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This thesis deals with optimal design of surface and interior permanent magnet motors with an

emphasis on reduced torque pulsations while maximizing the motor performance in all regimes of

operation and minimizing the size of the motor. The optimization for both types of motors has

been formulated as a constrained multiobjective minimization problem where a population of non-

dominant solutions is determined from which a single solution is selected as the best compromise.

This optimization scheme is based on Differential Evolution optimization algorithm.

A novel approach to analytical field calculation in the air gap of a surface PM motor has been

developed. The concept of complex relative air gap permeance has been derived based on con-

formal mapping of the slot geometry and used to accurately calculate the radial and tangential

components of the flux density in the slotted air gap. This model of air gap permeance has been

utilized to calculate the motor parameters, including losses and efficiency, needed for the design

optimization.

For an interior PM motor the finite element method has been used to calculate its parameters

during the optimization process. The principle of permeance freezing has been applied to extract

lumped parameters from the FE model at any steady state operating point. A combined analytical

and numerical technique has also been developed to reduce the time required for cogging torque

calculations which utilizes the complex relative air gap permeance to estimate the cogging torque

waveform based on only two magnetostatic FE simulations.

The effectiveness of the proposed design methodology has been shown on examples of a 5 kW

SPM motor and a 1.65 kW IPM motor with two layers of cavities in the rotor for which a prototype

has been built and tested. In addition, a comparative analysis has been carried out for the optimized

5 kW, 50 kW and 200 kW IPM motors with two and three layers of cavities in the rotor to show



design trade-offs between goals to minimize the motor volume while maximizing the power output

in the field weakening regime with the back emf constraint as the main limiting factor in the

design.

Thomas A. Lipo
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ABSTRACT
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and numerical technique has also been developed to reduce the time required for cogging torque

calculations which utilizes the complex relative air gap permeance to estimate the cogging torque

waveform based on only two magnetostatic FE simulations.

The effectiveness of the proposed design methodology has been shown on examples of a 5 kW

SPM motor and a 1.65 kW IPM motor with two layers of cavities in the rotor for which a prototype

has been built and tested. In addition, a comparative analysis has been carried out for the optimized

5 kW, 50 kW and 200 kW IPM motors with two and three layers of cavities in the rotor to show
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design trade-offs between goals to minimize the motor volume while maximizing the power output

in the field weakening regime with the back emf constraint as the main limiting factor in the

design.
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I also thank my dear friends Jelena and Snežana for all the joy that their love and friendship brought

to my life.

Finally, I express my deepest love and gratitude to my parents, my sister and my grandmother for

all their love and support during the time I spent here in Madison, Wisconsin.



DISCARD THIS PAGE



v

TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1 Introduction and Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Calculation of Cogging Torque in Surface PM Motors . . . . . . . . . . . . . . . . . 10

2.1 Magnetic Field Distribution in the Slotless Surface PM Motor . . . . . . . . . . . 11
2.1.1 General Solutions in Polar Coordinates . . . . . . . . . . . . . . . . . . . 17

2.2 Approximation of the Air Gap Permeance . . . . . . . . . . . . . . . . . . . . . . 27
2.2.1 Conformal Transformation of the Slot Opening . . . . . . . . . . . . . . . 27

a) Transformation from S plane into Z plane . . . . . . . . . . . . . . . . 29
b) Transformation from Z plane into W plane . . . . . . . . . . . . . . . . 29
c) Transformation from T plane into W plane . . . . . . . . . . . . . . . . 35
d) Transformation from T plane into K plane . . . . . . . . . . . . . . . . 36
e) Field solution in the S plane . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3 Magnetic Field Distribution in the Slotted Surface PM Motor . . . . . . . . . . . . 40
2.4 Comparison of Analytical and Numerical Field Solution in the Slotted Surface PM

Motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.4.1 Unsaturated Finite Element Model . . . . . . . . . . . . . . . . . . . . . . 44
2.4.2 Saturated Finite Element Model . . . . . . . . . . . . . . . . . . . . . . . 48

2.5 Conformal Transformation of More Complex Slot Shapes . . . . . . . . . . . . . . 62
2.6 Cogging Torque Calculation Based on Maxwell’s Stress Theory . . . . . . . . . . 71
2.7 Cogging Torque Calculation Based on Summation of the Lateral Forces Along the

Slot Sides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83



vi

Page

3 Calculation of Electromagnetic Torque in Surface PM Motors . . . . . . . . . . . . 90

3.1 The Field of a Current in a Slot by Conformal Transformation . . . . . . . . . . . 91
3.2 The Armature Winding Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.3 Calculation of Electromagnetic Torque Based on Maxwell’s Stress Theory . . . . . 109

4 Calculation of the Back Emf in Surface PM Motors . . . . . . . . . . . . . . . . . . 116

5 Calculation of the End Winding Leakage Inductance . . . . . . . . . . . . . . . . . 121

6 Calculation of Inductances in Surface PM Motors . . . . . . . . . . . . . . . . . . . 135

7 Calculation of Losses in Surface PM Motors . . . . . . . . . . . . . . . . . . . . . . 140

7.1 Winding Losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
7.2 Core Losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
7.3 Magnet Losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
7.4 Friction and Windage losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
7.5 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

8 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

8.1 Differential Evolution Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
8.1.1 Constraint Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
8.1.2 Handling of Integer and Discrete Variables . . . . . . . . . . . . . . . . . 164

8.2 Optimized Design of a Surface PM Motor . . . . . . . . . . . . . . . . . . . . . . 166
8.3 Optimized Design of an Interior PM motor . . . . . . . . . . . . . . . . . . . . . . 178

8.3.1 FE Approach to Calculation of Parameters of an IPM Motor . . . . . . . . 184
8.3.2 Approximate Calculation of the Cogging Torque Waveform Using Magne-

tostatic FE Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
8.3.3 Calculation of Losses in an IPM Motor . . . . . . . . . . . . . . . . . . . 195
8.3.4 Calculation of the Back Emf in an IPM Motor . . . . . . . . . . . . . . . . 196
8.3.5 Definition of Objectives and Constraints . . . . . . . . . . . . . . . . . . . 200
8.3.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

8.4 Design and Evaluation of the Prototype IPM Motor . . . . . . . . . . . . . . . . . 210
8.4.1 Comparison of Calculated and Measured Results . . . . . . . . . . . . . . 219

8.5 Comparison of the Optimized IPM Motor Designs With Different Power Ratings
and Two or Three Layers of Cavities . . . . . . . . . . . . . . . . . . . . . . . . . 238

9 Conclusion and Suggestions for Future Work . . . . . . . . . . . . . . . . . . . . . . 250



vii

Page

APPENDIX Solution of the Neumann Integral for Two Filaments in an Arbitrary
Position in Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265



DISCARD THIS PAGE



viii

LIST OF TABLES

Table Page

1.1 Commonly used techniques for cogging torque reduction . . . . . . . . . . . . . . . . 3

2.1 Parameters of the 36 slot, six pole surface PM motor . . . . . . . . . . . . . . . . . . 24

2.2 Slot dimensions of the six pole surface PM motor . . . . . . . . . . . . . . . . . . . . 67

2.3 Flux density at the tooth tip of the six pole surface PM motor with radial magnetization
for different values of the displacement ε . . . . . . . . . . . . . . . . . . . . . . . . 87

3.1 Winding table for the three phase fractional slot winding with Qs = 27, 2p = 6,
q = a/b = 3/2. The slots 1, 4 and 7 are starting points for the phases A, B and C
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.2 Winding table for the three phase integral slot winding with Qs = 36, 2p = 6, q =
a/b = 2/1. The phases A, B and C start at the slots 1, 5 and 9 respectively. . . . . . . 102

3.3 Information about the phase shift, the value of the current and its sign for each coil
and each phase of the integral slot winding with Qs = 36 and 2p = 6. . . . . . . . . . 103

5.1 End winding leakage inductance for different values of relative iron permeability . . . 131

5.2 End winding leakage inductance calculated using alternative analytical formulas . . . 134

6.1 Inductances of the six pole surface PM motor calculated analytically and numerically . 139

7.1 Eddy current losses in the magnets of the analyzed six pole surface PM motor . . . . . 156

7.2 Power balance and efficiency of the analyzed six pole surface PM motor . . . . . . . . 158

8.1 Variables used in the optimized design of a surface PM motor . . . . . . . . . . . . . 169

8.2 Parameters of the available permanent magnet materials . . . . . . . . . . . . . . . . 169



ix

Table Page

8.3 Set of nondominant solutions as a result of multiobjective optimization of a 5 kW
surface PM motor using Differential Evolution with control parameters F=0.3, CR=0.3 176

8.4 Set of nondominant solutions as a result of multiobjective optimization of a 5 kW
surface PM motor using Differential Evolution with current density used as a design
variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

8.5 Variables used in the optimized design of an IPM motor . . . . . . . . . . . . . . . . 206

8.6 Parameters of the available ferrite magnets . . . . . . . . . . . . . . . . . . . . . . . 206

8.7 Parameters of the IPM motor designs resulting from multiobjective optimization us-
ing Differential Evolution with minimum cogging torque and maximum characteristic
current as the main objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

8.8 Properties of hard ferrite permanent magnets from magnet vendor specification sheet . 211

8.9 Measured properties of three samples of purchased hard ferrite permanent magnets . . 211

8.10 Variables used in the optimized design of a protoype IPM motor . . . . . . . . . . . . 212

8.11 Design specifications for a single layer full pitch lap winding of the prototype IPM
motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

8.12 Parameters of the prototype IPM motor . . . . . . . . . . . . . . . . . . . . . . . . . 218

8.13 Ratings of Danfoss converters and REVCON regen unit . . . . . . . . . . . . . . . . 223

8.14 Ratings of SHC torque meter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

8.15 Design variables for an IPM motor with two layers of cavities in the rotor . . . . . . . 243

8.16 Design variables for an IPM motor with three layers of cavities in the rotor . . . . . . 243

8.17 Design parameters of nondominant solutions resulting from multiobjective optimiza-
tion of 5 kW, 50 kW and 200 kW IPM motors with two layers of cavities . . . . . . . 246

8.18 Design parameters of nondominant solutions resulting from multiobjective optimiza-
tion of 5 kW, 50 kW and 200 kW IPM motors with three layers of cavities . . . . . . . 247



DISCARD THIS PAGE



x

LIST OF FIGURES

Figure Page

2.1 Motor topologies: (a) internal rotor, (b) external rotor . . . . . . . . . . . . . . . . . . 13

2.2 Directions of magnetization: (a) radial, (b) parallel . . . . . . . . . . . . . . . . . . . 15

2.3 Waveforms of magnetization components Mr and Mθ:
(a) radial magnetization, (b) parallel magnetization

. . . . . . . . . . . . . . . . 15

2.4 Waveform of the flux density in the middle of the air gap of a slotless
surface PM motor with radial magnetization: (a) radial component,
(b) tangential component

. . . . . . . . . . 25

2.5 Waveform of the flux density in the middle of the air gap of a slot-
less surface PM motor with parallel magnetization: (a) radial com-
ponent, (b) tangential component

. . . . . . . . . . 26

2.6 Single infinitely deep slot opening in the S plane . . . . . . . . . . . . . . . . . . . . 28

2.7 Basic steps required for finding the field solution in the slotted air gap based on con-
formal mapping of the slot opening . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.8 Slot opening in the Z plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.9 Slot opening in the Z plane with marked values of w at the corner points . . . . . . . 30

2.10 Slot opening in the W plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.11 Slot opening in the T plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.12 Slot opening in the K plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.13 Complex relative permeance per one slot pitch in the middle of the air gap of a six
pole surface PM motor: (a) real component, (b) imaginary component . . . . . . . . . 41



xi

Figure Page

2.14 Complex relative permeance per one pole pitch in the middle of the air gap of a six
pole surface PM motor: (a) real component, (b) imaginary component . . . . . . . . . 42

2.15 Comparison of the circular arc in the middle of the air gap of a six pole surface PM
motor extending one slot pitch in the S plane and its transformed shape in theK plane:
(a) ratio rk/rs, (b) angular displacement θk − θs . . . . . . . . . . . . . . . . . . . . . 45

2.16 Flux density in the middle of the air gap of a slotted surface PM motor with radial
magnetization: (a) radial component, (b) tangential component . . . . . . . . . . . . . 46

2.17 Flux density in the middle of the air gap of a slotted surface PM motor with parallel
magnetization: (a) radial component, (b) tangential component . . . . . . . . . . . . . 47

2.18 Finite element mesh of the surface PM motor model . . . . . . . . . . . . . . . . . . 49

2.19 Detail of the finite element mesh near the slot opening . . . . . . . . . . . . . . . . . 49

2.20 Comparison of analytical and numerical field solution in the middle of the air gap
of a slotted surface PM motor with radial magnetization: (a) radial component, (b)
tangential component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.21 Comparison of analytical and numerical field solution in the middle of the air gap
of a slotted surface PM motor with parallel magnetization: (a) radial component, (b)
tangential component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.22 B-H curve of the magnetic material used in the six pole surface PM motor . . . . . . . 53

2.23 Relative permeability of the magnetic material used in the six pole surface PM motor
shown as a function of flux density . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.24 Finite element mesh for the saturated model of the six pole surface PM motor . . . . . 54

2.25 Flux lines in no-load operation of the saturated six pole surface PM motor with radial
magnetization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.26 Flux lines in no-load operation of the saturated six pole surface PM motor with parallel
magnetization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.27 Distribution of the relative permeability in no-load operation of the saturated six pole
surface PM motor with radial magnetization . . . . . . . . . . . . . . . . . . . . . . . 56



xii

Figure Page

2.28 Distribution of the relative permeability in no-load operation of the saturated six pole
surface PM motor with parallel magnetization . . . . . . . . . . . . . . . . . . . . . . 56

2.29 Comparison of analytical and numerical field solution in the middle of the air gap of a
saturated, slotted surface PM motor with radial magnetization: (a) radial component,
(b) tangential component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.30 Comparison of analytical and numerical field solution in the middle of the air gap of a
saturated, slotted surface PM motor with parallel magnetization: (a) radial component,
(b) tangential component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.31 Distribution of the relative permeability in no-load operation of the highly saturated
6 pole surface PM motor with radial magnetization and Br = 1.1 T . . . . . . . . . . 59

2.32 Distribution of the relative permeability in no-load operation of the highly saturated
6 pole surface PM motor with parallel magnetization and Br = 1.1 T . . . . . . . . . 59

2.33 Comparison of analytical and numerical field solution in the middle of the air gap of
a highly saturated, slotted surface PM motor with radial magnetization and Br = 1.1
T: (a) radial component, (b) tangential component . . . . . . . . . . . . . . . . . . . . 60

2.34 Comparison of analytical and numerical field solution in the middle of the air gap of a
highly saturated, slotted surface PM motor with parallel magnetization and Br = 1.1
T: (a) radial component, (b) tangential component . . . . . . . . . . . . . . . . . . . . 61

2.35 Two cases of the slot opening: (a) small width, large depth, (b) large width, small depth 62

2.36 Infinitely deep slot with more complex shape compared to the simple slot opening
with parallel sides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.37 Complex slot shape in the Z plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.38 Comparison of complex relative permeance for the actual slot shape and for the sim-
plified slot opening: (a) real component, (b) imaginary component . . . . . . . . . . . 68

2.39 Comparison of analytical field solution with the actual slot shape and numerical solu-
tion in the middle of the air gap of a slotted surface PM motor with radial magnetiza-
tion: (a) radial component, (b) tangential component . . . . . . . . . . . . . . . . . . 69



xiii

Figure Page

2.40 Comparison of analytical field solution with the actual slot shape and numerical solu-
tion in the middle of the air gap of a slotted surface PM motor with parallel magneti-
zation: (a) radial component, (b) tangential component . . . . . . . . . . . . . . . . . 70

2.41 Relationship between vectors ~n, ~B and ~tm . . . . . . . . . . . . . . . . . . . . . . . . 71

2.42 Comparison of the cogging torque waveforms, for the six pole surface PM motor
with radial magnetization, calculated analytically using Maxwell’s stress theory and
calculated numerically using FE method with and without saturation . . . . . . . . . . 79

2.43 Comparison of the cogging torque waveforms, for the six pole surface PM motor
with parallel magnetization, calculated analytically using Maxwell’s stress theory and
calculated numerically using FE method with and without saturation . . . . . . . . . . 80

2.44 Detail of the finite element mesh to show the position of the nodes on the boundary
between the moving air gap and the rest of the air gap . . . . . . . . . . . . . . . . . . 81

2.45 The waveform of BrBθ for the rotor position at which the maximum cogging torque
occurs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

2.46 Magnetic stress vectors acting on the slot sides . . . . . . . . . . . . . . . . . . . . . 84

2.47 FE model of the six pole surface PM motor used for calculation of the flux density
distribution along the slot side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

2.48 Comparison of the flux density distribution along the slot side calculated analytically
and numerically . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

2.49 Comparison of the cogging torque waveforms for the six pole surface PM motor cal-
culated numerically by FE method and analytically by integrating the magnetic stress
vector along the slot sides: (a) radial magnetization, (b) parallel magnetization . . . . 89

3.1 Representation of one half of the slot opening in the Z plane . . . . . . . . . . . . . . 92

3.2 Representation of one half of the slot opening in the T plane . . . . . . . . . . . . . . 94

3.3 The waveforms of the flux density in the middle of the air gap of a six pole surface
PM motor for one slot pitch resulting from the conformal mapping of a single slot
opening withNc = 14 and 1 A of current per turn: (a) radial component, (b) tangential
component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96



xiv

Figure Page

3.4 The waveforms of the flux density in the middle of the air gap of a six pole surface PM
motor for one coil with Nc = 14 and 1 A of current per turn: (a) radial component,
(b) tangential component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.5 The waveforms of the flux density in the middle of the slotted air gap of a six pole
surface PM motor for one coil withNc = 14 and 1 A of current per turn. The presence
of the slots not occupied by the coil is taken into account by means of relative complex
air gap permeance: (a) radial component, (b) tangential component . . . . . . . . . . 98

3.6 Phasor diagram of the fractional slot winding with 27 slots and six poles . . . . . . . . 99

3.7 Comparison of analytically and numerically calculated armature winding flux density
in the middle of the air gap of a six pole surface PM motor: (a) radial component, (b)
tangential component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.8 Waveform of the relative air gap permeance of the slotless air gap used to take into
account the presence of magnets in the analytical armature winding field calculation . 107

3.9 Comparison of analytically and numerically calculated armature winding flux density
in the middle of the air gap of a six pole surface PM motor. The analytical solution
has been multiplied by the relative air gap permeance to take into account the fact
that relative permeability of the magnets is greater than one; (a) radial component, (b)
tangential component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

3.10 Comparison of analytically and numerically calculated electromagnetic torque of the
six pole surface PM motor: (a) radial magnetization, (b) parallel magnetization . . . . 113

3.11 Comparison of analytically and numerically calculated cogging torque of the six pole
surface PM motor: (a) radial magnetization, (b) parallel magnetization . . . . . . . . . 114

3.12 Comparison of analytically and numerically calculated total torque of the six pole
surface PM motor: (a) radial magnetization, (b) parallel magnetization . . . . . . . . . 115

4.1 Line-to-line back emf waveform calculated analytically and numerically: (a) radial
magnetization, (b) parallel magnetization . . . . . . . . . . . . . . . . . . . . . . . . 120

5.1 Principle model for calculation of the mutual inductance of two coils . . . . . . . . . 123

5.2 Method of images applied to the end coil . . . . . . . . . . . . . . . . . . . . . . . . 124



xv

Figure Page

5.3 Principle model of the end coil for calculation of the self inductance due to the flux
linkage outside the wire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.4 Scheme of a two-layer, 36 slot, six pole lap winding . . . . . . . . . . . . . . . . . . 127

5.5 3-D model of the end coil of a two-layer lap winding comprised of 20 straight filaments127

5.6 Full 3-D model of the two-layer end winding of the six pole surface PM motor: (a) xy
plane, (b) perspective view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.7 Scheme of a single-layer, 36 slot, six pole overlapping winding . . . . . . . . . . . . . 129

5.8 3-D model of the end coil of a single-layer overlapping winding comprised of 20
straight filaments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.9 Full 3-D model of the single-layer overlapping end winding of the six pole surface
PM motor. (a) XY plane, (b) Perspective view . . . . . . . . . . . . . . . . . . . . . . 130

5.10 Mutual inductance between two end coils as a function of relative coil positions for
the two-layer winding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.11 Mutual inductance between two end coils as a function of relative coil positions for
the single-layer winding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.12 Model of the end coil used in analytical formulas by Liwschitz-Garik and Lipo . . . . 133

6.1 Slot shape used for calculation of the slot leakage inductance . . . . . . . . . . . . . . 137

7.1 Core losses for U.S. Steel M36, 29 Gauge steel laminations given as a function of
frequency for three different values of flux density . . . . . . . . . . . . . . . . . . . 142

7.2 Plots of core losses
freqency

for U.S. Steel M36, 29 Gauge steel laminations given as a function
of frequency for three different values of flux density . . . . . . . . . . . . . . . . . . 143

7.3 The scheme of stator tooth and yoke fluxes . . . . . . . . . . . . . . . . . . . . . . . 145

7.4 Different segments of the stator tooth where the flux density is evaluated . . . . . . . . 148

7.5 Flux density waveform in the stator teeth . . . . . . . . . . . . . . . . . . . . . . . . 148

7.6 Flux density waveform in the stator yoke . . . . . . . . . . . . . . . . . . . . . . . . 149



xvi

Figure Page

7.7 Flux density waveform in the rotor yoke . . . . . . . . . . . . . . . . . . . . . . . . . 149

8.1 Phasor diagram of a surface PM motor with current phasor aligned for maximum
torque per amp operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

