). Mitchell also presents 
(Mitchell, 1996) how stratified sampling reduces variance of the mean value of the image 
picture elements. 
 The problem is to numerically express the result that depends on our visual system. 
Marschner and Lobb (Marschner, 1996) propose metric that can be used to measure the filter 
characteristics, in terms of smoothing and postaliasing. On the three-dimensional test signal 
they show the results when different reconstructions are used. The proposed test function is 
highly sensitive to the aliasing, and different undesired effects are visible on the results. 
Disadvantage is that the proposed test function is continuous, so drawback caused by 
discontinuity usual in real data will not appear. In volume rendering, gradient information is 
used for shading and classification of the data set in combination with the voxel intensities. 

 



 

Bentum presents the analysis of gradient estimators in frequency domain, and proposes taking 
the derivative of the interpolation function itself (Bentum, 1996). 
 Machiraju and Yagel characterize and measure error by applying Taylor series 
expansion. They characterize error as truncation error and non-sinc error. The methods for 
error measurements are based on the spatial domain analyses. The Taylor series expansion of 
the convolution sum (Moller, 1997) lead to the quantitative and qualitative compression of the 
reconstruction and derivative filters. The analysis is based on the BC-splines defined by 
Mitchell. 

It is important to distinguish approximation and interpolation approach. The 
approximation curves are used to approximate control polygon, and interpolation curves must 
pass through the defined vertices. Toraichi used interpolation quadratic B-spline for image 
reconstruction (Toraichi, 1988), and Unser presented B-spline transforms for the image 
interpolation (Unser, 1991). 

3 Prealiasing and postaliasing 
Volumetric space consists of volume elements. Each volume element may represent result 
from real world object sample, from numeric simulations, or may represent some pure 
mathematical value. The samples are taken from continuous space, but object with sharp 
edges in that space creates discontinuity. According to Shannon theory, signal can be 
reconstructed from its samples if two conditions are valid. First, spectrum of the signal must 
be bandlimited, and sampling frequency must be twice higher than the largest frequency 
present in the signal. The alias that occurs during sampling stage is called prealiasing and 
postaliasing is caused by the reconstruction. 

Natural forms often contain discontinuity, so their spectrum is not bandlimited. Before 
sampling, lowpass filtering must be applied. If ideal (box) lowpass filtering is performed, 
Gibss phenomena will appear on each discontinuity. So, discontinuity creates unbandlimited 
spectrum. Therefore, ideal lowpass filter, used to eliminate higher frequencies, cause ringing 
effect near discontinuity. When discontinuity exists on piecewise linear function, Fourier 
series of function overshoots the function value near that discontinuity. Limes of 

the n-th partial sum S

( )lim ,
n n nS f x
→∞

n(f, xn) of the Fourier series on the first local maximum (minimum) xn 
near discontinuity converges to higher (lower) value then the value of the function. 
Wilbraham-Gibbs constant quantifies the degree of overshoot. On the each side of 
discontinuity the limiting crest of highest wave converges to 8,949% of the discontinuity 
height. This is inherited property that should be taken into the further consideration. 

In the two-dimensions ringing exhibits on every discontinuity in gray levels of the 
image. In the three-dimension, volume elements escape over the edge of the object and create 
visual artifacts that manifest as clouds around the object. Some volume elements dive into the 
object creating caves in the object surface. To avoid ringing, continuous impulse response of 
the lowpass filter is required. Instead of box lowpass filtering, filters that have smooth 
impulse response should be used. For lowpass filtering in two or three dimensions Gaussian 
filter will be used, although further detailed investigation is required. 

Data acquisition can be achieved by different scanners: CT (Computer Tomography) 
or MR (Magnetic Resonance), for example. During the sampling process some lowpass 
filtering is performed, but information about it for sequences of slices available on Internet, is 
usually unknown. If the sampling is not done correctly, information can be irrecoverably lost. 

The resolution of scanned slices is usually high, but number of slices is often 
insufficient because of radiation risks for patient. To enlarge the number of slices, 
interpolation between the slices is required. Compression of the volume data is also desired 

 



 

because the size of dataset is large. Thus the reconstruction of the compressed volume, 
interpolation between slices, or interpolation of the volume elements becomes important step. 

The reconstruction is term that is usually used in signal processing, and interpolation 
is term used in mathematics or computer graphics. In this paper those two terms will be used 
interchangeably. Both approaches: one from the interpolation of curves and the other from 
signal reconstruction, will be confronted in order to analyze the problem. 