8.2 Pareto fronts resulting from multiobjective design optimization of a 5 kW surface PM
motor using different combinations of DE control parameters . . . . . . . . . . . . . . 175

8.3 Pareto front resulting from multiobjective design optimization of a 5 kW surface PM
motor with DE control parameters set to F=0.3, CR=0.3 . . . . . . . . . . . . . . . . 175

8.4 Pareto front resulting from multiobjective design optimization of a 5 kW surface PM
motor with current density used as a design variable . . . . . . . . . . . . . . . . . . 179

8.5 Phasor diagram of an interior PM motor . . . . . . . . . . . . . . . . . . . . . . . . . 181

8.6 Capability curves of an interior PM motor . . . . . . . . . . . . . . . . . . . . . . . . 181

8.7 One pole pitch of a 10 pole interior PM motor designed by Lovelace . . . . . . . . . . 183

8.8 Interior PM motor topology proposed in this thesis . . . . . . . . . . . . . . . . . . . 183

8.9 Torque versus control angle curve used to find the control angle for maximum torque.
Cubic spline is used to generate the curve from five points obtained by FE method. . . 186

8.10 Flux lines of the open-circuit field solution for two cases of rotor alignment with
respect to the slot: (a) rotor aligned with the centerline of the stator tooth, (b) rotor
aligned with the centerline of the slot opening . . . . . . . . . . . . . . . . . . . . . . 190

8.11 Waveforms of the open-circuit air gap flux density of an IPM motor with rotor aligned
with the centerline of the tooth: (a) radial component, (b) tangential component . . . . 192

8.12 Waveforms of the open-circuit air gap flux density of an IPM motor with rotor aligned
with the centerline of the slot: (a) radial component, (b) tangential component . . . . . 192

8.13 Waveforms of the complex relative air gap permeance of an IPM motor with rotor
aligned with the centerline of the tooth: (a) real component, (b) imaginary component 193

8.14 Waveforms of the complex relative air gap permeance of an IPM motor with rotor
aligned with the centerline of the slot: (a) real component, (b) imaginary component . 193



xvii

Figure Page

8.15 Waveforms of the open-circuit slotless air gap flux density of an IPM motor with rotor
aligned with the centerline of the tooth: (a) radial component, (b) tangential component 194

8.16 Waveforms of the open-circuit slotless air gap flux density of an IPM motor with rotor
aligned with the centerline of the slot: (a) radial component, (b) tangential component 194

8.17 Principle of calculating the tooth fluxes from FE magnetostatic simulation utilized to
approximate the tooth flux waveform . . . . . . . . . . . . . . . . . . . . . . . . . . 197

8.18 Principle of calculating the yoke fluxes from FE magnetostatic simulation utilized to
approximate the yoke flux waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

8.19 Approximate waveform of the stator tooth flux for the case of rated load at corner
speed obtained by interpolating the sample points calculated from magnetostatic FE
simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

8.20 Approximate waveform of the stator yoke flux for the case of rated load at corner
speed obtained by interpolating the sample points calculated from magnetostatic FE
simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

8.21 Example of a no-load field solution used for calculation of the back emf waveform . . 199

8.22 Distribution of the magnetic vector potential inside the air gap of an IPM motor at
no-load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

8.23 Waveform of the phase back emf of an IPM motor calculated from a single magneto-
static FE simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

8.24 Waveform of the line-to-line back emf an IPM motor calculated from a single magne-
tostatic FE simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

8.25 Proposed IPM motor topology with geometric design parameters . . . . . . . . . . . . 205

8.26 Pareto front resulting from multiobjective optimization of an IPM motor using Differ-
ential Evolution with minimum cogging torque and maximum characteristic current
as the main objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

8.27 Pareto front resulting from multiobjective optimization of a prototype IPM motor de-
sign using Differential Evolution with maximum torque at corner speed and maximum
characteristic current as the main objectives . . . . . . . . . . . . . . . . . . . . . . . 215



xviii

Figure Page

8.28 Cross-section of the prototype IPM motor . . . . . . . . . . . . . . . . . . . . . . . . 216

8.29 Cogging torque waveform of the prototype IPM motor . . . . . . . . . . . . . . . . . 219

8.30 Manufactured parts of the prototype IPM motor . . . . . . . . . . . . . . . . . . . . . 220

8.31 Simplified hardware configuration used for testing of the prototype IPM motor . . . . 221

8.32 Prototype IPM motor coupled to the induction machine via torque transducer . . . . . 222

8.33 Experimental setup: (a) Danfoss converters, (b) REVCON regen unit . . . . . . . . . 224

8.34 Illustration of basic functions of the interface board . . . . . . . . . . . . . . . . . . . 224

8.35 Calculated and measured waveforms of line-to-line back emf of the prototype IPM
motor at 1000 rpm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

8.36 Comparison of waveforms of the line-to-line back emf calculated using transient FE
simulation with rotation and using single magnetostatic FE simulation for the proto-
type IPM motor at 1000 rpm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

8.37 Circuit used for measurement of inductance Ld . . . . . . . . . . . . . . . . . . . . . 227

8.38 Circuit used for measurement of inductance Lq . . . . . . . . . . . . . . . . . . . . . 227

8.39 Waveforms of the phase A voltage and current measured with the locked rotor while
the resulting armature field is aligned with the d axis: (a) voltage, (b) current . . . . . 229

8.40 Waveforms of the phase B voltage and current measured with the locked rotor while
the resulting armature field is aligned with the q axis: (a) voltage, (b) current . . . . . 229

8.41 Comparison of calculated and experimentally determined flux characteristics: (a) Ψd vs id,
(b) Ψq vs iq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

8.42 Comparison of calculated and experimentally determined flux characteristics averaged
for each value of current: (a) Ψd vs id, (b) Ψq vs iq . . . . . . . . . . . . . . . . . . . 231

8.43 Comparison of calculated and experimentally determined inductances: (a) Ld, (b) Lq . 232

8.44 Comparison of calculated and experimentally determined inductances for id < 0 and
iq > 0: (a) Ld, (b) Lq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232



xix

Figure Page

8.45 Comparison of inductance Ld calculated using four different finite element based ap-
proaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

8.46 Calculated current trajectory of the prototype IPM motor . . . . . . . . . . . . . . . . 236

8.47 Calculated torque vs. speed curve of the prototype IPM motor . . . . . . . . . . . . . 237

8.48 Calculated output power vs. speed curve of the prototype IPM motor . . . . . . . . . 237

8.49 Comparison of measured and calculated torque vs speed curve of the prototype IPM
motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

8.50 Geometric design parameters of the IPM motor topology with three layers of cavities . 242

8.51 Pareto fronts for 5 kW, 50 kW and 200 kW motors with two layers of cavities . . . . . 245

8.52 Pareto fronts for 5 kW, 50 kW and 200 kW motors with three layers of cavities . . . . 245

A.1 Two nonintersecting filaments AB and ab in space with common perpendicular Cc . . 265

A.2 Two nonintersecting filaments AB and ab in space with common perpendicular Cc
and negative ca and CA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

A.3 One finite length AB and two infinitely long nonintersecting filaments a1b1 and a2b2
with common perpendiculars C1c1 and C2c2 . . . . . . . . . . . . . . . . . . . . . . . 267



1

Chapter 1

Introduction and Literature Review

The permanent magnet motors have become essential parts of modern motor drives. Some of

the advantages they possess over their counterparts with electromagnetic excitation include higher

torque density, higher efficiency (because there are no losses associated with the field excitation

system) and simpler construction and maintenance.

The presence of magnets as a constant source of flux which cannot be turned off provides the

PM motor with some intrinsic properties which can be challenging for the motor designer. One

of these properties is the inevitable presence of torque pulsations which are highly undesirable in

some applications like servo drives or electric steering. The main sources of torque pulsations are

the cogging torque and the ripple torque. The cogging torque occurs due to the tendency of the

rotor to line up with the stator in a particular direction where the permeance of the magnetic circuit

seen by the magnets is maximized. The ripple torque is caused by the mismatch between the back

emf and the current waveforms and also by the presence of slots.

The two main approaches to pulsating torque minimization are based on either an adequate mo-

tor design with intrinsically low pulsating torque for the assumed current waveform or on control

techniques which actively compensate the pulsating torque. Most of the techniques used for re-

duction of the pulsating torque in PM motors based on motor design and control have already been

reviewed in detail by Jahns and Soong in 1996 [1]. Therefore the review of the pulsating torque

minimization has been covered in this introduction in a more general form with the addition of the

period from 1996 until the present.
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One of the design techniques for cogging torque reduction which has not been mentioned in [1] is

teeth pairing reported by Hwang et al. [2, 3]. It involves the shifting of the slot openings in the

opposite direction to each other for every two consecutive slots by an appropriate angle which can

result in the elimination of the fundamental component of the cogging torque.

Two more useful reviews which are focused on the cogging torque reduction techniques based on

motor design are given by Zhu and Howe [4] and Bianchi and Bolognani [5].

Some of the commonly used techniques for cogging torque reduction analyzed in these papers with

their benefits and drawbacks have been summarized in Table 1.1. All of the techniques summarized

in this table are applicable to surface PM motors, but not all of them can be used for interior

PM motors. The techniques which involve modification of the stator, like skewing of the slots,

fractional slot winding or teeth pairing, are applicable to interior PM motors as well, but techniques

which involve the rotor are reduced to skewing and magnet shaping. The skewing of magnets may

be technologically difficult to achieve and quite expensive. Since magnets in interior PM motors

come in different shapes, it is difficult to set a unique rule about the magnet angular span and

position which yields minimum cogging torque. Finite element simulations, usually combined

with optimization, are required to find the optimal magnet shape [6–9]. Recently Zhu et al. [10]

showed that the rule which defines the optimal pole arc length for cogging torque reduction derived

for surface PM motors can be used for interior PM motors as well. The rotor of their motor

had a single flux barrier, which is only one of many possible magnet shapes. Nevertheless, the

correctness of this approach has also been confirmed in this thesis for the case of an IPM motor

with two layers of flux barriers in the rotor. It has been shown that the angular span of the flux

barriers for which a minimum cogging torque is achieved follows the same rule as presented in

[10].

This thesis does not propose a new technique for cogging torque reduction, but it uses some of

the techniques in Table 1.1 for the purpose of designing the surface and interior PM motors with

reduced pulsating torque.

The main control based techniques for pulsating torque minimization include the following:
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Table 1.1 Commonly used techniques for cogging torque reduction

Method Benefits Drawbacks 

Skewing of stator slots or rotor 
magnets (1) 

+ ideally eliminates cogging torque 
+ reduces higher order back emf 

harmonics 

− makes automatic slot filling very 
difficult 

− expensive to manufacture 
− reduces average torque 
− increases leakage inductance and 

stray losses 
− increases torque ripple in square-

wave motors 

Stepped skewing of magnet 
blocks (2) 

+ cancels all cogging  torque 
harmonics except for the 
multiples of the number of blocks 

+ reduces higher order back emf 
harmonics except for the 
multiples of the number of blocks 

− the same as for continuous skewing 

Fractional slot winding (3) 
+ reduces cogging torque by 

increasing its fundamental 
frequency 

− higher harmonic leakage inductance 
− reduced fundamental component of 

flux linkage 

Magnet pole arc width (4) 
+ cancels fundamental component 

of the cogging torque − sensitive to manufacturing tolerances 

Magnet pole arc positioning (5) 
+ cogging torque reduction similar 

to that of stepped skewing of 
rotor magnets 

− creates problems for windings with 
parallel paths due to non-equal 
distribution of flux linkage under 
different poles 

− sensitive to manufacturing tolerances 

Dummy slots and dummy 
teeth (6) 

+ reduce cogging torque by 
increasing its fundamental 
frequency 

− do not have a significant effect 
unless the dominant harmonic 
component of the cogging torque is 
much higher than the other harmonics 

Teeth pairing (7) 
+ cancels fundamental component 

of the cogging torque 

− not feasible with narrow slots if the 
required shift of the slot opening is 
too high 

 
(1) [4, 5, 11–13, 13–18]
(2) [5, 12]
(3) [1, 4]
(4) [4, 5, 12, 13, 19]
(5) [5, 19–21]
(6) [5, 12, 13, 16]
(7) [2, 3]
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• The adjustment of the current waveform to cancel the pulsating torque components which

would be generated when using sinusoidal or square wave current excitation [22–26],

• The techniques based on observers which treat the pulsating torque as a disturbance and add

its estimated value to the torque command as a disturbance input decoupling term [27–34]

• The control of the current build-up in the on-going phase of the trapezoidal PM machines

to prevent the torque spikes during commutation either with or without the use of additional

current sensors [35–39],

• The use of the velocity state feedback to attenuate the torque pulsation which acts as a

disturbance [29].

One of the problems of the open-loop techniques based on adjustment of the current waveform

is their sensitivity to imperfect knowledge and variations of the motor parameters. Some alterna-

tive approaches using closed-loop control algorithms with online estimation techniques have been

proposed [40, 41].

Although control based techniques for reduction of pulsating torque in PM motors can be quite

effective, the main focus of this thesis is the optimized design of surface and interior PM motors

which, besides satisfying the fundamental requirement for torque production, also need to have

small pulsating torque for the assumed current waveform. The emphasis is given primarily to the

motors for sinusoidal PM drives.

The goal of a motor designer is to find a good balance between satisfying all the requirements

imposed by the specific task the motor should perform and utilizing the available materials in

the best possible manner to reduce the cost. In every motor design the knowledge of the field

distribution in the air gap is essential for prediction of the developed torque, the induced voltage

and for determining the flux densities in specific parts of the motor (teeth, yoke etc.). Although

accurate field calculations in electrical machines can be carried out using finite element method,

numerical methods are in general more time consuming and do not provide closed form solutions.

Alternatively analytical field solutions can be commonly expressed in the form of Fourier series

which makes them more flexible as a design tool for predicting the motor performance. This is
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crucial when optimization is involved, because it requires numerous repetitive calculations before

reaching the optimal solution which can be very time consuming. Unfortunately, the analytical

field solutions are in most cases limited to surface PM motor designs. The concept of interior PM

motor is often based on saturation of the flux paths in certain parts of the rotor, especially if magnets

are fully buried and enclosed by the rotor core. In such a case only numerical techniques or lumped

parameter models can be used to predict the motor performance and calculate its parameters.

An exact field solution in the air gap of a surface PM motor with radial or parallel magnetiza-

tion has been given by Zhu et al. in [42, 43]. The method is based on a 2-D analytical solution

of the Laplacian and Quasi-Poissonian equations with assumptions that the iron is infinitely per-

meable and the air gap is slotless. The effect of slotting was subsequently modelled in [44] by

using relative air gap permeance obtained from the results of conformal transformation of the slot

geometry. This general approach to modelling the effect of slotting, also used in several other

papers [45–48] is based on multiplying the field distribution in the slotless air gap with the relative

permeance function expressed as an infinite Fourier series. The solutions in [45–48] were able to

provide fairly good estimates of the field in the slotted air gap only for radial component of the

flux density. The tangential component was not included in the results even in the cases when

conformal transformation was used. The method presented in this thesis provides a more complete

analytical field solution than found in literature and allows one to calculate accurately both radial

and tangential components of the air gap flux density in the slotted air gap (Chapter 2). It uses

more extensively the complex nature of the conformal transformation and defines the relative air

gap permeance as a complex number. This solution follows directly from the Schwarz-Christoffel

transformation which is a complex function by nature [49]. It has been shown in this thesis that

the results of proposed method show very good agreement with those obtained by the FE method

for surface PM motors with radial and parallel magnetization. This verifies the correctness of the

new approach.

The knowledge of both radial and tangential components of the air gap flux density allows one

to derive closed form solutions for the cogging torque and the electromagnetic torque based on
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integration of the Maxwell’s stress tensor along the circular line inside the air gap (Sections 2.6

and 3.3).

Another contribution of this thesis is the analytical expression for the cogging torque based on

integration of the lateral forces on the slot sides (Section 2.7). The first attempt to calculate cogging

torque using this approach was made by Zhu and Howe in [50]. Their approach assumes that the

flux lines which enter the slot opening follow the circular arc before entering the slot sides. This

may not be a good approximation for all sizes of the slot opening and in the cases of small tooth

tips relative to the size of the slot opening which the authors themselves have noticed. The identical

approach was used later by Proca et al. [46]. The approach used in this thesis is mathematically

more rigorous and is based on calculation of the field distribution on the slot sides calculated from

conformal mapping of the slot opening. However, it is affected by numerical problems that occur

in the vicinity of the tooth tips which are singular points with infinite flux density. This is an artifact

of conformal mapping which assumes infinite permeability of the iron core.

The proposed technique for field calculations in surface PM motors based on analytical solution of

the field in the slotless air gap, combined with conformal mapping to take into account the effect

of slotting, can be successfully used to determine all the motor parameters required for the design.

This includes the time domain waveforms of the electromagnetic and cogging torque (Sections 2.6

and 3.3), the back emf waveform (Chapter 4) and the waveforms of the flux density in the stator

teeth and yoke which are important for calculation of the core losses (Chapter 7). The results of

the field calculations are then used in the optimized design of the motor (Chapter 8).

The optimization of a PM motor has been formulated as a constrained multiobjective minimization

problem (Section 8.2). The main design objectives are to maximize efficiency and minimize the

active volume of the motor. These two objectives generally lead to good motor performance,

optimal utilization of the material and hence low cost of the machine. In addition, the maximum

allowed torque ripple, current sheet density and flux densities in the core region and the minimum

required power factor have been imposed as constraints.

The interior PM motor structure which has been the target of the optimization is a slightly modified

version of the integrated starter-alternator with two layers of cavities designed by Lovelace [51]
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(Section 8.3). Since the interior PM motor design in this thesis does not have a particular targeted

application, as does the one in [51], but is rather used to show the effectivness of the proposed

optimization scheme, the initial optimization goals have been set to minimize the cogging torque

and to come as close as possible to satisfying the design criterion for optimal field weakening first

shown by Schiferl and Lipo [52]. This criterion insures theoretically constant power operation up

to infinite speed. For most practical IPM motor designs it is not possible to satisfy this criterion

because the back emf is usually constrained to prevent uncontrolled generation in the entire speed

range of operation. Lovelace also developed an optimized design of the motor based on the lumped

parameter model and Monte Carlo optimization method. However, the lumped parameter model

does not allow calculation of the cogging torque which is the emphasis of this thesis. Therefore,

the finite element method had to be used here to carry out field calculations and determine motor

parameters which are needed during optimization. Since FE simulations are time consuming and

cogging torque calculation requires at least a dozen calculations for different rotor positions within

one half-period of the cogging torque, a combined numerical and analytical approach has been

developed which reduces the number of necessary FE calculations (Section 8.3.2). This approach

uses complex relative air gap permeance to calculate the flux density distribution in the air gap

as if no slots were present. Then the analytical solution based on integration of the Maxwell’s

stress tensor in the air gap is used to calculate the cogging torque. This approach requires only two

magnetostatic FE simulations per one period of the cogging torque to estimate its waveform for all

intermediate rotor positions. This saves a significant amount of time during optimization, where

cogging torque needs to be calculated for hundreds of designs, before reaching the optimal solu-

tion. The main disadvantage of using the FE method compared to the lumped parameter model is

the longer time needed to perform calculations which extends significantly the total computational

time needed for reaching the optimal solution.

In general, there are two main approaches to multiobjective optimization. The first approach com-

bines multiple objective functions into a single function defined as a weighted sum of individual

objective functions [21]. The problem with this approach is how to determine the weight coef-

ficients which are used to assign the level of importance to each individual objective. Although
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the result of the optimization can be some low value of the single objective function, some of the

goals may end up not being sufficiently minimized or maximized, depending on the nature of the

optimization. An alternative approach used in this thesis is to evaluate all the objective functions

simultaneously and use nondominated selection to find a population of solutions which belong to

the Pareto optimal set. A vector of decision variables ~X0 is Pareto optimal if there exists no feasible

vector of decision variables ~X from the feasible region of the problem (i.e. where the constraints

are satisfied) which would decrease some objectives without causing a simultaneous increase in

at least one other criterion [53]. The set of solutions which satisfies this condition is called the

Pareto optimal set and the vectors ~X0 corresponding to the solutions in the Pareto optimal set are

called nondominated. The decision maker then chooses a single solution from the Pareto set as the

compromise which suits his objectives the best.

The selected optimization method is Differential Evolution (Chapter 8). This algorithm was in-

vented by Storn and Price in 1995 [54]. Since then it has proven to be very robust and fast con-

verging population based global function minimizer for single objective [55, 56] and multiobjective

[57–59] optimization problems. It has been successfully used in this thesis for multiobjective opti-

mizations of the 5 kW surface PM motor and 1.65 kW interior PM motor with two layers of cavities

in the rotor. A prototype of the optimal IPM motor design has been built and tested (Section 8.4).

The motor performance determined by measurement was somewhat degraded compared to the per-

formance predicted by the FE method due to lower value od the q axis inductance (∼10-20%) and

higher value of the d axis inductance (∼10%), which both contributed to a significant loss of the

reluctance torque. This difference between measured and calculated Lq and Ld has been attributed

primarily to the increase of the effective air gap due to altered properties of the core material in the

vicinity of the air gap caused by punching and laser cutting. However, this explanation cannot be

completely supported by solid evidence without building one or more additional prototype motors

which could then be compared.

An additional analysis has been carried out for the IPM motor which compares motors of different

power ratings with two or three layers of cavities in the rotor (Section 8.5). The finite element

based multiobjective optimization scheme has been utilized to design 5 kW, 50 kW and 200 kW
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motors. The design objectives observed simultaneously have been to minimize the active volume

of the motor and to achieve the best possible match between the characteristic and the rated current

(optimal field weakening criterion). The main design constraint has been the value of the back emf

at maximum speed which has not been allowed to exceed the rated terminal voltage. In addition

the motor must produce minimum required torque in the constant torque regime (zero to corner

speed). Some useful observations have been made which show the design trade-offs between goals

of minimizing the motor volume and maximizing the power output in the field weakening regime.
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Chapter 2

Calculation of Cogging Torque in Surface PM Motors

The analytical approach to cogging torque calculation most commonly found in literature is either

based on calculation of the rate of change of total magnetic energy in the air gap with respect to the

rotor angular position [3, 18, 47] or on summation of the lateral magnetic forces along the sides

of the stator teeth [50]. In analytical calculations it is commonly assumed that iron is infinitely

permeable and that the rate of change of energy in iron is negligible. Therefore, only the change

of magnetic energy in the air gap will contribute to cogging torque production.

For precise cogging torque calculation the former method requires detailed knowledge of the flux

density distribution in the entire air gap. The knowledge of both radial and tangential components

of the flux density is necessary because, although the tangential component is small, its contribu-

tion to the rate of change of energy with respect to the rotor position is significant. If the field in the

air gap is known precisely, an alternative to calculating the rate of change of magnetic energy in

the air gap volume is to calculate the cogging torque by integrating Maxwell’s stress tensor along

the circular surface inside the air gap. In the motor design it is commonly assumed that the field

distribution is equal in every cross-sectional plane in the axial direction. Thus the integration of

Maxwell’s stress is reduced to a solution of the line integral, whereas the air gap energy requires the

solution of a surface integral which is computationally more expensive. Two different approaches

to cogging torque calculation, both based on integration of the Maxwell’s stress tensor in the air

gap, have been developed. In the first approach the closed form solution for the cogging torque

has been found by integrating the tangential component of the stress tensor along the circular arc

inside the air gap. In the second approach the cogging torque is calculated by numerical integration

of the normal component of the stress tensor along the slot sides.
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A novel approach to analytical air gap field calculation is developed in this thesis which is used to

calculate the Maxwell’s stress tensor. The analytical field solution is found by combining the field

solution in the slotless air gap developed by Zhu et al. [42, 43] and the complex relative air gap

permeance calculated from conformal transformation of the slot geometry. The notion of complex

permeance and its usefulness for calculation of the radial and tangential components of the air gap

field in the slotted motor will be explained in detail in Section 2.2.

In order to simplify the calculations certain assumptions are made which can be summarized in

the following manner:

a) the permeability of iron is infinite,

b) the field distribution does not change in the axial direction, i.e. the end effects are neglected,

c) the slot openings have rectangular shape and are infinitely deep,

d) the magnetic field distribution is determined from the product of the flux density produced

by the magnets in a slotless stator and the complex relative air gap permeance,

e) the relative air gap permeance is determined using conformal transformation of the slot

geometry.

2.1 Magnetic Field Distribution in the Slotless Surface PM Motor

The initial phase of cogging torque calculation is the evaluation of the flux density in the air gap

of a slotless PM motor. The analytical technique developed by Howe and Zhu [42, 43] has been

used to calculate this field distribution. The main focus at this point will be PM motors with

surface-mounted magnets and radial or parallel magnetization. The effect of slotting will be added

subsequently by using conformal transformation of the slot geometry.
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In the air gap of a PM machine the area occupied by the magnets and the area occupied by air have

to be distinguished, as shown in Fig. 2.1, because the magnetic field in these two areas is governed

by different equations.

The relation between the magnetic flux density ~B and the field intensity ~H in the air is

~BI = µ0
~HI (2.1)

and in the permanent magnet is

~BII = µ0µr ~HII + µ0
~M (2.2)

where ~M is the magnetization vector and µr is the relative permeability of the magnet. For magnets

with linear demagnetization characteristic the magnetization expressed in terms of remanent flux

density is

~M =
~Br

µ0

(2.3)

For magnetostatic fields in a current-free region the two fundamental postulates that specify the

divergence and the curl of ~B in free space are

∇ ~B = 0 (2.4)

∇× ~B = 0 (2.5)

Since the magnetic flux density has a zero curl, it can be expressed as a gradient of a scalar field.

Let

~B = −µ0µr∇ϕ (2.6)

If (2.6) is substituted into (2.4), the governing equation for magnetostatic field in the air in terms

of the scalar magnetic potential is

∇(∇ϕI) = 4ϕI = 0 (2.7)

A slightly different approach is required to evaluate the scalar magnetic potential inside the magnet.

For field calculations a magnetized body can be replaced by an equivalent fictitious magnetization

volume charge such that [60]

ρm = −∇(µ0
~M) (2.8)
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The Maxwell’s equation which relates the field ~B to its source, the magnetization charge, is given

by

∇ ~B = ρm (2.9)

Substituting (2.6) and (2.8) into (2.9) yields

∇(−µ0µr∇ϕII) = −∇(µ0
~M) ⇒ 4ϕII =

1

µr
∇ ~M (2.10)

In polar coordinates the magnetization vector ~M is given by

~M = Mr~ar +Mθ~aθ (2.11)

Fig. 2.2 shows directions of the vector ~M for radial or parallel magnetization. In the case of radial

magnetization the vector ~M is always perpendicular to the curved surface of the magnet and is

parallel to its lateral edges. Hence the tangential component of the magnetization vector is always

equal to zero. In the case of parallel magnetization the direction of magnetization is always parallel

to the centerline of the magnet arc. Hence both radial and tangential components of the vector ~M

exist. The waveforms of the radial and tangential components of ~M for both cases of magnetization

are shown in Fig. 2.3.

For both radial and parallel magnetization the components Mr and Mθ can be expressed as Fourier

series, i.e.

Mr =
∞∑

n=1,3,5...

Mrn cos(npθ)

Mθ =
∞∑

n=1,3,5...

Mθn sin(npθ)

(2.12)

where p is the number of pole pairs and θ is the angular displacement relative to the center of the

magnet as shown in Fig. 2.2. For radial magnetization

Mrn =
Br

µ0

4

nπ
sin

nπαp
2

Mθn = 0

(2.13)

where αp is the magnet pole arc to pole pitch ratio.
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For parallel magnetization

Mrn = Br

µ0

αp(A1n + A2n)

Mθn = Br

µ0

αp(A1n − A2n)

(2.14)

where

A1n =
sin

[
(np+ 1)αp

π
2p

]

(np+ 1)αp
π
2p

A2n = 1 for np = 1

A2n =
sin

[
(np− 1)αp

π
2p

]

(np− 1)αp
π
2p

for np 6= 1

The scalar magnetic potential distribution in the air is governed by Laplace’s equation (2.7), which

expressed in cylindrical coordinates is

∂2ϕI
∂r2

+
1

r

∂ϕI
∂r

+
1

r2

∂2ϕI
∂θ2

= 0 (2.15)

The scalar potential in the permanent magnet is governed by quasi-Poissonian equation (2.10). The

divergence of the magnetization vector, with its radial and tangential components given by (2.12),

is

∇ ~M =
1

r
Mr +

∂Mr

∂r
+

1

r

∂Mθ

∂θ
=

∞∑

n=1,3,5...

1

r
Mncos(npθ) (2.16)

where

Mn = Mrn + npMθn (2.17)

Combining (2.10) and (2.16) yields

∂2ϕII
∂r2

+
1

r

∂ϕII
∂r

+
1

r2

∂2ϕII
∂θ2

=
1

µr

∞∑

n=1,3,5...

1

r
Mncos(npθ) (2.18)

Since

~H = −∇ϕ = −∂ϕ
∂r
~ar −

1

r

∂ϕ

∂θ
~aθ (2.19)

the relation between the radial and tangential components of the field intensity ~H and the scalar

magnetic potential is

Hr = −∂ϕ
∂r
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Hθ = −1

r

∂ϕ

∂θ
(2.20)

2.1.1 General Solutions in Polar Coordinates

For both internal and external rotor motors the problem of finding the scalar magnetic potential

distribution in the air is a Laplacian problem in two dimensions. This can be solved by the sepa-

ration of variables [61]. It entails seeking a solution which breaks up into a product of functions,

each one involving only one of the variables. Hence the unknown scalar magnetic potential ϕ(r, θ)

can be written in the form

ϕI(r, θ) = R(r)F (θ) (2.21)

Substituting (2.21) into (2.15) and dividing through by RF/r2 results in

r2

R

d2R

dr2
+
r

R

dR

dr
= − 1

F

d2F

dθ2
= λ2 (2.22)

where λ is the separation constant. Thus the separated equations are

F ′′ + λ2F = 0 (2.23)

r2R′′ + rR′ − λ2R = 0 (2.24)

It is evident that (2.23) has the general solution of the form

F (θ) = C1 cos(λθ) + C2 sin(λθ) (2.25)

Since distribution of magnetization shown in Fig. 2.2 is a periodic even function, the function F (θ)

should also be periodic and even. Thus C2 = 0, λ = np and (2.25) now becomes

F (θ) = C1 cos(λθ) (2.26)

Equation (2.24), known as Cauchy-Euler equation, can be solved by making a substitution r = eu

and reducing to an equation with constant coefficients. This leads to

R(r) = C3r
np + C4r

−np, n = 1, 2, 3, ... (2.27)
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Substitution of (2.26) and (2.27) into (2.21) yields

ϕnI(r, θ) =
(
AnIr

np +BnIr
−np

)
cos(npθ) (2.28)

where AnI and BnI are constants to be determined. According to the superposition principle a

linear combination of the solutions ϕnI , each with different value of n and with arbitrary coeffi-

cients AnI and BnI , is also a solution of (2.15). Thus the solution ϕI(r, θ) can be represented as an

infinite series

ϕI(r, θ) =
∞∑

n=1

(
AnIr

np +BnIr
−np

)
cos(npθ) (2.29)

In the magnets the governing equation is (2.18). The general solution for ϕII(r, θ) is equal to the

sum of the general solution of the homogenous equation 4ϕII = 0 and any solution of the nonho-

mogenous equation (2.18). The general solution of the homogenous equation is often referred to

as the complementary solution [62] and can be denoted by ϕIIc(r, θ). The solution ϕIIc(r, θ) will

have the same form as (2.29), i.e.

ϕIIc(r, θ) =
∞∑

n=1

(
AnIIr

np +BnIIr
−np

)
cos(npθ) (2.30)

A solution of the nonhomogenous equation is usually called a particular solution and can be de-

noted by ϕIIp(r, θ). A particular solution of the form

ϕIIp(r, θ) =
∞∑

n=1,3,5...

C1r cos(npθ) (2.31)

can be assumed. Substituting (2.31) into (2.18) the constant C1 is obtained as

C1 =
1

1 − (np)2

Mn

µr
(2.32)

Therefore

ϕIIp(r, θ) =
∞∑

n=1,3,5...

Mn

µr [1 − (np)2]
r cos(npθ) (2.33)

However, this solution is not valid for the particular case of np = 1. Hence for np = 1, by letting

r = et, (2.18) becomes
∂2ϕIIp
∂t2

+
∂2ϕIIp
∂θ2

=
M1

µr
et cos θ (2.34)
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Now assuming

ϕIIp = C2te
t cos θ (2.35)

and substituting into (2.34), the constant C2 is obtained as

C2 =
1

2

M1

µr
(2.36)

Therefore for np = 1

ϕIIp(r, θ) =
1

2

M1

µr
tet cos θ =

1

2

M1

µr
r ln r cos θ (2.37)

The general solution of (2.18) for np 6= 1 is

ϕII(r, θ) = ϕIIc(r, θ) + ϕIIp(r, θ)

=
∞∑

n=1

(
AnIIr

np +BnIIr
−np

)
cos(npθ)

+
∞∑

n=1,3,5...

Mn

µr [1 − (np)2]
r cos(npθ) (2.38)

and for np = 1

ϕII(r, θ) =
(
A1IIr +B1IIr

−1
)

cos θ +
M1

2µr
r ln r cos θ (2.39)

The boundary conditions for the internal and external rotor motors of Fig. 2.1 are defined by

HθI(r, θ)|r=Rs
= 0

HθII(r, θ)|r=Rr
= 0

BrI(r, θ)|r=Rm
= BrII(r, θ)|r=Rm

(2.40)

HθI(r, θ)|r=Rm
= HθII(r, θ)|r=Rm

where g is the air gap length, lm is the radial thickness of the magnets, Rm = Rs − g and Rr =

Rs−g− lm for an internal rotor motor andRm = Rs+g andRr = Rs+g+ lm for an external rotor

motor. The field components in equations (2.40) can be calculated by substituting solutions for the

scalar magnetic potential (2.29), (2.38) and (2.39) into (2.20). Thus the unknown coefficients AnI ,

BnI , AnII and BnII can be obtained.
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The complete solution for the magnetic field components in the air gap and the magnet regions is

given by the following equations [42]:

For internal rotor motors (np 6= 1)

BrI(r, θ) =
∞∑

n=1,3,5...

µ0Mn

µr

np

(np)2 − 1

[(
r

Rs

)np−1 (Rm

Rs

)np+1

+
(
Rm

r

)np+1
]





(A3n − 1) + 2
(
Rr

Rm

)np+1 − (A3n + 1)
(
Rr

Rm

)2np

µr+1
µr

[
1 −

(
Rr

Rs

)2np
]
− µr−1

µr

[(
Rm

Rs

)2np −
(
Rr

Rm

)2np
]





cos(npθ) (2.41)

BθI(r, θ) =
∞∑

n=1,3,5...

µ0Mn

µr

np

(np)2 − 1

[
−
(
r

Rs

)np−1 (Rm

Rs

)np+1

+
(
Rm

r

)np+1
]





(A3n − 1) + 2
(
Rr

Rm

)np+1 − (A3n + 1)
(
Rr

Rm

)2np

µr+1
µr

[
1 −

(
Rr

Rs

)2np
]
− µr−1

µr

[(
Rm

Rs

)2np −
(
Rr

Rm

)2np
]





sin(npθ) (2.42)

BrII(r, θ) =
∞∑

n=1,3,5...

µ0Mn

np

(np)2 − 1

[(
r

Rm

)np−1

+
(
Rr

Rm

)np−1 (Rr

r

)np+1
]





(A3n − 1
µr

)
(
Rm

Rs

)2np
+ (1 + 1

µr
)
(
Rr

Rm

)np+1 (
Rm

Rs

)2np −
(
A3n + 1

µr

)
−

µr+1
µr

[
1 −

(
Rr

Rs

)2np
]
− µr−1

µr

[(
Rm

Rs

)2np −
(
Rr

Rm

)2np
]

(
1 − 1

µr

) (
Rr

Rm

)np+1

µr+1
µr

[
1 −

(
Rr

Rs

)2np
]
− µr−1

µr

[(
Rm

Rs

)2np −
(
Rr

Rm

)2np
]





cos(npθ)

+
∞∑

n=1,3,5...

µ0Mn

np

(np)2 − 1

[(
Rr

r

)np+1

+ A3n

]
cos(npθ) (2.43)
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BθII(r, θ) =
∞∑

n=1,3,5...

−µ0Mn

np

(np)2 − 1

[(
r

Rm

)np−1

−
(
Rr

Rm

)np−1 (Rr

r

)np+1
]





(A3n − 1
µr

)
(
Rm

Rs

)2np
+ (1 + 1

µr
)
(
Rr

Rm

)np+1 (
Rm

Rs

)2np −
(
A3n + 1

µr

)
−

µr+1
µr

[
1 −

(
Rr

Rs

)2np
]
− µr−1

µr

[(
Rm

Rs

)2np −
(
Rr

Rm

)2np
]

(
1 − 1

µr

) (
Rr

Rm

)np+1

µr+1
µr

[
1 −

(
Rr

Rs

)2np
]
− µr−1

µr

[(
Rm

Rs

)2np −
(
Rr

Rm

)2np
]





sin(npθ)

+
∞∑

n=1,3,5...

µ0Mn

1

(np)2 − 1

[
np
(
Rr

r

)np+1

− A3n

]
sin(npθ) (2.44)

For external rotor motors (np 6= 1)

BrI(r, θ) =
∞∑

n=1,3,5...

−µ0Mn

µr

np

(np)2 − 1

[(
r

Rm

)np−1

+
(
Rs

Rm

)np−1 (Rs

r

)np+1
]





(A3n − 1)
(
Rm

Rr

)2np
+ 2

(
Rm

Rr

)np−1 − (A3n + 1)

µr+1
µr

[
1 −

(
Rs

Rr

)2np
]
− µr−1

µr

[(
Rs

Rm

)2np −
(
Rm

Rr

)2np
]





cos(npθ) (2.45)

BθI(r, θ) =
∞∑

n=1,3,5...

−µ0Mn

µr

np

(np)2 − 1

[(
− r

Rm

)np−1

+
(
Rs

Rm

)np−1 (Rs

r

)np+1
]





(A3n − 1)
(
Rm

Rr

)2np
+ 2

(
Rm

Rr

)np−1 − (A3n + 1)

µr+1
µr

[
1 −

(
Rs

Rr

)2np
]
− µr−1

µr

[(
Rs

Rm

)2np −
(
Rm

Rr

)2np
]





sin(npθ) (2.46)

BrII(r, θ) =
∞∑

n=1,3,5...

−µ0Mn

np

(np)2 − 1

[(
r

Rr

)np−1 (Rm

Rr

)np+1

+
(
Rm

r

)np+1
]





(A3n − 1
µr

) + (1 + 1
µr

)
(
Rs

Rm

)np+1 (
Rs

Rr

)np−1 −
(
A3n + 1

µr

) (
Rs

Rm

)2np−
µr+1
µr

[
1 −

(
Rs

Rr

)2np
]
− µr−1

µr

[(
Rs

Rm

)2np −
(
Rm

Rr

)2np
]

(
1 − 1

µr

) (
Rm

Rr

)np−1

µr+1
µr

[
1 −

(
Rs

Rr

)2np
]
− µr−1

µr

[(
Rs

Rm

)2np −
(
Rm

Rr

)2np
]





cos(npθ)

+
∞∑

n=1,3,5...

µ0Mn

np

(np)2 − 1

[
−
(
r

Rr

)np−1

+ A3n

]
cos(npθ) (2.47)
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BθII(r, θ) =
∞∑

n=1,3,5...

µ0Mn

np

(np)2 − 1

[(
r

Rr

)np−1 (Rm

Rr

)np+1

−
(
Rm

r

)np+1
]





(A3n − 1
µr

) + (1 + 1
µr

)
(
Rs

Rm

)np+1 (
Rs

Rr

)np−1 −
(
A3n + 1

µr

) (
Rs

Rm

)2np−
µr+1
µr

[
1 −

(
Rs

Rr

)2np
]
− µr−1

µr

[(
Rs

Rm

)2np −
(
Rm

Rr

)2np
]

(
1 − 1

µr

) (
Rm

Rr

)np−1

µr+1
µr

[
1 −

(
Rs

Rr

)2np
]
− µr−1

µr

[(
Rs

Rm

)2np −
(
Rm

Rr

)2np
]





sin(npθ)

+
∞∑

n=1,3,5...

µ0Mn

1

(np)2 − 1

[
np
(
r

Rr

)np−1

− A3n

]
sin(npθ) (2.48)

For internal and external rotor motors (np = 1)

BrI(r, θ) =
µ0M1

2µr

[
1 +

(
Rs

r

)2
]





A3n

(
Rm

Rs

)2 − A3n

(
Rr

Rs

)2
+
(
Rr

Rs

)2
ln
(
Rm

Rr

)2

µr+1
µr

[
1 −

(
Rr

Rs

)2
]
− µr−1

µr

[(
Rm

Rs

)2 −
(
Rr

Rm

)2
]





cos(θ) (2.49)

BθI(r, θ) =
µ0M1

2µr

[
−1 +

(
Rs

r

)2
]





A3n

(
Rm

Rs

)2 − A3n

(
Rr

Rs

)2
+
(
Rr

Rs

)2
ln
(
Rm

Rr

)2

µr+1
µr

[
1 −

(
Rr

Rs

)2
]
− µr−1

µr

[(
Rm

Rs

)2 −
(
Rr

Rm

)2
]





sin(θ) (2.50)

BrII(r, θ) =
µ0M1

2





A3n

(
Rm

Rs

)2 − A3n + ln
(
Rm

Rr

) [
µr+1
µr

(
Rr

Rs

)2 − µr−1
µr

(
Rr

Rm

)2
]

µr+1
µr

[
1 −

(
Rr

Rs

)2
]
− µr−1

µr

[(
Rm

Rs

)2 −
(
Rr

Rm

)2
]





[
1 +

(
Rr

r

)2
]

sin(θ) +
µ0M1

2

[
A3n − ln

(
r

Rm

)
+
(
Rr

r

)2

ln
(
Rm

Rr

)]
sin(θ) (2.51)



23

BθII(r, θ) = −µ0M1

2





A3n

(
Rm

Rs

)2 − A3n + ln
(
Rm

Rr

) [
µr+1
µr

(
Rr

Rs

)2 − µr−1
µr

(
Rr

Rm

)2
]

µr+1
µr

[
1 −

(
Rr

Rs

)2
]
− µr−1

µr

[(
Rm

Rs

)2 −
(
Rr

Rm

)2
]





[
1 −

(
Rr

r

)2
]

sin(θ) − µ0M1

2

[
−1 + A3n − ln

(
r

Rm

)
−
(
Rr

r

)2

ln
(
Rm

Rr

)]
sin(θ) (2.52)

where for np 6= 1

A3n =





(
np− 1

np

)
Mrn

Mn
+ 1

np
for parallel magnetization

np for radial magnetization

end for np = 1

A3n =





2Mr1

M1

− 1 for parallel magnetization

1 for radial magnetization

For the purpose of cogging torque calculation the radial and tangential components of the air gap

flux density are of particular interest. Theoretically the integration of the Maxwell’s stress tensor

can be carried out along the circular path which completely encloses the rotor at any radius between

the magnet surface and the stator surface. Hence for internal rotor motors the radius can be

Rm < r < Rs

and for external rotor motors

Rr < r < Rm

The field solution in the middle of the air gap, i.e. at r = Rm+g/2 for internal and at r = Rm−g/2
for external rotor motors is often the most convenient for cogging torque and electromagnetic

torque calculations. In finite element simulations the position of the integration path in the air gap

when using Maxwell’s stress tensor is an important issue which affects the accuracy of the force

calculations.