4 The B-spline interpolation 
When designing the curves and surfaces for CAD applications some characteristic demands 
on the behavior of the curves and surfaces are required (Farin, 1990, Guid 1990). The B-
spline was created to fulfill certain requirements that will reflect very well in solving of our 
problem. 

4.1 The approximation B-spline 
The approximation B-spline curve with degree k of each polynomial segment is defined with 
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where  are points of the control polygon, and are called B-spline weight functions, or 
B-splines. The control polygon has n+1 control points. The  are defined based on knot 
sequence 
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When denominator is equal to zero, fraction is assumed to have value of zero. 
 In our consideration we restrict on the uniform case, where parametric intervals 
between successive knot values are equal to one, and with no multiple knot values. 

 , (5) {U knot = 1 2 3, , ,...,

In this uniform case, when k=3 (cubic case), formulation of the i-th B-spline segment is: 
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where . For this uniform cubic case derived from (1) and (4), four points control each 
segment. The curve 

[ )u∈ 0 1,
( )i up  will approximate the control polygon. 

Boundary conditions can be handled by using closed curves or circular repetition of 
the control points, by zero padding, or by setting some end conditions. For the sake of the 

 



 

simplicity circular repetition of the control points will be applied. The derived form (6) is 
identical to the cubic BC-spline derived by Mitchell (Mitchell 1988), by setting B=1, C=0: 
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With few arithmetic manipulations and reparameterization we can prove that (6) and 
(7) represents the same reconstruction form. It is obvious that the reconstruction in two 
dimensions (e.g. images) approximation spline causes blur, because smaller or greater values 
only approximate gray levels of the image. In spite of that fact, many authors use BC-spline 
defined by Mitchell (Lacroute 1995, Bentum 1996, Moller 1997). In the three dimensions fine 
details are lost, and surface is smooth. The interpolation, as opposite to approximation of the 
control points, will significantly improve the resulting image. 
 The properties of the B-spline curves or surfaces extend in the image or volume 
reconstruction very well. These properties are continuity, convex hull, local control, variation 
diminishing and representation of the multiple values. 

The convex hull property ensures that each point in the curve lies in the convex hull of 
no more than k+1 nearby control points. Thus, sample points bound the space of the 
reconstructed curve, surface or volume, so reconstructed values will not escape outside the 
convex hull. The local control property makes far points less influential on the segment of 
consideration. In the terms of signal processing the local control property implies narrow 
impulse response of the reconstruction filter. The impulse response of ideal reconstruction 
filter is sinc function, which is very wide. The points far from the point of reconstruction can 
have undesired influence. 

Variation diminishing property prevents variations of the curve, or variations in the 
gray levels of the reconstructed image. The curve is not intersected by any straight line (or 
plane) more often than the control polygon. For a cubic case, control polygon consists of the 
four control points and there are at most three intersections between straight line and curve. 
This property is very important in the image reconstruction, because the human eye is very 
sensitive on small changes of the intensity, especially in the areas where gray levels are 
changing smoothly. 

4.2 The interpolation B-spline 
To build the interpolation B-spline it is crucial to find the control polygon of the 
approximation B-spline, such that the resultant curve passes through the requested points. For 
the cubic uniform closed curve, the matrix form defines points of the control polygon: 
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where pi are the known points that must be interpolated, and ri is the unknown point of the 
control polygon. Evaluation of the inverse tridiagonal matrix or the LU-decomposition can be 
used to find ri. 

 



 

5 Results 
 Six different reconstruction filters in 
the two and three-dimensional space are 
used. Applied reconstructions are: with sinc 
function, nearest neighbor, approximation 
B-spline, three-linear interpolation, 
Mitchell reconstruction with BC-spline B= 
C= 1/3 and interpolation B-spline. 
Differences between the initial object and 
the resulting objects are made and variances 
are calculated (Fig. 2). Reconstruction with 
sinc function exhibits strong ringing 
artifact, although mean square error is 
minimal. The best result is achieved for the 
interpolation B-spline. 
 The two-dimensional examples 
(Fig. 3) and the three-dimensional examples 
(Fig. 4) of the six reconstruction methods are presented. For the three-dimensional example 
the test function proposed by Marshner and Lobb (Marshner 1994) is used. 
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Fig. 2. Six different reconstruction methods. 

 

 

 
Fig 3. Reconstruction with sinc, nearest neighbor, approximation B-spline, bilinear 

interpolation, Mitchell reconstruction and interpolation B-spline. 
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Fig. 4. Three-dimensional examples of the six different reconstruction methods. 
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