The field distribution in the middle of the air gap at r = Rm + g/2 for a six pole internal rotor

surface PM motor, with parameters given in Table 2.1, has been calculated using (2.41) and (2.42).

The results for one pole pair and for both radial and parallel magnetization are shown in Figs. 2.4

and 2.5. The first 400 terms of the Fourier series were used to calculate the flux density.
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Table 2.1 Parameters of the 36 slot, six pole surface PM motor

Parameter Symbol Value Unit

Rated power Pr 3.7 kW

Rated voltage Vr 450 V

Rated speed nr 2000 rpm

Pole number 2p 6 –

Slot number Qs 36 –

Magnet arc/Pole pitch ratio αp 0.865 –

Air gap length g 0.5 mm

Magnet radial thickness lm 2 mm

Radius of the rotor surface Rr 55 mm

Radius of the magnet surface Rm 57 mm

Stator inner radius Rs 57.5 mm

Magnet remanence Br 0.82 T

Relative recoil permeability µr 1.07 –
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Fig. 2.4 Waveform of the flux density in the middle of the air gap of a slotless
surface PM motor with radial magnetization: (a) radial component,
(b) tangential component
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Fig. 2.5 Waveform of the flux density in the middle of the air gap of a slot-
less surface PM motor with parallel magnetization: (a) radial com-
ponent, (b) tangential component
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2.2 Approximation of the Air Gap Permeance

The presence of slots in the motor affects the flux distribution in the air gap and in the magnets.

Slots also decrease the total flux per pole which is usually accounted for using the Carter coeffi-

cient. Moreover the interaction of the magnetic field with the tooth sides generates forces which

create a cogging torque.

So far the field distribution for the slotless PM motor is known. The actual open-circuit flux density

is then determined from the product of the flux density produced by the magnets in a slotless rotor

and the relative air gap permeance λ(r, θ), i.e.

B(r, θ, α) = Bslotless(r, θ, α)λ(r, θ) (2.53)

where α is the angle of rotation of the magnets relative to the referent position. The referent

position for which α = 0 is when the centerline of the magnet is aligned with the angular position

θ = 0 of the (r, θ) coordinate system positioned as shown in Fig. 2.1.

To determine the relative permeance, the actual flux paths in the region of the slot opening need

to be known. The flux paths are a function of the slot geometry. Conformal transformation is an

analytical technique which allows one to calculate the field distribution for the geometric shape of

the slot opening. The method is based on the theory of functions of a complex variable.

2.2.1 Conformal Transformation of the Slot Opening

Conformal transformation or conformal mapping is the representation of a bounded area in the

plane of another complex variable. When it is required to find a field distribution between the

equipotential boundaries of somewhat awkward shape, as the slot opening structure is, then it

becomes very suitable to find a transformation from one complex plane to another in which the

shapes of the boundaries become something for which the field distribution is both regular and

known.

The basic principle of the method will be explained on the example of an infinitely deep slot

opening shown in Fig. 2.6. The idea is to transform the geometric shape in Fig. 2.6 into a slotless

air gap in which the field solution can be found using the method described in Section 2.1. That
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solution is then mapped back into the complex plane where the actual slot shape exists. For the

purpose of the transformation it is assumed that the depth of the slot is infinite. The depth of

penetration of the field into the slot opening is usually small so the assumption of infinite slot

depth will have a negligible effect on the results and at the same time will greatly simplify the

transformation.
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Fig. 2.6 Single infinitely deep slot opening in the S plane

Four conformal transformations are required to transform the actual slotted air gap into a slotless air

gap where the field solution is known. This is shown in Fig. 2.7. S plane contains the original slot

geometry, K plane contains the slotless air gap, while Z, W and T planes are used for intermediate

transformations.
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Fig. 2.7 Basic steps required for finding the field solution in the slotted air gap based on
conformal mapping of the slot opening
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a) Transformation from S plane into Z plane

The slot geometry in the S plane in its original circular arrangement needs to be transformed into a

linear model in the Z plane. This can be achieved by using logarithmic conformal transformation

which transforms cylindrical coordinates into Cartesian coordinates [63, 64]. The conventional

approach of ”cutting” the motor circumference axially and ”opening” it would be acceptable only

in the case of a small air gap relative to the size of the slot opening and a small curvature of the

stator and rotor surface. The surface PM motors have a large air gap and a relatively small radius.

Consequently the radii of the rotor and stator surfaces can be quite different in which case the

conventional approach is no longer valid. The logarithmic conformal transformation between the

S plane and the Z plane is given by

z = ln(s) (2.54)

where

s = m+ jn = rejθ

z = x+ jy

The link between coordinates in the S and Z planes is

x = ln(r)

z = θ (2.55)

The resulting linear slot model in the Z plane is shown in Fig. 2.8.

b) Transformation from Z plane into W plane

The next step in finding the field distribution in the slotted air gap is to transform the area bounded

by the geometric structure defined in the Z plane into the upper half of the W plane. The transfor-

mation which opens out the interior of a polygon in the Z plane to the upper half of the W plane is

known as Schwarz-Christoffel transformation [49]. The sides of the polygon in the Z plane after

the transformation become the real axis of the W plane. The slot configuration in the Z plane with

values of w at the corner points is shown in Fig. 2.9.
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Fig. 2.8 Slot opening in the Z plane
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Fig. 2.9 Slot opening in the Z plane with marked values of w at the corner points
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There are several ways of opening this configuration into the upper half of the W plane. Since it

will be advantageous to have the resulting flux lines in the W plane semicircles, it is best to make

the origin of the W plane where the imaginary part of z is at minus infinity. Then at the left surface

where z = +j∞ one makes w = −∞ and at the right surface w = +∞. These are the values of

w shown in Fig. 2.9. There are three more corners, shown as A, B and C where values of w have

to be fixed. It is assumed that the slot walls merge into the corner point C at the point where the

real part of z is infinity.

Only two of those three corners can have arbitrary values assigned to them so that one value of w

is left unspecified to be found later in terms of the ratio b′o/g
′. Let the unspecified value be denoted

by a. Now the value of w at each of the corners A, B and C must be positive because those points

lie between the points w = 0 and w = ∞. The following choice of values can be made: at A let

w = a, at C let w = 1 and at B let w = b. The values a and b will not be independent because

there is only one definite ratio in the Z plane. The W plane is shown in Fig. 2.10.
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Fig. 2.10 Slot opening in the W plane

Since the opening of the polygon will be made in the corner where Im(z) = ∞, i.e. w = ∞,

that corner will take no part in the transformation. The angles at the corners A and B will be

α = β = 3π/2. The angles at the corners C and D are zero. Since there are four corners to be

opened, the Schwarz-Christoffel transformation will have the form

dz

dw
= A(w − a)

α
π
−1(w − b)

β
π
−1(w − c)

γ
π
−1(w − d)

δ
π
−1 (2.56)

After substituting the values of w and the angles at the corner points into (2.56), the transformation

from the Z plane to the upper half of the w plane becomes

dz

dw
= A

(w − a)
1

2 (w − b)
1

2

(w − 1)w
(2.57)
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The constants A, a and b can now be determined before integration of (2.57). The value of A can

be found by using the method of integration along a large semicircle in the w plane. In the Z plane

the distance between the surfaces as the imaginary part of z approaches infinity is the constant

value g′ so that, taking direction into account, the value of the integration across the air gap is −g ′

at all points after w = b. In the W plane the path of integration is along a large semicircle of an

arbitrary large radius R. In polar coordinates the points on the semicircle will be

w = Rejθ

The differential of w is then

dw = jRejθdθ

Substitution into (2.57) gives

∫
dz =

∫ π

0

A
(
Rejθ − a

) 1

2

(
Rejθ − b

) 1

2

Rejθ (Rejθ − 1)
jRejθdθ (2.58)

As R → ∞ it greatly exceeds a, b and unity. Hence for values of R approaching infinity

∫
dz =

∫ π

0

A
(
RejθRejθ

) 1

2

RejθRejθ
jRejθdθ =

∫ π

0
jAdθ = jπA (2.59)

In the Z plane
∫

dz = −g′ and therefore

A = j
g′

π
(2.60)

A similar integration can be done in the area where the imaginary part of z approaches negative

infinity, i.e. where w = 0. The value of the integral in the Z plane across the air gap is again −g ′.
In the W plane the path of integration is a small semicircle centered at the origin of radius r which

can be made arbitrarily small. Then as before

w = rejθ

dw = jrejθdθ
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∫
dz =

∫ π

0

A
(
rejθ − a

) 1

2

(
rejθ − b

) 1

2

rejθ (rejθ − 1)
jrejθdθ (2.61)

As r approaches zero it becomes much smaller than either a, b or unity, and hence for values of r

approaching zero

∫
dz =

∫ π

0
− A (ab)

1

2

rejθ(−1)
jrejθdθ =

∫ π

0
jA(ab)

1

2 dθ = j · j g
′

π
(ab)

1

2π = −g′(ab) 1

2 (2.62)

Since
∫

dz = −g′, hence

(ab)
1

2 = 1 ⇒ b =
1

a
(2.63)

Substituting (2.60) into (2.57) gives

dz = j
g′

π

(w − a)
1

2 (w − b)
1

2

(w − 1)w
dw (2.64)

Hence

z = j
g′

π

∫ (w − a)
1

2 (w − b)
1

2

(w − 1)w
dw (2.65)

The integrand is not in the form for which the solution can be found in the tables of integrals. If

substitution

p2 =
w − b

w − a
(2.66)

is made so that

w =
ap2 − b

p2 − 1
(2.67)

then (2.65) becomes

z = j
2g′

π

∫ (b− a)2p2

a(1 − a)(p2 − 1)(p2 − b2)(p2 + b)
dp (2.68)

Substituting 1
b

for a gives

z = j
2g′

π

∫ (b+ 1)2(b− 1)p2

(1 − p2)(b2 − p2)(p2 + b)
dp (2.69)

After splitting the integrand into partial fractions (2.69) takes the form

z = j
2g′

π

∫ (
1

1 − p2
− b

b2 − p2
− b− 1

b+ p2

)
dp (2.70)
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Using tables of integrals [65] the solution of the integral is

z = j
g′

π

[
ln

∣∣∣∣∣
1 + p

1 − p

∣∣∣∣∣− ln

∣∣∣∣∣
b+ p

b− p

∣∣∣∣∣−
2(b− 1)√

b
tan−1 p√

b

]
+ C1 (2.71)

The constant of integration in (2.71) can be calculated by making the value of z at one of the corner

points calculated according to (2.71) equal to the value of z according to Fig. 2.9. It can be noted

that when p is zero

z = j
g′

π

[
ln 1 − ln 1 − 2(b− 1)√

b
tan−1 0

]
+ C1 = C1

From (2.66) when p is zero w = b. Hence from Fig. 2.9

C1 = ln(Rs) + jθ2 (2.72)

The unknown value of b depends on the ratio bo
g′

. Since

p2 =
w − b

w − a

as w → a, p → ∞. Therefore near the point w = a the value of p is very large and in the limit

where w = a

z = lim
p→∞

{
j
g′

π

[
ln

∣∣∣∣∣
1 + p

1 − p

∣∣∣∣∣− ln

∣∣∣∣∣
b+ p

b− p

∣∣∣∣∣−
2(b− 1)√

b
tan−1 p√

b

]
+ ln(Rs) + jθ2

}

= j
g′

π

[
ln(−1) − ln(−1) − 2(b− 1)√

b
tan−1 ∞

]
+ ln(Rs) + jθ2

= −j g
′

π

2(b− 1)√
b

π

2
+ ln(Rs) + jθ2 = −jg′ b− 1√

b
+ ln(Rs) + jθ2

According to Fig. 2.9 w = a at point A where z = ln(Rs) + jθ1. Hence

−jg′ b− 1√
b

+ ln(Rs) + jθ2 = ln(Rs) + jθ1

−g′ b− 1√
b

= −(θ2 − θ1) = −b′o (2.73)

from which

b =



b′o
2g′

+

√√√√
(
b′o
2g′

)2

+ 1




2

(2.74)
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c) Transformation from T plane into W plane

In order to find the field distribution in the slot area, another transformation from the T plane shown

in Fig. 2.11 to the W plane from Fig. 2.10 is required. The slot opening in the T plane represents

two parallel plates extending an infinite distance in all directions. Note that the characteristic points

numbered 1 to 2 no longer have the same angular coordinates θ = 0 as in Fig. 2.8. The same is

valid for the points 5 and 6 which no longer have the angular coordinates θ = θs. This difference

will be explored in more detail in Section 2.3.
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Fig. 2.11 Slot opening in the T plane

From the Schwarz-Christoffel equation the mapping between the T plane and the W plane is given

by
dt

dw
= A1(w − a1)

α1

π
−1 (2.75)

If the polygon is opened at the corner where w = a1 = 0 and α1 = 0, then (2.75) becomes

dt =
A1

w
dw (2.76)

Hence by integration

t = A1 lnw +B1 (2.77)
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The constants A1 and B1 can be determined from the points marked in Fig. 2.11 where w = −1

and w = 1. From (2.77) it follows that

ln(Rr) + j
θs
2

= A1 ln(−1) +B1 = jπA1 +B1 (2.78)

ln(Rs) + j
θs
2

= A1 ln(1) +B1 = B1 (2.79)

From (2.78) and (2.79) one has

A1 =
1

jπ
ln
Rr

Rs

= j
g′

π
(2.80)

B1 = ln(Rs) + j
θs
2

(2.81)

It is apparent that the value of A1 depends on the distance between the plates in the T plane which

is g′ by choice. The transformation (2.77) now becomes

t = j
g′

π
lnw + ln(Rs) + j

θs
2

(2.82)

d) Transformation from T plane into K plane

The last transformation maps the two parallel plates in Fig. 2.11 into a circular shape which models

the air gap of a slotless PM motor. To achieve this the exponential conformal transformation is used

in the form

k = et (2.83)

The shape which results from (2.83) is shown in Fig. 2.12. The next task is to map the known field

solution in the K plane, calculated using the method from Section 2.1, into the S plane where the

slot exists.

e) Field solution in the S plane

From the theory of complex numbers it is known that any function of a complex variable s =

m + jn in the S plane automatically satisfies Laplace’s equation [49]. These functions are called

conjugate functions. Let k = u(m,n) + jv(m,n) be any function of s = m + jn. Then both u
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Fig. 2.12 Slot opening in the K plane

and v will satisfy Laplace’s equation

∂2u

∂m2
+
∂2u

∂n2
= 0

∂2v

∂m2
+
∂2v

∂n2
= 0 (2.84)

Moreover, these functions will also satisfy Cauchy-Riemann conditions

∂u

∂m
=

∂v

∂n
∂v

∂m
= −∂u

∂n
(2.85)

If ϕ(m,n) is a scalar potential function in the S plane and ψ(u, v) is a transformed scalar potential

function in the T plane, then the following condition can be set [60]

ϕ(m,n) = ψ [u(m,n), v(m,n)] (2.86)

The field intensity in the S plane is equal to the negative gradient of the scalar magnetic potential,

i.e.

Hs = Hm + jHn = − ∂ϕ

∂m
− j

∂ϕ

∂n
(2.87)
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and in the K plane

Hk = Hu + jHv = −∂ψ
∂u

− j
∂ψ

∂v
(2.88)

From the condition (2.86) one has

∂ϕ

∂m
=
∂ψ

∂u

∂u

∂m
+
∂ψ

∂v

∂v

∂m
∂ϕ

∂n
=
∂ψ

∂u

∂u

∂n
+
∂ψ

∂v

∂v

∂n
(2.89)

Combining (2.87), (2.88) and (2.89) yields

Hs = Hu

∂u

∂m
+Hv

∂v

∂m
+ j

(
Hu

∂u

∂n
+Hv

∂v

∂n

)
(2.90)

After applying Cauchy-Riemann conditions, (2.90) becomes

Hs = (Hu + jHv)

(
∂u

∂m
− j

∂v

∂m

)
= Hk

(
∂u

∂m
− j

∂v

∂m

)
(2.91)

Since k = u(m,n) + jv(m,n) = k(s), then

∂k

∂m
=

∂u

∂m
+ j

∂v

∂m
=
∂k

∂s

∂s

∂m
=
∂k

∂s
(2.92)

Hence the complex conjugate of ∂k
∂s

will be
(
∂k

∂s

)∗

=

(
∂u

∂m
+ j

∂v

∂m

)∗

=
∂u

∂m
− j

∂v

∂m
(2.93)

If (2.93) is substituted into (2.91), the equation which maps the field solution from the K plane to

the S plane is obtained, i.e.

Hs = Hk

(
∂k

∂s

)∗

(2.94)

The same type of equation is valid for the flux density as well because the field is calculated in the

air gap.

Bs = Bk

(
∂k

∂s

)∗

(2.95)

The partial derivative ∂k
∂s

can be expressed as

∂k

∂s
=
∂k

∂t

∂t

∂s
=
∂k

∂t

∂t

∂w

∂w

∂s
=
∂k

∂t

∂t

∂w

∂w

∂z

∂z

∂s
(2.96)
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The partial derivatives in (2.96) are defined by conformal transformations between the correspond-

ing complex planes.

∂k

∂t
= et = eln k = k

∂t

∂w
= j

g′

π

1

w
∂w

∂z
= −j π

g′
(w − 1)w

(w − a)
1

2 (w − b)
1

2

(2.97)

∂z

∂s
=

1

s

Substituting (2.96) and (2.97) into (2.95) yields

Bs = Bk

[
kj
g′

π

1

w
(−j) π

g′
(w − 1)w

(w − a)
1

2 (w − b)
1

2

1

s

]∗

= Bk

[
k

s

(w − 1)

(w − a)
1

2 (w − b)
1

2

]∗
(2.98)

Since Bs is the flux density in the slotted air gap, the part of (2.98) which multiplies Bk can be

defined as a complex relative air gap permeance λ. Equation (2.98) then becomes

Bs = Bkλ
∗ (2.99)

where

λ =
k

s

(w − 1)

(w − a)
1

2 (w − b)
1

2

(2.100)

with a and b calculated according to (2.63) and (2.74).

Since k is a function of twhich in turn is a function of w and s is the known coordinate in the actual

geometry which is also a function of w, the complex permeance λ is indirectly a nonlinear function

of w as well. The main problem is that w is linked with z through a nonlinear equation (2.71). If

it is required to evaluate the flux density at a certain geometric point in the slotted air gap in the S

plane, then the value of z which corresponds to that point in the Z plane can simply be calculated

as z = ln(s). However, the value of w which corresponds to that value of z cannot be calculated

explicitly from (2.71) because that equation is in the form z = f(w) where f is a nonlinear
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function of w. Therefore an iterative technique is required to solve this nonlinear equation and

find the value of w for the given z. The nonlinear least-squares optimization algorithm built into

MATLAB (function lsqnonlin) has been used to solve this problem. The residual norm which is

being minimized is defined as

‖F‖ = [Re(z − z(w))]2 + [Im(z − z(w))]2 (2.101)

where z is the actual value and z(w) is the value calculated using (2.71) with w from the current

iteration.

Since λ is a complex number, it can be written in the form

λ = λa + jλb (2.102)

For the motor with parameters given in Table 2.1 the complex permeance λ has been calculated

using (2.100) in the middle of the air gap (r = Rs − g/2) along the line covering the angular span

of one slot pitch (0 < θ < θs). The resulting waveforms of the real and imaginary parts of λ

are shown in Fig. 2.13. These two waveforms will repeat with every slot pitch. Hence they can

be expressed in the form of Fourier series to give the complex relative permeance function for all

angular positions in the middle of the air gap. The Fourier series is given by

λa(r, θ) = λ0(r) +
Nλ∑

n=1

λan(r, θ) cos(nQsθ)

λb(r, θ) =
Nλ∑

n=1

λbn(r, θ) sin(nQsθ) (2.103)

where Qs is the number of slots and Nλ is the maximum order of the Fourier coefficients. The

Fourier coefficients λan and λbn are calculated from the waveforms shown in Fig. 2.13 using dis-

crete Fourier transform. The distribution of the relative air gap permeance for one pole pitch

calculated using (2.103) is shown in Fig. 2.14.

2.3 Magnetic Field Distribution in the Slotted Surface PM Motor

The field distribution in the slotted air gap can now be calculated by multiplying the complex

relative air gap permeance shown in Fig. 2.14 with the field solution in the slotless air gap shown
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Fig. 2.13 Complex relative permeance per one slot pitch in the middle of the air gap of a six pole
surface PM motor: (a) real component, (b) imaginary component
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Fig. 2.14 Complex relative permeance per one pole pitch in the middle of the air gap of a six pole
surface PM motor: (a) real component, (b) imaginary component
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in Figs. 2.4 and 2.5. If the radial and tangential components of the flux density in the slotless air

gap are taken as the real and imaginary parts of the flux density distribution in the K plane, then

the expressions for the radial and tangential components of the flux density in the S plane will be

Bsr = Re(Bkλ
∗) = Re [(Br + jBθ)(λa − jλb)] = Brλa +Bθλb (2.104)

Bsθ = Im(Bkλ
∗) = Im [(Br + jBθ)(λa − jλb)] = Bθλa −Brλb (2.105)

where Br and Bθ are the radial and tangential components of the flux density in the slotless air

gap and λa and λb are the real and imaginary parts of the complex relative air gap permeance. It

is important to notice that the radial component of the flux density in the slotted air gap Bsr is a

function of both the radial and tangential components of the flux density in the slotless air gap.

This is a significantly different result from the ”classical” approach which assumes λ to be a real

number. With that assumption it is not possible to calculate the tangential component of the flux

density in the slotted air gap.

If the flux density needs to be calculated at a location defined by the coordinates s = m + jn

in the S plane, then the value of the flux density in the slotless air gap which is used in (2.104)

and (2.105) needs to be evaluated at a point k = u + jv in the K plane into which the point s

is transformed. Note that the outline of the slot opening in Fig. 2.6 will be transformed into the

outline of the slotless air gap in Fig. 2.12. However, the radial and the angular coordinates of the

points in the S plane will not be exactly transformed into the same coordinates of the points in the

K plane. For instance, if the field distribution in the slotted air gap needs to be evaluated along

the circular line with radius r where s = rejθ and Rm < r < Rs, then the field distribution in the

K plane needs to be evaluated along the contour into which the circular arc is transformed. For

the previously used six pole surface PM motor the circular arc located in the middle of the air gap,

with the radius r = Rs− g/2 and an angular span of one slot pitch, and the contour in the K plane

into which this arc is transformed have been compared in Fig. 2.15. If the points in the S plane are

given in the form s = rse
jθs and the points in the K plane are given in the form s = rke

jθk , then

Fig. 2.15a shows the ratio of the radii rk/rs and Fig. 2.15b shows the angular displacement θk−θs.
It is apparent that the transformed line is very close to the circular arc. Hence an approximation
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is made in which it is assumed that the transformed line in the K plane is also a circular arc with

the same radial and angular coordinates as the original arc in the S plane. This approximation can

be conveniently used later in the cogging torque calculation and the calculation of the back emf

waveform which has been explained in detail in Section 2.6 and Chapter 4.

In addition, conformal mapping also transforms the shape of the magnets in the K plane. There-

fore, a similar approximation has been made again assuming that the magnets will retain their

original shape as in the S plane to simplify the field calculations.

As an example, the field distribution in the middle of the air gap of the six pole surface PM motor

with parameters given in Table 2.1 has been calculated using (2.104) and (2.105). The same as-

sumption has been made that the transformed contour in the K plane is identical to the circular arc

in the S plane with the radius r = Rs − g/2 and that the magnets retain their original shape. The

results for the radial and parallel magnetization are shown in Figs. 2.16 and 2.17.

2.4 Comparison of Analytical and Numerical Field Solution in the Slotted Sur-
face PM Motor

2.4.1 Unsaturated Finite Element Model

The analytical field solution in the slotted air gap of a surface PM motor calculated in Section 2.3

has been compared to the results of finite element simulations. The commercial FE software FEM-

LAB 2.3 has been used to simulate the no-load operation of the motor for the cases of radial and

parallel magnetization. In analytical calculations it was assumed that the iron is infinitely perme-

able. The same approximation is used in the FE simulations as well. Since the field is always

perpendicular to an infinitely permeable boundary, the rotor and stator iron have been replaced by

Neumann boundary conditions on the boundary between the air and iron. To insure high accuracy

of the numerical simulations third order triangular elements have been used and the size of the

largest triangle in the finite element mesh in the air gap region has been limited to one quarter of

the size of the air gap between the magnet surface and the stator surface. In addition, the size of the

elements in the vicinity of the tooth tips is made equal to one tenth of the air gap size. The mesh
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Fig. 2.15 Comparison of the circular arc in the middle of the air gap of a six pole surface PM
motor extending one slot pitch in the S plane and its transformed shape in the K plane: (a) ratio

rk/rs, (b) angular displacement θk − θs
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Fig. 2.16 Flux density in the middle of the air gap of a slotted surface PM motor with radial
magnetization: (a) radial component, (b) tangential component
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Fig. 2.17 Flux density in the middle of the air gap of a slotted surface PM motor with parallel
magnetization: (a) radial component, (b) tangential component
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of the FE model is shown in Fig. 2.18 and the zoomed detail of the mesh near the slot opening is

shown in Fig. 2.19.

The overlayed plots of the analytical and numerical field solutions for one pole pitch are shown in

Figs. 2.20 and 2.21. There is excellent agreement between analytically and numerically calculated

flux density distribution. This verifies the correctness of the methodology described in the previous

sections. Moreover, these results show that the approximation of the actual slot shape with a

simplified infinitely deep slot opening does not introduce significant errors in the flux density

calculations. This may not be true for all slot shapes. Therefore, conformal mapping of more

complex slot shapes is introduced in Section 2.5 which can be used to better approximate the

actual slot shape. Before dealing with more complex slot shapes it is important to assess the effect

of saturation on the accuracy of analytically predicted flux density waveforms.

2.4.2 Saturated Finite Element Model

In the analysis of electrical machines the problems are almost always nonlinear. In order to fully

utilize the magnetic material and reduce the size of the machine, it is common to design machines

which operate near the saturation point. In that case the magnetic permeability of the iron core

will be a function of the local flux density. In the air gap region the highest saturation occurs at the

tooth tips which locally reduces the permeability of the core material to values almost as low as the

permeability of air. As a result the field distribution in the air gap may be significantly affected thus

making the previously shown analytical solution based on the assumption of infinitely permeable

iron invalid. In addition, the saturation of the stator teeth and the stator and rotor yoke increases

the overall reluctance of the magnetic circuit which shifts the operating point at which the magnets

operate to lower values of the flux density. These are the factors which affect the accuracy of the

analytical prediction of the air gap field distribution and consequently the accuracy of the back

emf, cogging torque and electromagnetic torque waveforms.

The finite element simulation of the no-load operation of the six pole surface PM motor previously

used has been carried out with saturation taken into account. The B-H curve of the core material

and its relative permeability as a function of flux density are shown in Figs. 2.22 and 2.23. The
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Fig. 2.18 Finite element mesh of the surface PM motor model

Fig. 2.19 Detail of the finite element mesh near the slot opening
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Fig. 2.20 Comparison of analytical and numerical field solution in the middle of the air gap of a
slotted surface PM motor with radial magnetization: (a) radial component, (b) tangential

component
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saturation point or the knee of the B-H curve occurs around 1.5 T. The finite element mesh is

shown in Fig. 2.24. The high mesh density in the air gap area is the same as used before in the

unsaturated FE model to increase the accuracy of the flux density calculation.

The flux distributions in no-load operation for the cases of radial and parallel magnetization are

shown in Figs. 2.25 and 2.26. The surface plots of the relative permeability distribution for the

cases of radial and parallel magnetization shown in Figs. 2.27 and 2.28 provide information about

how local saturation affects the magnetic properties of the core material. The peak values of the

flux density in the stator teeth and the stator yoke are around 1.23 T and 1.38 T.

The analytical field solution and the numerical field solution with saturation included for the cases

of radial and parallel magnetization are compared in Figs. 2.29 and 2.30. It is apparent from

these figures that the effect of saturation does not compromise the analytical solution obtained

earlier. The agreement of analytically and numerically calculated waveforms in Figs. 2.29 and

2.30 is still close to the agreement observed in Figs. 2.20 and 2.21 when infinite permeability of

the iron core was assumed, although some small differences can be noticed. These differences

are more noticeable in the waveforms of the radial component of the flux density. The tangential

component seems to be almost unaffected by saturation. However, this may not be the case if the

motor becomes more severely saturated. The analytical and finite element calculations have been

repeated with the magnet remanence increased to 1.1 T in order to observe the extent to which the

higher saturation of the iron core affects the air gap flux density distribution. The higher level of

saturation in the stator teeth and yoke is noticeable in Figs. 2.31 and 2.32, which show distribution

of relative permeability for both cases of magnetization. The differences between the analytical

and numerical results in terms of air gap flux density distribution are now more significant as

shown in Figs. 2.33 and 2.34. Note that the values of the radial component of the flux density

obtained numerically are now significantly lower than the values predicted analytically. The main

reason is the increase of the total reluctance of the magnetic circuit due to saturation which shifts

the operating point of the magnets to lower values of the flux density. It is apparent that in the case

of a highly saturated motor the proposed analytical approach no longer provides satisfying results.
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Fig. 2.24 Finite element mesh for the saturated model of the six pole surface PM motor
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Fig. 2.25 Flux lines in no-load operation of the saturated six pole surface PM motor with radial
magnetization

Fig. 2.26 Flux lines in no-load operation of the saturated six pole surface PM motor with parallel
magnetization
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Fig. 2.27 Distribution of the relative permeability in no-load operation of the saturated six pole
surface PM motor with radial magnetization

Fig. 2.28 Distribution of the relative permeability in no-load operation of the saturated six pole
surface PM motor with parallel magnetization
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Fig. 2.29 Comparison of analytical and numerical field solution in the middle of the air gap of a
saturated, slotted surface PM motor with radial magnetization: (a) radial component, (b)

tangential component
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Fig. 2.30 Comparison of analytical and numerical field solution in the middle of the air gap of a
saturated, slotted surface PM motor with parallel magnetization: (a) radial component, (b)

tangential component
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Fig. 2.31 Distribution of the relative permeability in no-load operation of the highly saturated
6 pole surface PM motor with radial magnetization and Br = 1.1 T

Fig. 2.32 Distribution of the relative permeability in no-load operation of the highly saturated
6 pole surface PM motor with parallel magnetization and Br = 1.1 T
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Fig. 2.33 Comparison of analytical and numerical field solution in the middle of the air gap of a
highly saturated, slotted surface PM motor with radial magnetization and Br = 1.1 T: (a) radial

component, (b) tangential component
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Fig. 2.34 Comparison of analytical and numerical field solution in the middle of the air gap of a
highly saturated, slotted surface PM motor with parallel magnetization and Br = 1.1 T: (a) radial

component, (b) tangential component
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2.5 Conformal Transformation of More Complex Slot Shapes

The simple slot opening with parallel sides used in Section 2.2 can be a good approximation of

the actual slot shape if the width of the slot opening bo is not large relative to its depth do. Very

often this is not the case in the actual PM motors. The motor manufacturers prefer to have a fairly

large slot opening relative to the size of the wire which is inserted into the slot in order to facilitate

the winding insertion and to reduce the time and cost needed for the winding assembly. Fig. 2.35

shows two cases of the slot opening. In the case (a) the approximation with the slot shape from

Section 2.2 can be used, while in the case (b) this approximation may no longer provide satisfying

results.

�
�

�
�

(a)

�
�

�
�

(b)

Fig. 2.35 Two cases of the slot opening: (a) small width, large depth, (b) large width, small depth

The large slot opening is not desirable from the aspect of cogging torque reduction, but for the

reason of manufacturing cost reduction it is often unavoidable. In such a case it may be necessary

to obtain conformal transformation of the actual slot shape to calculate the air gap field more

accurately. The example of a more complex slot shape which is often used in PM motors is shown

in Fig. 2.36. It is assumed that the slot is infinitely deep. This assumption simplifies conformal

mapping and at the same time does not affect the results because the field at the bottom of the

actual slot is negligible.



63

�
�

��
���

�

�
�

�

�
�

�
�

�

�

	



	
�

�
�

Fig. 2.36 Infinitely deep slot with more complex shape compared to the simple slot opening with
parallel sides

The basic approach to conformal mapping of the slot shape in Fig. 2.36 is identical to the one used

for the simple slot opening in Section 2.2. Therefore, in this section the emphasis will be put on

details in which conformal transformations of the two slot shapes differ.

The original slot shape in Fig. 2.36 is transformed into its linear model in the Z plane using loga-

rithmic conformal transformation. The slot configuration in the Z plane with the unknown values

of w at the vertices of the polygon is shown in Fig. 2.37. The Schwarz-Christoffel transformation

is given by

dz

dw
= A(w − 0)

0

π
−1(w − 1)

0

π
−1(w − a)

α
π
−1(w − f)

α
π
−1(w − b)

β
π
−1(w − e)

β
π
−1

(w − c)
γ
π
−1(w − d)

γ
π
−1 (2.106)

After substituting the values of the angles α, β and γ into (2.106), the transformation from the Z

plane to the upper half of the W plane is given by

dz

dw
= f(w) = A

(w − a)
1

2 (w − f)
1

2 (w − b)
1

2
−αs

π (w − e)
1

2
−αs

π

w(w − 1)(w − c)
1

2
−αs

π (w − d)
1

2
−αs

π

(2.107)
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Fig. 2.37 Complex slot shape in the Z plane
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The constant A can be found by using the method of integration along a large semicircle in the W

plane as shown before. Thus

∫
dz =

∫ π

0
A

(
Rejθ − a

) 1

2

(
Rejθ − f

) 1

2

(
Rejθ − b

) 1

2
−αs

π
(
Rejθ − e

) 1

2
−αs

π

Rejθ (Rejθ − 1) (Rejθ − c)
1

2
−αs

π (Rejθ − d)
1

2
−αs

π

jRejθdθ (2.108)

As R → ∞, (2.108) becomes

∫
dz =

∫ π

0
A

(
Rejθ

) 1

2

(
Rejθ

) 1

2

(
Rejθ

) 1

2
−αs

π
(
Rejθ

) 1

2
−αs

π

Rejθ (Rejθ) (Rejθ)
1

2
−α

π (Rejθ)
1

2
−αs

π

jRejθdθ =
∫ π

0
jAdθ = jπA (2.109)

In the Z plane
∫

dz = −g′ and therefore

A = j
g′

π
(2.110)

The values of constants a to f are more difficult to determine since there is no explicit analytical

solution of the integral of equation (2.107). To find the constants it is necessary to recognize that

the complex distance zmn between any two points in the Z plane defined by parameters wm and

wn is equal to the integral [66]

zmn =
∫ wn

wm

f(w)dw (2.111)

Equation (2.111) can be used to connect each of the known dimensions of the slot with the un-

known constants a to f , thus giving a set of equations

d′o =
∫ b

a
|f(w)| dw

d′s =
∫ c

b
|f(w)| dw (2.112)

b′o
2

=
∫ −1

0
|f(w)| dw −

∫ a

0
|f(w)| dw

Since the limits of the integrals in (2.112) contain the unknown constants, the problem of finding

these constants can be solved by using the nonlinear least-squares optimization algorithm (MAT-

LAB function lsqnonlin). It is sufficient to determine only a, b and c, because, due to the symme-

try, one has

d =
1

c
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e =
1

b
(2.113)

f =
1

a

The error function to be minimized is given by

F =

(
d′o −

∫ b

a
|f(w)| dw

)2

+

(
d′s −

∫ (1−10−12)c

b
|f(w)| dw

)2

+

[
b′o
2
−
(∫ −1

−10−12

|f(w)| dw −
∫ a

10−12

|f(w)| dw
)]2

(2.114)

Since f(w) is infinite atw = 0 andw = c, the limits of the integrals in (2.114) are slightly modified

to avoid numerical problems during integration. For calculation purposes, zero is replaced by

10−12 and c is replaced by (1 − 10−12) c. This approximation will cause a negligible error in the

final result. The error tolerance for the value of F is set to 10−24.

The models of the slot in the T and K planes are identical to the ones shown in Figs. 2.11 and

2.12.

It was shown earlier in Section 2.2 that the flux density in the S plane is given by

Bs = Bk

(
∂k

∂s

)∗

= Bk

(
∂k

∂t

∂t

∂w

∂w

∂z

∂z

∂s

)∗

(2.115)

The partial derivatives can be expressed as

∂k

∂t
= et = eln k = k

∂t

∂w
= j

g′

π

1

w

∂w

∂z
= −j π

g′
w(w − 1)(w − c)

1

2
−αs

π (w − d)
1

2
−αs

π

(w − a)
1

2 (w − f)
1

2 (w − b)
1

2
−αs

π (w − e)
1

2
−αs

π

(2.116)

∂z

∂s
=

1

s

Substituting (2.116) and into (2.115) yields

Bs = Bk


kj

g′

π

1

w
(−j) π

g′
w(w − 1)(w − c)

1

2
−αs

π (w − d)
1

2
−αs

π

(w − a)
1

2 (w − f)
1

2 (w − b)
1

2
−αs

π (w − e)
1

2
−αs

π

1

s



∗

(2.117)
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The final expression for the flux density in the S plane is

Bs = Bk


k
s

(w − 1)(w − c)
1

2
−αs

π (w − d)
1

2
−αs

π

(w − a)
1

2 (w − f)
1

2 (w − b)
1

2
−αs

π (w − e)
1

2
−αs

π



∗

(2.118)

The complex relative air gap permeance is defined as

λ =
k

s

(w − 1)(w − c)
1

2
−αs

π (w − d)
1

2
−αs

π

(w − a)
1

2 (w − f)
1

2 (w − b)
1

2
−αs

π (w − e)
1

2
−αs

π

(2.119)

The slot dimensions for the motor with parameters given in Table 2.1 are shown in Table 2.2. The

waveforms of the real and imaginary parts of λ for the actual slot shape calculated according to

(2.119) and for the simple slot opening calculated according to (2.100) are compared in Fig. 2.38.

Table 2.2 Slot dimensions of the six pole surface PM motor

Parameter Symbol Value Unit

Slot opening width bo 2.5 mm

Slot opening depth ho 0.62 mm

Slot width at the bottom bs 7.48 mm

Slot depth ds 16.2 mm

Depth of the slanted part dt 0.9 mm

Slant angle αs 300 –

It is apparent from Fig. 2.38 that the difference between the complex permeance of these two slot

shapes is very small. Therefore, in this case the simple slot opening with parallel sides is a very

good approximation of the actual slot shape.

The waveforms of the flux density distribution in the middle of the slotted air gap have been

calculated using the actual slot shape and compared to numerical results in Figs. 2.39 and 2.40.

The analytically and numerically calculated waveforms are in a slightly better agreement in the

case of an actual slot shape than in the case of a simple slot opening, especially in terms of radial

components of the field. This is expected since complex relative air gap permeance is calculated

more accurately when the actual slot shape is used in conformal mapping.
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Fig. 2.38 Comparison of complex relative permeance for the actual slot shape and for the
simplified slot opening: (a) real component, (b) imaginary component
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Fig. 2.39 Comparison of analytical field solution with the actual slot shape and numerical
solution in the middle of the air gap of a slotted surface PM motor with radial magnetization: (a)

radial component, (b) tangential component
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Fig. 2.40 Comparison of analytical field solution with the actual slot shape and numerical
solution in the middle of the air gap of a slotted surface PM motor with parallel magnetization:

(a) radial component, (b) tangential component



71

2.6 Cogging Torque Calculation Based on Maxwell’s Stress Theory

According to Maxwell’s theory it is possible to calculate the total force on a rigid body placed in

the electromagnetic field by integrating the magnetic stress on the closed surface around the body.

The magnetic stress vector, i.e. the force per unit surface, is given by [60]

~tm =


~n ·

~B

µ0


 ~B − ~n

1

2

∣∣∣ ~B
∣∣∣
2

µ0

(2.120)

where ~n is the surface normal vector and ~B is the flux density vector on the surface of the body.

It is clear from (2.120) that the stress vector consists of two components. One component of the

vector ~tm is in the direction of the field ~B and the other is perpendicular to the surface and directed

towards it as shown in Fig. 2.41.
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θ

Fig. 2.41 Relationship between vectors ~n, ~B and ~tm

It has been mentioned earlier that the surface which encloses the rotor of the surface PM motor is

in the shape of a cylinder placed entirely inside the air gap. In that case the surface normal vector

will be equal to the unit length vector in the radial direction, i.e.

~n = ~ar (2.121)
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The flux density vector ~B will have a radial and a tangential component which can be written in

the form

~B = Br~ar +Bθ~aθ (2.122)

Substituting (2.121) and (2.122) into (2.120) yields

~tm =
1

µ0

[~ar · (Br~ar +Bθ~aθ)] (Br~ar +Bθ~aθ) − ~ar
1

2

| ~B|2
µ0

=
1

µ0

Br (Br~ar +Bθ~aθ) − ~ar
1

2

| ~B|2
µ0

=
1

µ0

(
B2
r −

1

2
| ~B|2

)
~ar +

1

µ0

BrBθ~aθ (2.123)

The tangential component of the magnetic stress vector is of particular interest for torque calcu-

lations. The total tangential force on the rotor is equal to the surface integral of the tangential

component of the stress vector. Hence the motor torque is equal to the total force multiplied by the

radius of the cylindrical integration surface. If it is assumed that the field is uniform in the axial

direction, then the surface integral becomes a line integral multiplied by the active length of the

machine. The torque equation in the integral form can then be written as

T =
1

µ0

laR
2
∫ 2π

0
Br(θ)Bθ(θ)dθ (2.124)

where µ0 is the permeability of vacuum, la is the active length of the machine, R is the radius of

the integration surface, Br is the radial and Bθ is the tangential component of the flux density at

radius R.

The radius inside the air gap at which the integration surface is positioned is arbitrary, but for

calculation purposes it can be problematic if the surface is placed too close to the stator inner

surface. The problem occurs at the tooth tips because at those points the complex relative air gap

permeability λ has an infinite value. For a simple slot opening the tooth tips are located at the

points where w = a and w = b. It is apparent from(2.100) that at these points λ is infinite. The

same result follows from (2.119) for the actual slot shape when w = a or w = f . The complex

permeance of the actual slot shape will also have an infinite value when w = c or w = d. However,

these points are located inside the slot opening and for torque calculations only the points inside
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the air gap are of interest. To avoid numerical problems of dealing with infinite numbers or with

very large values of λ at the radius very close to the stator surface, the analysis will be done in the

middle of the air gap at the radius r = Rs − g/2 at which the complex permeance λ and the flux

density distribution have been evaluated earlier.

At this point the field solution in the air gap of a surface PM motor at no-load operation is known.

That field solution can now be used to calculate the cogging torque by integrating the Maxwell’s

stress vector according to (2.124).

It has been shown earlier that the flux density in the slotted air gap can be written in the form

Bs(r, θ, α) = Bsr(r, θ, α) + jBsθ(r, θ, α)

= [Br(r, θ, α) + jBθ(r, θ, α)][λa(r, θ) − jλb(r, θ)] (2.125)

where Br and Bθ are the radial and tangential components of the flux density in the slotless air gap

and λa and λb are the real and imaginary components of the complex relative air gap permeance.

The flux density and the complex permeance can both be written in the form of Fourier series

Br(r, θ, α) =
∑

n

Brn(r) cos[np(θ − α)]

Bθ(r, θ, α) =
∑

k

Bθn(r) sin[np(θ − α)]

λa(r, θ) = λ0(r) +
∑

m

λam(r) cos(mQsθ) (2.126)

λb(r, θ) =
∑

m

λbm(r) sin(mQsθ)

where p is the number of pole pairs, Qs is the number of stator slots and α is the angular position

of the rotor. The Fourier coefficients Brn and Bθn are calculated directly from (2.41) and (2.42)

while λ0, λam and λbm are calculated from (2.100) or (2.119) using discrete Fourier transform. The

rotor position α is equal to

α = ωrmt (2.127)

where ωrm is the mechanical rotor speed in rad/s.

The use of Brn and Bθn is based on the approximation made earlier which assumes that the field

in the K plane can be evaluated along the circular arc instead of the actual contour into which the

circular arc from the S plane is transformed.
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According to (2.125) the radial and tangential components of the flux density in the slotted air gap

can be written as

Bsr(r, θ, α) = Br(r, θ, α)λa(r, θ) +Bθ(r, θ, α)λb(r, θ)

=
∑

n

Brn(r) cos[np(θ − α)]

[
λ0(r) +

∑

m

λam(r) cos(mQsθ)

]
+

∑

n

Bθn(r) sin[np(θ − α)]
∑

m

λbm(r) sin(mQsθ)

= λ0(r)
∑

n

Brn(r) cos[np(θ − α)] +

∑

n

∑

m

Brn(r)λam(r) cos[np(θ − α)] cos(mQsθ) +

∑

n

∑

m

Bθn(r)λbm(r) sin[np(θ − α)] sin(mQsθ) (2.128)

Bsθ(r, θ, α) = Bθ(r, θ, α)λa(r, θ) −Br(r, θ, α)λb(r, θ)

=
∑

n

Bθn(r) sin[np(θ − α)]

[
λ0(r) +

∑

m

λam(r) cos(mQsθ)

]
−

∑

n

Brn(r) cos[np(θ − α)]
∑

m

λbm(r) sin(mQsθ)

= λ0(r)
∑

n

Bθn(r) sin[np(θ − α)] +

∑

n

∑

m

Bθn(r)λam(r) sin[np(θ − α)] cos(mQsθ) −
∑

n

∑

m

Brn(r)λbm(r) cos[np(θ − α)] sin(mQsθ) (2.129)

The cogging torque expression is now

Tc(α) =
1

µ0

laR
2
∫ 2π

0
Bsr(R, θ, α)Bsθ(R, θ, α)dθ (2.130)

The integrand of (2.130) includes the terms consisting of multiple sums. Using a different vari-

able name for each sum in (2.128) and (2.129) and knowing that the Fourier coefficients in the

expressions for the flux density and the complex permeance are calculated at the radius r = R, the

cogging torque expression becomes

Tc(α) =
1

µ0

laR
2

{
λ2

0

∑

n

∑

k

BrnBθk

∫ 2π

0
cos[np(θ − α)] sin[kp(θ − α)]dθ +
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λ0

∑

n

∑

k

∑

h

BrnBθkλah

∫ 2π

0
cos[np(θ − α)] sin[kp(θ − α)] cos(hQsθ)dθ −

λ0

∑

n

∑

k

∑

h

BrnBrkλbh

∫ 2π

0
cos[np(θ − α)] cos[kp(θ − α)] sin(hQsθ)dθ +

λ0

∑

n

∑

k

∑

m

BrnBθkλam

∫ 2π

0
cos[np(θ − α)] sin[kp(θ − α)] cos(mQsθ)dθ +

λ0

∑

n

∑

k

∑

m

BθnBθkλbm

∫ 2π

0
sin[np(θ − α)] sin[kp(θ − α)] sin(mQsθ)dθ +

∑

n

∑

k

∑

m

∑

h

BrnBθkλamλah

∫ 2π

0
cos[np(θ − α)] sin[kp(θ − α)] cos(mQsθ) cos(hQsθ)dθ +

∑

n

∑

k

∑

m

∑

h

BθnBθkλbmλah

∫ 2π

0
sin[np(θ − α)] sin[kp(θ − α)] sin(mQsθ) cos(hQsθ)dθ −

∑

n

∑

k

∑

m

∑

h

BrnBrkλamλbh

∫ 2π

0
cos[np(θ − α)] cos[kp(θ − α)] cos(mQsθ) sin(hQsθ)dθ −

∑

n

∑

k

∑

m

∑

h

BθnBrkλbmλbh

∫ 2π

0
sin[np(θ − α)] cos[kp(θ − α)] sin(mQsθ) sin(hQsθ)dθ

}

(2.131)

The integrals in (2.131) will yield a result different from zero only for certain values of n, k,m and

h. One of the terms from (2.131) is used below as an example to show for which combinations of

n, k,m and h the integral
∫ 2π
0 will be different from zero.

The integrands in (2.131) are expressed as the products of sine and cosine functions. Before

integration they need to be transformed into the sums of sine and cosine functions using the basic

identities for trigonometric functions which are

sin x cos y =
1

2
[sin(x+ y) + sin(x− y)]

cos x cos y =
1

2
[cos(x+ y) + cos(x− y)] (2.132)

sinx sin y = −1

2
[cos(x+ y) − cos(x− y)]

For the second term in (2.131) one has

I = λ0

∑

n

∑

k

∑

h

BrnBθkλah

∫ 2π

0
cos[np(θ − α)] sin[kp(θ − α)] cos(hQsθ)dθ =

λ0

∑

n

∑

k

∑

h

BrnBθkλah

∫ 2π

0

1

2
{sin[(kp+ np)θ − (kp+ np)α)]+
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sin[(kp− np)θ − (kp− np)α)]} cos(hQsθ)dθ =

λ0

∑

n

∑

k

∑

h

BrnBθkλah

∫ 2π

0

1

4
{sin[(kp+ np+ hQs)θ − (kp+ np)α)]+

sin[(kp+ np− hQs)θ − (kp+ np)α)] + sin[(kp− np+ hQs)θ − (kp− np)α)] +

sin[(kp− np− hQs)θ − (kp− np)α)]} (2.133)

It is easy to show from (2.133) that when

kp+ np− hQs = 0

the value of I will be

I = −
∑

n

∑

k

∑

h

λ0
π

2
BrnBθkλah sin[p(n+ k)α] (2.134)

Similarly, when

kp− np+ hQs = 0 or kp− np− hQs = 0

the value of I will be

I =
∑

n

∑

k

∑

h

λ0
π

2
BrnBθkλah sin[p(n− k)α] (2.135)

For all other combinations of k, n and h, I is equal to zero.

The same principle can be used for all other terms in (2.131). Hence the final expression for the

cogging torque as a function of the rotor position can be given in the following form:

kp+ np−mQs = 0

Tc(α) =
1

µ0

laR
2
∑

n

∑

k

∑

m

λ0
π

2
(−2BrnBθkλam −BθnBθkλbm −

BrnBrkλbm) sin[p(n+ k)α]

kp− np+mQs = 0

Tc(α) =
1

µ0

laR
2
∑

n

∑

k

∑

m

λ0
π

2
(2BrnBθkλam +BθnBθkλbm −

BrnBrkλbm) sin[p(n− k)α]
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kp− np−mQs = 0

Tc(α) =
1

µ0

laR
2
∑

n

∑

k

∑

m

λ0
π

2
(2BrnBθkλam −BθnBθkλbm +

BrnBrkλbm) sin[p(n− k)α]

kp+ np+mQs − hQs = 0

Tc(α) =
1

µ0

laR
2
∑

n

∑

k

∑

m

∑

h

π

4
(−BrnBrkλamλbh −BrnBθkλamλah +

BθnBθkλbmλah +BθnBrkλbmλbh) sin[p(n+ k)α]

kp+ np−mQs + hQs = 0

Tc(α) =
1

µ0

laR
2
∑

n

∑

k

∑

m

∑

h

π

4
(BrnBrkλamλbh −BrnBθkλamλah −

BθnBθkλbmλah +BθnBrkλbmλbh) sin[p(n+ k)α]

kp+ np−mQs − hQs = 0

Tc(α) =
1

µ0

laR
2
∑

n

∑

k

∑

m

∑

h

π

4
(−BrnBrkλamλbh −BrnBθkλamλah −

BθnBθkλbmλah −BθnBrkλbmλbh) sin[p(n+ k)α]

kp− np+mQs + hQs = 0

Tc(α) =
1

µ0

laR
2
∑

n

∑

k

∑

m

∑

h

π

4
(−BrnBrkλamλbh +BrnBθkλamλah +

BθnBθkλbmλah −BθnBrkλbmλbh) sin[p(n− k)α]

kp− np+mQs − hQs = 0

Tc(α) =
1

µ0

laR
2
∑

n

∑

k

∑

m

∑

h

π

4
(BrnBrkλamλbh +BrnBθkλamλah +

BθnBθkλbmλah +BθnBrkλbmλbh) sin[p(n− k)α]

kp− np−mQs + hQs = 0

Tc(α) =
1

µ0

laR
2
∑

n

∑

k

∑

m

∑

h

π

4
(−BrnBrkλamλbh +BrnBθkλamλah −

BθnBθkλbmλah +BθnBrkλbmλbh) sin[p(n− k)α]
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kp− np−mQs − hQs = 0

Tc(α) =
1

µ0

laR
2
∑

n

∑

k

∑

m

∑

h

π

4
(BrnBrkλamλbh +BrnBθkλamλah −

BθnBθkλbmλah −BθnBrkλbmλbh) sin[p(n− k)α] (2.136)

The cogging torque for the six pole surface PM motor has been calculated using (2.136) and com-

pared with the finite element solution in Figs. 2.42 and 2.43. The FE model has been created using

Magsoft, Flux 2D commercial software and the cogging torque has been calculated using the vir-

tual work method. The time stepping transient method with moving air gap and constant angular

velocity of 1/6 rpm has been used. The mesh size in the moving air gap is adjusted to ensure that

for each consecutive rotor position the nodes on the boundary between the moving air gap and

the rest of the air gap coincide to reduce numerical errors in the cogging torque calculation. This

is shown in Fig. 2.44. The cogging torque has been evaluated at 60 consecutive rotor positions.

Two cogging torque waveforms have been calculated numerically, one for the case of infinitely

permeable iron and the other for the case when saturation is taken into account. For calculation

purposes, the infinite relative permeability of iron has been replaced with 109.

There is a significant discrepancy between the analytically and numerically calculated cogging

torque waveforms. One possible explanation is that this difference can be attributed to the ap-

proximation made earlier in which it was assumed that the transformed contour in the K plane is

identical to the circular arc in the S plane from which it originated. When the analytical and nu-

merical field solutions are compared, this approximation does not seem to have a significant effect,

but it appears that its effect on the computed cogging torque waveform could be severe. This could

be explained by the fact that the waveform of the product Br(r, θ)Bθ(r, θ) is a sequence of narrow

pulses as shown in Fig. 2.45. The cogging torque for the given rotor position is directly propor-

tional to the integral of this waveform. The integral is equal to the difference between the positive

and negative areas of the narrow pulses which consequently can be very sensitive to numerical

errors. However, the advantage of the proposed method is the ability to calculate the cogging

torque much faster on the digital computer than with the finite element method. This is important

if cogging torque needs to be calculated repeatedly during an iterative motor design procedure. It
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Fig. 2.42 Comparison of the cogging torque waveforms, for the six pole surface PM motor with
radial magnetization, calculated analytically using Maxwell’s stress theory and calculated

numerically using FE method with and without saturation
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Fig. 2.43 Comparison of the cogging torque waveforms, for the six pole surface PM motor with
parallel magnetization, calculated analytically using Maxwell’s stress theory and calculated

numerically using FE method with and without saturation
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Fig. 2.44 Detail of the finite element mesh to show the position of the nodes on the boundary
between the moving air gap and the rest of the air gap
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Fig. 2.45 The waveform of BrBθ for the rotor position at which the maximum cogging torque
occurs
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is also important to notice that the shape of the cogging torque waveform follows the finite element

solution for both types of magnetization. This means that analytical and numerical solutions have

a similar relative harmonic content. Therefore, it should be possible to correctly predict, using

the described analytical approach, the effects that cogging torque reduction techniques have on the

harmonic content and on the magnitude of the cogging torque waveform. These results can then

be used in the optimized motor design.

An alternative analytical approach to cogging torque calculation also based on conformal mapping

of the slot opening and Maxwell’s stress theory is shown in the next section. This approach gives a

deeper insight into reasons for the discrepancy between analytical and numerical results displayed

in Figs. 2.42 and 2.43.

2.7 Cogging Torque Calculation Based on Summation of the Lateral Forces
Along the Slot Sides

An alternative approach to cogging torque calculation which is also based on Maxwell’s stress the-

ory (see Section 2.6) is to integrate the magnetic stress vector along the slot sides. The expression

for the lateral force per one slot can be derived from Fig. 2.41 and (2.120). According to Fig. 2.41

the angle between vectors ~B and ~n is θ. Hence the dot product ~B · ~n = | ~B| cos θ and the normal

component of ~tm is

tnm = ~n · ~tm = ~n ·



~n ·

~B

µ0


 ~B − ~n

1

2

| ~B|2
µ0




=
1

µ0

[(
~n · ~B

)2 − 1

2
| ~B|2

]
=

1

µ0

(
| ~B|2 cos2 θ − 1

2
| ~B|2

)

=
1

µ0

[
| ~B|2

(
1

2
+ cos 2θ

)
− 1

2
| ~B|2

]
=

| ~B|2
2µ0

cos 2θ = |~tm| cos 2θ (2.137)

In the case of an infinitely permeable body the flux density vector ~B will be perpendicular to the

body surface so the angle θ will be zero. Hence the force will also be perpendicular to the body

surface. In the case of a simple slot opening the flux density vector and the lateral forces acting on

the slot sides will be perpendicular to the slot side surfaces as shown in Fig. 2.46. Since the slot
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sides extend radially, the forces perpendicular to them will be acting in the tangential direction,

thus producing cogging torque.
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Fig. 2.46 Magnetic stress vectors acting on the slot sides

The net magnetic stress per one slot can then be calculated according to

|~tslot| = |~tm1| − |~tm2| =
1

2µ0

(∣∣∣ ~B1

∣∣∣
2 −

∣∣∣ ~B2

∣∣∣
2
)

(2.138)

The total lateral force per slot is equal to the surface integral of the magnetic stress. The integration

can be performed in the S plane in the radial direction along the slot side from the stator surface

(r = Rs) to the depth at which the flux density becomes negligible. However, the more efficient

approach would be to perform the integration in the W plane by changing the variable of integra-

tion. Since conformal mapping transforms field values in the direct geometric transformation ratio

in every point, the integration of the force density, i.e. the magnetic stress, over corresponding slot

surfaces in the two planes gives the same result.

The total lateral force per slot is equal to the surface integral of the magnetic stress on both slot

sides. According to Fig. 2.46, the forces on the opposite slot sides are acting in the opposite

directions. The total force per slot expressed in the S plane is then

Fslot =
la

2µ0

lim
r→∞

[∫ rejθ1

Rsejθ1

|Bs|2ds−
∫ rejθ2

Rsejθ2

|Bs|2ds
]

(2.139)
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Taking into consideration the fact that

|Bs| = |Bk|
∣∣∣∣∣
∂k

∂s

∣∣∣∣∣ (2.140)

and

ds =

∣∣∣∣∣
∂s

∂w

∣∣∣∣∣ dw (2.141)

the force per slot is equal to

Fslot =
la

2µ0



∫ 1

a
|Bk|2

∣∣∣∣∣
∂k

∂s

∣∣∣∣∣

2 ∣∣∣∣∣
∂s

∂w

∣∣∣∣∣ dw −
∫ 1

b
|Bk|2

∣∣∣∣∣
∂k

∂s

∣∣∣∣∣

2 ∣∣∣∣∣
∂s

∂w

∣∣∣∣∣ dw




=
la

2µ0

∫ b

a
|Bk|2

∣∣∣∣∣
∂k

∂s

∣∣∣∣∣

2 ∣∣∣∣∣
∂s

∂w

∣∣∣∣∣ dw (2.142)

Since
∣∣∣ ∂s
∂w

∣∣∣ =
∣∣∣ ∂s
∂k

∣∣∣
∣∣∣ ∂k
∂w

∣∣∣, equation (2.142) can be written in the form

Fslot =
la

2µ0

∫ b

a
|Bk|2

∣∣∣∣∣
∂k

∂s

∣∣∣∣∣

∣∣∣∣∣
∂k

∂w

∣∣∣∣∣ dw (2.143)

The total torque per slot is equal to the integral of the product of force and radius at which the force

acts. The radius is equal to |s| and hence the torque per slot is

Tslot =
la

2µ0

∫ b

a
|Bk|2

∣∣∣∣∣
∂k

∂s

∣∣∣∣∣

∣∣∣∣∣
∂k

∂w

∣∣∣∣∣ |s|dw (2.144)

where the partial derivatives are given by
∣∣∣∣∣
∂k

∂s

∣∣∣∣∣ =

∣∣∣∣∣
∂k

∂t

∂t

∂w

∂w

∂z

∂z

∂s

∣∣∣∣∣ =
∣∣∣∣∣k

w − 1

(w − a)
1

2 (w − b)
1

2

1

s

∣∣∣∣∣ (2.145)
∣∣∣∣∣
∂k

∂w

∣∣∣∣∣ =

∣∣∣∣∣
∂k

∂t

∂t

∂w

∣∣∣∣∣ =
∣∣∣∣∣
g′
π

k

w

∣∣∣∣∣ (2.146)

The torque per slot is then

Tslot =
la

2µ0

∫ b

a
|Bk|2

∣∣∣∣∣
g′
π
k2 w − 1

w(w − a)
1

2 (w − b)
1

2

∣∣∣∣∣ dw (2.147)

The value of k in (2.147) is calculated from

k = et = ej
g′
π

lnw+lnRs+j
θs
2 = Rse

j( g′
π

lnw+ θs
2
) (2.148)
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while Bk = Br + jBθ is calculated from (2.41) for internal rotor motors with r = Rs and

θ = g′
π

lnw+ θs

2
. The tangential component Bθ is equal to zero since the flux density is evaluated

at r = Rs which is the boundary between air and infinitely permeable iron core where only radial

component of the flux density exists.

The total cogging torque is then equal to

Tc =
Qs∑

k=1

Tslot (2.149)

where Qs is the number of stator slots. For practical implementation on the digital computer the

integration of (2.147) needs to be performed from a+ε to b−εwhere ε is a small number relative to

a and b. This approximation is necessary because the denominator of the expression for the partial

derivative
∣∣∣∂k
∂s

∣∣∣ is equal to zero at the tooth tips where w = a and w = b. This causes numerical

problems due to division by zero. Hence the tooth tips are singular points where flux density has

an infinite value. This is a consequence of the assumption that the iron core is infinitely permeable.

The flux density drops exponentially as one moves away from the tooth tips (w = a, w = b) to

the bottom of the slot (w = 1) along the slot sides. Therefore, a very small displacement from the

singular points will result in a large change of the flux density which causes ε to have a significant

impact on the calculated maximum value of the cogging torque.

In the actual motor the iron core is not infinitely permeable, so the tooth tips will saturate, result-

ing in finite values of the flux density at those points. Although the analytical approach based on

conformal mapping predicts an infinite value of the flux density at the tooth tips, the finite element

method will not give the same result even with the assumption of infinitely permeable iron core.

The main reason for that are numerical errors due to finite discretization of the computational do-

main. A comparison is made between the flux density distributions along the slot side calculated

analytically and numerically for the slot located at the centerline of the magnet with radial mag-

netization. In order to make the valid comparison, the actual slot shape in the FE model has been

replaced by a simple slot opening, while the relative permeability of iron has been set to 1012. The

model for one pole pitch is shown in Fig. 2.47. The flux density distributions are compared in

Fig. 2.48 from the the tooth tip down to the depth equal to twice the size of the slot opening bo.
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There is a good agreement between the results except in the vicinity of the tooth tip at r = Rs.

The finite element method gives the value of the flux density at that point equal to 2.05 T. The flux

density calculated analytically is several hundred times larger. However, it drops rapidly for a very

small displacement from the tooth tip.

The cogging torque waveforms calculated analytically and numerically for different values of ε are

shown in Fig. 2.49a while Table 2.3 shows the values of the flux density at the tooth tips. Note that

if integration of the force density starts very close to the tooth tip (ε �), the resulting flux density

becomes very high and the calculated cogging torque has a peak value higher than calculated by

the FE method. However, if ε is chosen so that the flux density in the vicinity of the tooth tip is

close to the value calculated by the FE method, then the peak value of the cogging torque calculated

analytically is also close to the peak cogging torque calculated numerically. Similar analysis can be

done for the case of parallel magnetization for which the cogging torque waveforms are compared

in Fig. 2.49b.

If the number of triangles in the finite element mesh in the vicinity of the tooth tips increases

while reducing their size, then the value of the flux density exactly at the tooth tip also increases.

With an infinitely small triangle at the tooth tip, the FE result would come close to the result from

conformal mapping. The conclusion is that singularity at the tooth tip affects the analytical cogging

torque calculation and results in higher peak values than obtained by FE simulations. Although FE

simulation is also in error when it is assumed that permeability is infinite (i.e. 1012), the resulting

peak value of the cogging torque from FE simulations is closer to reality, because core laminations

have a finite permeability and tooth tips saturate very quickly, thus resulting in lower values of the

flux density at those points than predicted by conformal mapping.

Table 2.3 Flux density at the tooth tip of the six pole surface PM motor with radial magnetization
for different values of the displacement ε

Analytical Finite

ε/a = 10−9 ε/a = 0.03 Element

Flux density 1.32 · 104 T 2.37 T 2.05 T
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Analyzed slot side 

Fig. 2.47 FE model of the six pole surface PM motor used for calculation of the flux density
distribution along the slot side
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Fig. 2.48 Comparison of the flux density distribution along the slot side calculated analytically
and numerically
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Fig. 2.49 Comparison of the cogging torque waveforms for the six pole surface PM motor
calculated numerically by FE method and analytically by integrating the magnetic stress vector

along the slot sides: (a) radial magnetization, (b) parallel magnetization
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Chapter 3

Calculation of Electromagnetic Torque in Surface PM Motors

The electromagnetic force exerted on a non-magnetic conducting region can be calculated using

the Lorenz expression

~F =
∫∫∫

V

~J × ~BdV (3.1)

where V is the volume of the current carrying region, ~J is the current density and ~B is the flux

density in the region. The electromagnetic torque resulting from the Lorenz force is then

~T =
∫∫∫

V
~r × ( ~J × ~B)dV (3.2)

where ~r is the position vector of the infinitesimal volume dV in the conducting region. The Lorenz

force expression is very suitable and accurate in finite element simulations, but it is not very con-

venient for analytical calculations. The main problem is the difficulty to determine precisely the

flux density distribution in the conducting region which is a function of the currents in all other

conducting regions and the additional field sources like permanent magnets.

Another approach [21, 45, 67–69] is to calculate the back emf waveform from the field distribution

in no-load operation and then determine the electromagnetic torque from the equation

Tem =
1

ωrm
(eaia + ebib + ecic) (3.3)

where ea, eb, ec are the back emf waveforms and ia, ib and ic are the current waveforms of the

phases a, b and c, while ωrm is the rotor mechanical speed.

The third approach used in this thesis is to calculate the total field in the air gap and then integrate

the Maxwell’s stress tensor to calculate the tangential force exerted on the rotor. If saturation is

neglected, the field in the air gap can be calculated by adding the field solutions due to currents
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flowing in each individual conducting region, while assuming that the currents in other regions are

equal to zero. If permanent magnets are present, their contribution to the overall field is calculated

with the currents in all conducting regions equal to zero.

The permanent magnet field in the air gap of a surface PM motor has been calculated analytically

in Chapter 2. The field solution due to currents flowing in the armature winding needs to be found

next.

One approach to calculation of the armature winding field found in literature [45, 46, 70, 71] is

to solve the Laplacian equation in the air gap for a distributed current sheet on the stator surface.

The current sheet is distributed so that the current density is uniform along an arc whose length is

equal to the size of the slot opening bo. This field solution is then multiplied by the relative air gap

permeance to take into account the presence of slots.

The alternative approach used in this thesis is based on finding the field solution of current in a slot

by means of conformal transformation [72]. The field solutions for all the slots are then added to

obtain the total armature winding field.

3.1 The Field of a Current in a Slot by Conformal Transformation

The fundamental approach to conformal transformation of a slot opening with the presence of

current in the slot is similar to the approach used earlier in Section 2.2 . The first transformation

which maps the slot opening in its circular arrangement in the S plane into a linear model in the Z

plane is the same as used before, i.e.

z = log(s) (3.4)

The next transformation from the Z plane into the upper half of the W plane is somewhat different

because the presence of current in a slot needs to be taken into account. The slot can be treated as

infinitely deep, as shown earlier, to simplify the transformation. For a slot current INc, whereNc is

the number of turns in a coil, the potentials of the adjacent teeth are I Nc

2
and −I Nc

2
with respect to

the rotor surface at zero potential [72]. The potential on the line of symmetry down the slot center

is also zero. Thus, one half of the slot can be represented in the Z plane, as shown in Fig. 3.1.
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Fig. 3.1 Representation of one half of the slot opening in the Z plane

The mapping from the Z plane to theW plane by means of the Schwarz-Christoffel transformation

is given by

dz

dw
= A(w + 1)

3π
2

1

π
−1(w − 0)

0

π
−1(w − a)

π
2

1

π
−1

= A
(w + 1)

1

2

w(w − a)
1

2

(3.5)

Making the substitution

p2 =
w − a

w + 1

equation (3.5) can be simply integrated to yield

z = 2A

[
1√
a

arctan
p√
a

+
1

2
ln

(
1 + p

1 − p

)]
+ C1 (3.6)

The constant A can be determined by integration along a large semicircle of an arbitrary large

radius R. For values of R approaching infinity

∫
dz =

∫ π

0

A
(
Rejθ + 1

) 1

2

Rejθ (Rejθ − a)
jRejθdθ

R→∞
=

∫ π

0

A
(
Rejθ

) 1

2

(Rejθ) (Rejθ)
1

2

jRejθdθ =
∫ π

0
jAdθ = jπA
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In the Z plane
∫

dz = g′, so

A = −j g
′

π
(3.7)

The constant a can be determined by integration along a small semicircle centered at w = 0. For

radius r approaching zero

∫
dz =

∫ π

0

A
(
rejθ + 1

) 1

2

rejθ (rejθ − a)
jrejθdθ

r→0
= −

∫ π

0
j
g′
π

1
1

2

(−a) 1

2

jdθ = −j g′√
a

Since
∫

dz = −j b′o
2

, the constant a is

a =

(
2g′
b′o

)2

(3.8)

The constant of integration C1 can be determined if p = 0 is substituted into (3.6). Then

z = −j 2g′
π

[
1√
a

arctan
0√
a

+
1

2
ln(1)

]
+ C1 = C1

When p is zero w = a. Hence from Fig. 3.1

C1 = ln(Rr) + j
θs
2

(3.9)

The geometric structure in which the field solution can be easily found represents two parallel

plates extending an infinite distance in both directions. The location and the distance between the

plates can be set arbitrarily. If the lower plate is aligned with the real axis of the T plane and the

distance to the upper plate is 1, as shown in Fig. 3.2, then transformation from the T plane to the

W plane is given by

t =
1

π
lnw (3.10)

The potential of the lower plate is ϕ = 0 and of the upper plate ϕ = −Nc

2
I . Since potential changes

only in the direction of the imaginary axis, the field solution in the T plane is given by

Bt = −jµ0
∂ϕ

∂q
= jµ0

Nc

2
I (3.11)

That field solution is mapped back to the S plane using

Bs = Bt

(
∂t

∂s

)∗

= Bt

(
∂t

∂w

∂w

∂z

∂z

∂s

)∗

(3.12)
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Fig. 3.2 Representation of one half of the slot opening in the T plane

With

∂t

∂w
=

1

π

1

w

∂w

∂z
= j

π

g′
w(w − a)

1

2

(w + 1)
1

2

(3.13)

∂z

∂s
=

1

s

the flux density Bs is

Bs = Bt


 1

π

1

w
j
π

g′
w(w − a)

1

2

(w + 1)
1

2

1

s



∗

= −jBt

1

g′

(
1

s

√
w − a

w + 1

)∗

(3.14)

After substituting (3.11) into (3.14)

Bs = Bm + jBn = µ0
Nc

2g′I
(

1

s

√
w − a

w + 1

)∗

(3.15)

Since the field solution Bt in the T plain is given in Cartesian coordinates with components Bp =

0 and Bq = µ0
Nc

2
I , the resulting field solution Bs is also given in Cartesian coordinates with

components Bm and Bn calculated according to (3.15). Since one deals with the air gap of an

electrical motor, it is convenient to use the cylindrical coordinate system in the S plane with radial

and tangential components of the flux density calculated according to

Bar = Bm cos θ +Bn sin θ

Baθ = −Bm sin θ +Bn cos θ (3.16)
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For the six pole surface PM motor with Nc = 14 and I = 1 A, the flux density in the middle of

the air gap calculated according to (3.15) is shown in Fig. 3.3. Since coils in electrical machines

occupy two slots with currents in the slots flowing in the opposite directions, the waveforms of

the air gap flux density for one coil in Fig. 3.4 can be assembled from the waveforms in Fig. 3.3 if

negative current −I is assumed for the other coil side. To take into account the presence of all other

slots, the waveforms in Fig. 3.4 need to be multiplied by the complex permeance from Fig. 2.13

for the angles θ outside the areas of the slots occupied by the coil because those slots have already

been taken into account by (3.15). The result are the waveforms of the flux density for one coil in

the slotted air gap shown in Fig. 3.5.

3.2 The Armature Winding Field

The waveforms of the air gap flux density due to the current in a single coil shown in Fig. 3.5 can

be expressed in the form of Fourier series using discrete Fourier transformation. The expressions

for Bar and Baθ are then

Bar = Nc

Na∑

n=1

Barn cosnθ

Baθ = Nc

Na∑

n=1

Baθn sinnθ (3.17)

where Na is the maximum number of Fourier coefficients, Nc is the number of turns per coil

and Barn and Bθn are the Fourier coefficients of the radial and tangential components of the flux

density with Nc = 1. One should bear in mind that the waveforms in Fig. 3.5 were obtained

with 1 A of current. Therefore, for any other value of the coil current I the expressions (3.17)

should be multiplied by I . The contributions of all other coils to the overall armature winding

field solution are obtained by adding these waveforms with appropriate phase shifts while paying

attention to the orientation of the current in the coils and to which phases the coils belong. The

location and the orientation of each coil in a two-layer three phase winding can be determined

systematically by using a winding table which can be formed in a unique manner for both integral

slot and fractional slot windings [73]. Since an integral slot winding is just a special case of the

fractional slot winding, the general approach to the winding table assembly will be explained on
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Fig. 3.3 The waveforms of the flux density in the middle of the air gap of a six pole surface PM
motor for one slot pitch resulting from the conformal mapping of a single slot opening with

Nc = 14 and 1 A of current per turn: (a) radial component, (b) tangential component
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Fig. 3.4 The waveforms of the flux density in the middle of the air gap of a six pole surface PM
motor for one coil with Nc = 14 and 1 A of current per turn: (a) radial component, (b) tangential

component
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Fig. 3.5 The waveforms of the flux density in the middle of the slotted air gap of a six pole
surface PM motor for one coil with Nc = 14 and 1 A of current per turn. The presence of the slots

not occupied by the coil is taken into account by means of relative complex air gap permeance:
(a) radial component, (b) tangential component
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an example of a fractional slot winding with Qs = 27 slots and 2p = 6 poles. In a general case of

the fractional slot winding the number of slots per pole and phase is not an integer number. In our

example

q =
Qs

2pm
=

27

2 · 3 · 3 =
3

2
(3.18)

where m is the number of phases. Let t be the greatest common denominator between Qs and p,

i.e.

t = gcd(Qs, p) = gcd(27, 3) = 3 (3.19)

The number of voltage phasors in the phasor diagram with different phase angles is then

Qt =
Qs

t
=

27

3
= 9 (3.20)

with t phasors in every position as shown in Fig. 3.6. The phase angle between the voltages induced

in two consecutive slots is given by

α = p
3600

Qs

= 3 · 3600

27
= 400 (3.21)
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Fig. 3.6 Phasor diagram of the fractional slot winding with 27 slots and six poles
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In order to have a symmetrical three phase winding the number of phasors Qt must be divisible by

the number of phases, i.e.

Qt

m
=
Qs

mt
=

27

3 · 3 = 3 = integer number (3.22)

This constraint must be satisfied if all the slots are to be filled with coils. Although q = 3/2 = 1.5,

the fractional slot winding in Fig. 3.6 has q ′ = 3 phasors which have to be added to get the voltage

induced in one apparent pole zone. In general, the apparent number of slots per pole and phase is

given by

q′ =
Qs

2mt

(
for Qt =

Qs

t
= even number

)

q′ =
Qs

mt

(
for Qt =

Qs

t
= odd number

)
(3.23)

Analogous to q and q′, an apparent value of the angle α can be defined as

α′ =
1800

mq′
=

1800

3 · 3 = 200 (3.24)

The angle α′ is the angle between the phasors which are added to form the voltage of one apparent

pole zone. In terms of distribution factor calculation, the fractional slot winding is equivalent to

the integral slot winding with q′ slots per pole and phase and with phase difference α′ between

the voltages induced in two consecutive slots. A familiar formula can be used to calculate the

distribution factor for the fundamental component [73, 74]

kd =
sin

(
q′ α

′

2

)

q′ sin
(
α′

2

) (3.25)

An equivalent approach to the analysis of the fractional slot winding is to represent the number of

slots per pole and phase in the form of a fraction

q =
Qs

2pm
=
a

b
(3.26)

where a
b

is obtained by dividing the numerator and denominator by their greatest common factor.

The denominator b represents the number of poles after which the winding pattern repeats. The

numerator a is equal to previously calculated q ′ because it represents the number of slots per phase
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in one repetitive winding pattern which occupies b poles. In that case the apparent phase shift

between the voltage phasors in two consequtive slots is b times smaller and hence

α′ =
α

b
= p

3600

Qsb
=

1800

mqb
=

1800

mq′
(3.27)

A winding table can now be assembled which contains information for each coil about the actual

pole where the upper or lower side of the coil is located, its orientation and the phase to which it

belongs. The table has 2p rows and m · a columns, i.e. a columns per phase. Hence each phase

occupies q′α′ = 600. The phase shift between two columns in the table is α′ degrees. The slot

numbers are thus entered until the winding table is filled out. The table contains information for

only one coil side in the upper or lower layer of the slot. The other coil side is located according to

the same table, but phase shifted by the coil pitch. The winding table for the fractional slot winding

with Qs = 27 and 2p = 6 is given in Table 3.1.

Table 3.1 Winding table for the three phase fractional slot winding with Qs = 27, 2p = 6,
q = a/b = 3/2. The slots 1, 4 and 7 are starting points for the phases A, B and C respectively.

b columns
︷ ︸︸ ︷
Phase A Phase C Phase B

N 1 2 3 4 5

S 6 7 8 9

N 10 11 12 13 14

S 15 16 17 18

N 19 20 21 22 23

S 24 25 26 27

︸ ︷︷ ︸
m · a columns

The previously analyzed six pole surface PM motor with 36 slots has a double layer integral slot

winding for which

q =
Qs

2pm
=

36

2 · 3 · 3 =
2

1
=
a

b
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α = p
3600

Qs

= 3 · 3600

36
= 300

Hence, the winding table can be assembled as shown in Table 3.2 using the same principle as

previously described.

Table 3.2 Winding table for the three phase integral slot winding with Qs = 36, 2p = 6,
q = a/b = 2/1. The phases A, B and C start at the slots 1, 5 and 9 respectively.

Phase A Phase C Phase B

N 1 2 3 4 5 6

S 7 8 9 10 11 12

N 13 14 15 16 17 18

S 19 20 21 22 23 24

N 25 26 27 28 29 30

S 31 32 33 34 35 36

In order to use the information from Table 3.2 for the armature winding field calculation, Table 3.3

can be formed which contains information about the phase shifts, the values of the currents and

their signs for all the coils. Note that phase shifts in Table 3.3 are expressed in terms of mechanical

degrees. This table is convenient for implementation in a computer program.

The field solution in Fig. 3.5 is given for the coil of phase A which starts in the slot number 1.

Therefore, the air gap field solution at the radius Rm < r < Rs for the entire armature winding

can be written in the form

Bar(r, θ, t) = Nc

Qs
m∑

i=1

Na∑

n=1

Barn(r) {iA(t)sgnAi cos[n(θ − αAi)] + iB(t)sgnBi cos[n(θ − αBi)]+

iC(t)sgnCi cos[n(θ − αCi)]}

Baθ(r, θ, t) = Nc

Qs
m∑

i=1

Na∑

n=1

Baθn(r) {iA(t)sgnAi sin[n(θ − αAi)] + iB(t)sgnBi sin[n(θ − αBi)]+

iC(t)sgnCi sin[n(θ − αCi)]} (3.28)
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Table 3.3 Information about the phase shift, the value of the current and its sign for each coil and

each phase of the integral slot winding with Qs = 36 and 2p = 6.

i = 1 · · · Qs

m
Phase A

Coil numbers: nAi 1 2 7 8 13 14 29 20 25 26 32 32

Phase shifts: αAi = (nAi − 1)3600

Qs
00 100 600 700 1200 1300 1800 1900 2400 2500 3000 3100

Current: i(t) iA(t)

Sign: sgnAi + + - - + + - - + + - -

Phase B

Coil numbers: nBi 5 6 11 12 17 18 23 24 29 30 35 36

Phase shifts: αBi = (nBi − 1)3600

Qs
400 500 1000 1100 1600 1700 2200 2300 2800 2900 3400 3500

Current: i(t) iB(t)

Sign: sgnBi + + - - + + - - + + - -

Phase C

Coil numbers: nCi 3 4 9 10 15 16 21 22 27 28 33 34

Phase shifts: αCi = (nCi − 1)3600

Qs
200 300 800 900 1400 1500 2000 2100 2600 2700 3200 3300

Current: i(t) iC(t)

Sign: sgnCi - - + + - - + + - - + +
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where iA(t), iB(t), ic(t) are the instantaneous phase currents, sgnAi, sgnBi, sgnCi, αAi, αBi, αCi

are the parameters defined according to Table 3.3 and Barn, Baθn are the Fourier coefficients of the

flux density waveforms in Fig. 3.5 calculated for a single coil with 1 A of current.

The total armature winding field has been calculated for the previously analyzed six pole surface

PM motor. The rms value of the rated armature current is I = 6.91A. It is assumed that stator

currents are sinusoidal. The rotor with permanent magnets is aligned with the phase A axis at

the time instant when the phase A current is at its peak value. In that case the armature field is

aligned with the phase A axis and the phase currents are iA =
√

2 · 6.91 A, iB = iC = − iA
2

.

The waveforms of the radial and tangential components of the analytically calculated armature

field are shown in Fig. 3.7. They are compared in the same figure with the FE results calculated

using FEMLAB 2.3 commercial software with third order triangular elements assuming infinite

permeability of the core. There is some difference in the analytically and numerically calculated

waveforms. This difference occurs because the field solution obtained by conformal mapping does

not take into account the fact that magnets have a relative permeability µr slightly higher than

one. This difference can be taken into account by multiplying the analytical field solution with

the relative air gap permeance function. The presence of slots is not included in the permeance

function because they have already been included by conformal mapping. In the area not occupied

by magnets the slotless air gap permeance is defined as

Λgsless =
µ0

g + lm
(3.29)

where g is the air gap length and lm is the magnet length. Since magnets have a permeability

slightly higher than one, an equivalent air gap length needs to be determined to calculate the air

gap permeance of the region occupied by magnets. For an infinitely thin slice of the magnet volume

one can assume that the flux through the slice will be the same as the flux through an infinitely thin

slice of the air gap volume. This implies that the flux densities in the PM and in the air must be the

same.

dλ = BmdAm = BgdAg and dAm = dAg ⇒ Bm = Bg (3.30)
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Fig. 3.7 Comparison of analytically and numerically calculated armature winding flux density in
the middle of the air gap of a six pole surface PM motor: (a) radial component, (b) tangential

component
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At no load with an assumption of infinite iron permeability the Ampere’s law for the magnetic

circuit becomes
∫
~H ~dl = Hmlm +Hglg = 0 ⇒ Hm = − g

lm
Hg (3.31)

Expressed in terms of the air gap flux density (3.31) becomes

Hm = − g

lmµ0

Bg (3.32)

For a magnet with linear demagnetization characteristic the fundamental field equation is

Bm = µmHm +Br (3.33)

where µm = µ0µr is the magnet permeability and Br is the remanent flux density. Substituting

(3.32) into (3.33) yields

Bm = Br −
µm
µ0

g

lm
Bg (3.34)

Since Bg = Bm, (3.34) transforms into

Bm =
lm

µr

Br

g + lm
µr

(3.35)

where µr is the magnet relative permeability. An effective air gap is then defined as

g′ = g +
lm
µr

(3.36)

and the air gap permeance as

Λgmsless =
µ0

g′
=

µ0

g + lm
µr

(3.37)

The relative air gap permeance in the slotless air gap which takes into account the presence of

magnets can be defined as

λgsless =





Λgmsless

Λgsless
= g+lm

g+ lm
µr

= λgm where magnets are present

1 where magnets are not present
(3.38)
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The waveform of the function defined by (3.38) for one pole pitch is shown in Fig. 3.8 This wave-

form can be expressed in the form of a Fourier series. Since it is symmetric about the ordinate,

only cosine terms will exist in the series. The Fourier coefficients are given by

λg0 =
2p

π

∫ π
2p

0
λgsless(θ)dθ = 1 + αp(λgm − 1) (3.39)

λgn =
4p

π

∫ π
2p

0
λgsless(θ) cos(2npθ)dθ =

2

nπ
sin(nαpπ)(λgm − 1) (3.40)

The expression for the relative air gap permeance is then

λgsless = λg0 +
∞∑

n=1

λgn cos[2np(θ − α)]

= 1 + αp(λgm − 1) + (λgm − 1)
∞∑

n=1

2

nπ
sin(nαpπ) cos[2np(θ − α)] (3.41)

The permeance is also a function of the magnet angular position α because the waveform in Fig. 3.8

travels with the magnets as the rotor rotates.
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Fig. 3.8 Waveform of the relative air gap permeance of the slotless air gap used to take into
account the presence of magnets in the analytical armature winding field calculation

A new armature winding field solution has been obtained in Fig. 3.9 after multiplying the previ-

ously calculated solution shown in Fig. 3.7 with the relative air gap permeance from (3.41). A

much better agreement with finite element results can be noticed.

The radial and tangential components of the armature winding field after taking into account the

magnet permeance can be written in the form of Fourier series as
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Fig. 3.9 Comparison of analytically and numerically calculated armature winding flux density in
the middle of the air gap of a six pole surface PM motor. The analytical solution has been

multiplied by the relative air gap permeance to take into account the fact that relative permeability
of the magnets is greater than one; (a) radial component, (b) tangential component
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Bar(r, θ, t) = Ncλg0

Qcoil∑

i=1

Na∑

n=1

Barn(r) {iA(t)sgnAi cos[n(θ − αAi)] + iB(t)sgnBi cos[n(θ − αBi)]+

iC(t)sgnCi cos[n(θ − αCi)]} +

Nc

Qcoil∑

i=1

Na∑

n=1

∞∑

h=1

λghBarn(r) {iA(t)sgnAi cos[n(θ − αAi)]+

iB(t)sgnBi cos[n(θ − αBi)] + iC(t)sgnCi cos[n(θ − αCi)]} cos[2hp(θ − α)] (3.42)

Baθ(r, θ, t) = Ncλg0

Qcoil∑

i=1

Na∑

n=1

Baθn(r) {iA(t)sgnAi sin[n(θ − αAi)] + iB(t)sgnBi sin[n(θ − αBi)]+

iC(t)sgnCi sin[n(θ − αCi)]} +

Nc

Qcoil∑

i=1

Na∑

n=1

∞∑

h=1

λghBaθn(r) {iA(t)sgnAi sin[n(θ − αAi)]+

iB(t)sgnBi sin[n(θ − αBi)] + iC(t)sgnCi sin[n(θ − αCi)]} cos[2hp(θ − α)] (3.43)

where

Qcoil =





Qs

3
for two-layer winding

Qs

6
for single-layer winding

3.3 Calculation of Electromagnetic Torque Based on Maxwell’s Stress Theory

In the previous chapters it has been shown how to calculate the field distribution in the air gap of

a surface PM motor. Since both radial and tangential components of the armature winding and

permanent magnet flux density are known, the integral of the Maxwell’s stress tensor in the air gap

can be used to calculate the total torque in the motor. The total air gap field is equal to the sum of

the magnet field and the armature winding field which can be written in the form

Br(r, θ, t) = Bsr(r, θ, t) +Bar(r, θ, t)

Bθ(r, θ, t) = Bsθ(r, θ, t) +Baθ(r, θ, t) (3.44)

where Bsr and Bsθ are the flux density components of the permanent magnet field calculated ac-

cording to (2.128) and (2.129), while Bar and Baθ are the flux density components of the armature

field calculated according to (3.42) and (3.43). The torque expression is then
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T (t) =
1

µ0

laR
2
∫ 2π

0
[Bsr(R, θ, t) +Bar(R, θ, t)] [Bsθ(R, θ, t) +Baθ(R, θ, t)] dθ

=
1

µ0

laR
2
∫ 2π

0
[Bsr(R, θ, t)Bsθ(R, θ, t) +Bsr(R, θ, t)Baθ(R, θ, t)+

Bsθ(R, θ, t)Bar(R, θ, t) +Bar(R, θ, t)Baθ(R, θ, t)] dθ (3.45)

whereR is the radius in the air gap where the field is calculated. The termsBsrBsθ of the integrand

in (3.45) involve flux density components of the magnets alone. Hence they contribute only to the

cogging torque production. The integral of BsrBsθ has been solved in Chapter 2 for which a

closed form solution has been given in (2.136). The last term BarBaθ involves only flux density

components of the armature winding. If the difference in the air gap permeance in d and q axes due

to the fact that relative permeability of the magnet material is slightly higher than one is neglected,

then the integral of this term will be equal to zero. The remaining terms BsrBaθ and BarBsθ are

responsible for the production of electromagnetic torque.

The basic principle behind the derivation of the closed form solution for the electromagnetic torque

is very similar to the one presented in Chapter 2 for the cogging torque. Therefore, no detailed

derivation will be presented here. The solution of the integral

T (t) =
1

µ0

laR
2
∫ 2π

0
[Bsr(R, θ, t)Baθ(R, θ, t) +Bsθ(R, θ, t)Bar(R, θ, t)] dθ (3.46)

is then

k − np = 0

Tem(t) =
1

µ0

laR
2Nc

Qcoil∑

i=1

∞∑

n=1,3

Na∑

k=1

λ0λg0π(BrnBaθk −BθnBark)[iA(t)sgnAi sin(npα(t) −

kαAi) + iB(t)sgnBi sin(npα(t) − kαBi) + iC(t)sgnCi sin(npα(t) − kαCi)]

k − np−mQs = 0

Tem(t) =
1

µ0

laR
2Nc

Qcoil∑

i=1

∞∑

n=1,3

Nλ∑

m=1

Na∑

k=1

λg0
π

2
(BrnλamBaθk −BθnλbmBaθk −

BθnλamBark +BrnλbmBark)[iA(t)sgnAi sin(npα(t) − kαAi) +

iB(t)sgnBi sin(npα(t) − kαBi) + iC(t)sgnCi sin(npα(t) − kαCi)]
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k − np+mQs = 0

Tem(t) =
1

µ0

laR
2Nc

Qcoil∑

i=1

∞∑

n=1,3

Nλ∑

m=1

Na∑

k=1

λg0
π

2
(BrnλamBaθk +BθnλbmBaθk −

BθnλamBark −BrnλbmBark)[iA(t)sgnAi sin(npα(t) − kαAi) +

iB(t)sgnBi sin(npα(t) − kαBi) + iC(t)sgnCi sin(npα(t) − kαCi)]

k + np−mQs = 0

Tem(t) =
1

µ0

laR
2Nc

Qcoil∑

i=1

∞∑

n=1,3

Nλ∑

m=1

Na∑

k=1

λg0
π

2
(−BrnλamBaθk −BθnλbmBaθk −

BθnλamBark −BrnλbmBark)[iA(t)sgnAi sin(npα(t) + kαAi) +

iB(t)sgnBi sin(npα(t) + kαBi) + iC(t)sgnCi sin(npα(t) + kαCi)]

k − np− 2hp = 0

Tem(t) =
1

µ0

laR
2Nc

Qcoil∑

i=1

∞∑

n=1,3

∞∑

h=1

Na∑

k=1

λ0
π

2
(BrnλghBaθk −BθnλghBark)

{iA(t)sgnAi sin[p(n+ 2h)α(t) − kαAi] + iB(t)sgnBi sin[p(n+ 2h)α(t) − kαBi] +

iC(t)sgnCi sin[p(n+ 2h)α(t) − kαCi)}

k − np+ 2hp = 0

Tem(t) =
1

µ0

laR
2Nc

Qcoil∑

i=1

∞∑

n=1,3

∞∑

h=1

Na∑

k=1

λ0
π

2
(BrnλghBaθk −BθnλghBark)

{iA(t)sgnAi sin[p(n− 2h)α(t) − kαAi] + iB(t)sgnBi sin[p(n− 2h)α(t) − kαBi] +

iC(t)sgnCi sin[p(n− 2h)α(t) − kαCi)}

k + np− 2hp = 0

Tem(t) =
1

µ0

laR
2Nc

Qcoil∑

i=1

∞∑

n=1,3

∞∑

h=1

Na∑

k=1

λ0
π

2
(−BrnλghBaθk −BθnλghBark)

{iA(t)sgnAi sin[p(n− 2h)α(t) + kαAi] + iB(t)sgnBi sin[p(n− 2h)α(t) + kαBi] +

iC(t)sgnCi sin[p(n− 2h)α(t) + kαCi)} (3.47)

The terms that involve combinations of the type k ± np ±mQs ± 2hp = 0 are also possible, but

they are small compared to the terms in (3.47), so they can be neglected. The angle α(t) in (3.47)
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is defined as

α(t) = α0 + ωrmt (3.48)

where α0 is the initial position of the rotor in which the magnet axis is aligned with the phase A

axis.

The total torque in the motor is equal to the sum of the electromagnetic torque from (3.47) and

the cogging torque from (2.136). The waveforms of the electromagnetic torque, cogging torque

and total torque for the six pole surface PM motor have been calculated analytically and compared

to the FE results in Figs. 3.10, 3.11 and 3.12 respectively. The difference between analytically

and numerically calculated average torque for both cases of magnetization is around 2.5%. The

difference is somewhat larger for the torque ripple component which is around 6.5% in both cases.

It has been noticed earlier that the peak values of the cogging torque calculated analytically by

integrating Maxwell’s stress tensor in the air gap were larger than obtained from FE simulations.

Similar differences from FE simulations can also be noticed for analytically calculated electromag-

netic torque ripple components. Some reasons for such differences were explained earlier in the

case of cogging torque. However, it would be quite difficult to repeat similar analysis and calculate

electromagnetic torque by integrating lateral forces on the slot sides because the field in each slot

is a function of its current and of the currents in all other slots as well. What remains certain is that

the proposed analytical torque calculation based on integration of the Maxwell’s stress tensor in

the air gap takes into account all the effects that cause torque ripple in surface PM motors. Those

effects are the cogging torque, the mismatch between the back emf shape and the current shape

and the presence of stator slots.
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Fig. 3.10 Comparison of analytically and numerically calculated electromagnetic torque of the
six pole surface PM motor: (a) radial magnetization, (b) parallel magnetization
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Fig. 3.11 Comparison of analytically and numerically calculated cogging torque of the six pole
surface PM motor: (a) radial magnetization, (b) parallel magnetization
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Fig. 3.12 Comparison of analytically and numerically calculated total torque of the six pole
surface PM motor: (a) radial magnetization, (b) parallel magnetization
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Chapter 4

Calculation of the Back Emf in Surface PM Motors

The back emf waveform of a surface PM motor can be calculated from the no-load flux density

distribution with the knowledge of the armature winding distribution. According to Faraday’s law

the voltage induced in a single coil is equal to the negative derivative of the flux linked by the coil,

i.e.

Ec(t) = −dψc
dt

= −Nc

dφc
dt

(4.1)

where Nc is the number of coil turns. The flux linkage φc is equal to the integral of the air gap

flux density distribution across one coil pitch. It has been shown earlier that the flux density in the

slotted air gap can be calculated according to

Bs(r, θ) = [Br(r, θ) + jBθ(r, θ)] [λa(r, θ) − jλb(r, θ)] (4.2)

where Br and Bθ are the radial and tangential components of the flux density in the slotless air gap

and λa and λb are the real and imaginary components of the complex relative air gap permeance.

For calculation of the flux linkage φc it is sufficient to know only the radial component of the flux

density Bs which is given by

Bsr(r, θ, t) = Br(r, θ, t)λa(r, θ) +Bθ(r, θ, t)λb(r, θ)

=
∑

n

Brn cos [np(θ − ωrmt)]

{
λ0 +

∑

m

λam cos[mQs(θ − θs0)]

}
+

∑

n

Bθn sin[np(θ − ωrmt)]
∑

m

λbm sin[mQs(θ − θs0)] (4.3)

where Brn, Bθn are the Fourier coefficients of the slotless air gap flux density, λ0, λam, λbm are the

Fourier coefficients of the complex relative air gap permeance, p is the number of pole pairs, Qs
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is the number of slots, ωrm is the rotor speed and θs0 is the angle which sets the reference of the

air gap permeance function to coincide with either the tooth axis or the slot axis. There are two

distinctive cases which define the angle θs0. Since the initial reference for the air gap permeance

calculated in Chapter 2 has been chosen to coincide with the tooth axis, the angle θs will be

θs0 =





0, when the coil pitch is an odd integer of the slot pitch
π
Qs
, when the coil pitch is an even integer of the slot pitch

The flux linkage φc is then

φc(t) = laR
∫ γc

2

− γc
2

Bsr(R, θ, t)dθ (4.4)

where R is the radius close to the stator surface where the field is calculated and γc is the coil pitch

angle. The expression obtained after integration is

φc(t) = laR
∑

n

{
λ0Brn2

1

np
sin

(
np
γc
2

)
+

∑

m

(Brnλam −Bθnλbm)
1

np+mQs

sin
[
(np+mQs)

γc
2

]
+ (4.5)

∑

m

(Brnλam +Bθnλbm)
1

np−mQs

sin
[
(np−mQs)

γc
2

]}
cos(npωrmt)

in the case when θs0 = 0 and

φc(t) = laR
∑

n

{
λ0Brn2

1

np
sin

(
np
γc
2

)
+

∑

m

(Brnλam −Bθnλbm)
1

np+mQs

sin
[
(np+mQs)

γc
2

]
cos(mπ) + (4.6)

∑

m

(Brnλam +Bθnλbm)
1

np−mQs

sin
[
(np−mQs)

γc
2

]
cos(mπ)

}
cos(npωrmt)

in the case when θs0 = π
Qs

.

In the case when np = mQs the term

1

np−mQs

sin
[
(np−mQs)

γc
2

]

in (4.5) and (4.6) should be replaced with γc

2
.
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The voltage induced in a single coil can now be calculated according to (4.1). After finding the time

derivatives of (4.5) and (4.6) and multiplying them by Nc the expression for the induced voltage

per coil is

Ec(t) = NcωrmlaR
∑

n

{
λ0Brn2 sin

(
np
γc
2

)
+

∑

m

(Brnλam −Bθnλbm)
np

np+mQs

sin
[
(np+mQs)

γc
2

]
+ (4.7)

∑

m

(Brnλam +Bθnλbm)
np

np−mQs

sin
[
(np−mQs)

γc
2

]}
sin(npωrmt)

in the case when θs0 = 0 and

Ec(t) = NcωrmlaR
∑

n

{
λ0Brn2 sin

(
np
γc
2

)
+

∑

m

(Brnλam −Bθnλbm)
np

np+mQs

sin
[
(np+mQs)

γc
2

]
cos(mπ) + (4.8)

∑

m

(Brnλam +Bθnλbm)
np

np−mQs

sin
[
(np−mQs)

γc
2

]
cos(mπ)

}
sin(npωrmt)

in the case when θs0 = π
Qs

.

The total back emf per phase is calculated by adding the voltages induced in all coils of the phase

winding connected in series. The voltages induced in adjacent slots are phase shifted so they should

be summed as vectors which is taken into account via distribution factor. The distribution factor

for the nth harmonic is given by

kdn =
sin

(
nqα

2

)

q sin
(
nα

2

) (4.9)

where q is the number of slots per pole per phase and α is the phase shift between the voltages

induced in two adjacent slots. In the case of a fractional slot winding, q ′ from (3.23) and α′

from (3.24) should be used in (4.9). In a three phase winding the total number of turns per phase

connected in series is given by

Ns =




Nc

Qs

6ap
, for a single-layer winding

Nc
Qs

3ap
, for a two-layer winding
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where ap is the number of parallel paths. The final expression for the back emf waveform per phase

in a surface PM motor is then

Ephase(t) = NsωrmlaR
∑

n

kdn

{
λ0Brn2 sin

(
np
γc
2

)
+

∑

m

(Brnλam −Bθnλbm)
np

np+mQs

sin
[
(np+mQs)

γc
2

]
+ (4.10)

∑

m

(Brnλam +Bθnλbm)
np

np−mQs

sin
[
(np−mQs)

γc
2

]}
sin[n(pωrmt− β0)]

in the case when θs0 = 0 and

Ephase(t) = NsωrmlaR
∑

n

kdn

{
λ0Brn2 sin

(
np
γc
2

)
+

∑

m

(Brnλam −Bθnλbm)
np

np+mQs

sin
[
(np+mQs)

γc
2

]
cos(mπ) + (4.11)

∑

m

(Brnλam +Bθnλbm)
np

np−mQs

sin
[
(np−mQs)

γc
2

]
cos(mπ)

}

sin[n(pωrmt− β0)]

in the case when θs0 = π
Qs

. The angle β0 is equal to zero for phase A, 2π/3 for phase B and 4π/3

for phase C.

For the six pole surface PM motor analyzed in the previous chapters the line-to-line back emf

waveform has been calculated analytically and numerically using the FE method for the cases of

radial and parallel magnetization. The motor has 36 slots with coil pitch equal to five slot pitches.

Since the coil pitch is an odd number, equation (4.10) has been used to calculate the back emf. The

waveforms in Fig. 4.1 show very good agreement between the results obtained analytically and

numerically.
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Fig. 4.1 Line-to-line back emf waveform calculated analytically and numerically: (a) radial
magnetization, (b) parallel magnetization
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Chapter 5

Calculation of the End Winding Leakage Inductance

The end winding leakage inductance is a part of the total leakage inductance of the phase winding.

In the core region the coils are located in the slots which, with the assumption that iron is infinitely

permeable, makes it easier to predict the distribution of the leakage flux and calculate the leakage

inductance. The end winding region is more difficult to analyze because its magnetic circuit is

entirely in the air and its winding structure is often characterized by complex three-dimensional

geometry of the coils. An additional difficulty is the effect that adjacent coils and phases have on

each other.

The most accurate approach to the end winding leakage inductance calculation would be to use the

3-D finite element method. The main problem with the 3-D FE method is the fact that the drawing

of a complex 3-D geometric structure, mesh generation and solution of a very large system of

equations are extremely time consuming. This is the main obstacle for practical utilization of the

3-D FE method for the end winding leakage inductance calculation in the design stage, especially

if optimization is involved. The analytical approach is the remaining alternative.

There are different closed form analytical solutions that can be found in literature [74–76]. One of

the major problems of these solutions is that they have been derived for an assumed geometric

shape of the end coil which may not be applicable for all types of windings and all types of

machines with different power ratings. Therefore a more flexible method has been used in this

thesis which models the end coil as a set of serially connected straight filaments. This allows one

to define the end coil geometry of an arbitrary shape and still calculate the inductance in a unique

manner.
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The mutual inductance between any two coils in the end region is calculated by adding the con-

tributions of all possible pairs of filaments in both coils. The method has been described in detail

in [77, 78] for the case of a turbogenerator with double-layer involute winding. It has been modi-

fied and adapted in this thesis to be used for a single-layer end winding structure typical for small

permanent magnet motors. The method also takes into account the influence of the iron core by

applying the method of images. Some assumptions on the magnetic properties of the core and the

geometry of the end region are necessary to simplify the problem.

The following assumptions are made:

• The permeability of the iron core is constant,

• The iron core surface extends infinitely and fills the entire half-space,

• The influences of slots, air gap and rotor shaft are neglected,

• The coils are represented by infinitely thin conductors.

The principle model of the end coil is shown in Fig. 5.1(a). This model can be constructed out

of the circuits shown in Fig. 5.1(b) and Fig. 5.1(c). The field due to the current in the circuit

in Fig. 5.1(c) can be determined from that circuit and its mirror image (Fig. 5.1(d)). The mirror

image of the circuit in Fig. 5.1(b) is identical to its original. The superposition of circuits shown in

Fig. 5.1(b) and Fig. 5.1(d) yields the final circuit (Fig. 5.1(e)). The current that flows in the mirror

image of the circuit in Fig. 5.1(c) is determined by the permeability of the iron and is calculated

according to

I ′ =
µr − 1

µr + 1
I (5.1)

where µr is the relative permeability of iron and I is the circuit current.

Two end coils are shown in Fig. 5.2 in a simplified manner. The influence of iron has been replaced

by the image of the coil. Therefore, the mutual inductance of the two coils can be written in the

form
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Fig. 5.1 Principle model for calculation of the mutual inductance of two coils
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M =
µ0

4πI

∫

ABCDE


I
∫

GIJKM

d~l1d~l2
r

+ I ′
∫

GPM

d~l1d~l2
r

+

(I + I ′)



∫

FG
F→∞

d~l1d~l2
r

+
∫

MN
F→∞

d~l1d~l2
r




 (5.2)

 
 
 
 
 
 
 
 
 

Fig. 5.2 Method of images applied to the end coil

The three-dimensional contour of the end coil is replaced by an arbitrary number of straight fila-

ments depending on the desired accuracy of the geometric model of the coil. The integrals in (5.2)

are Neumann integrals of the form

N = cosϕ
∫ B

A
dl1

∫ b

a

dl2
r

(5.3)

which are solved for all possible combinations of straight filaments in both coils. This integral is

based on the integration of the magnetic vector potential due to the current in one coil along the

contour of the other coil and represents the flux linkage. The angle ϕ in (5.3) is the angle between

the directional vectors of two straight lines in 3-D space. The general solution of the Neumann

integral for two straight filaments in an arbitrary position relative to each other in space has been

first published by Campbell [79]. This has been extended by the calculation of the Neumann

integral for one finite and two semi-infinite antiparallel filaments in [77]. The results are given in

the Appendix.
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For the purpose of the mutual inductance calculation the coils are represented by infinitely thin

wires with an assumption that all the coil turns are concentrated in one filament. With that as-

sumption the mutual inductance can be evaluated using Neumann integrals. However, when the

self inductance is evaluated, the finite dimensions of the coil are assumed. The portion of the coil

self inductance due to the flux linkage inside the wire has been approximated using the expression

for the internal inductance of an infinitely long circular wire

Lcsi =
µ0

8π
lc (5.4)

where lc is the length of the coil (central filament). The self inductance due to the flux linkage

outside the wire requires the knowledge of the flux linkage from the surface of the conductor to

infinity. Since the field at infinity is zero, the calculation of this portion of the self inductance

basically reduces down to calculation of the Neumann integral between two parallel lines of length

lc, separated by the distance of rc, where rc is the radius of the circular conductor. Since the

filaments in the end coil are not all parallel, the self inductance due to the flux linkage outside the

coil wire is calculated by adding the Neumann integrals for all combinations of filaments along the

contours 1 − 2 − 3 − 4 − 5 and 1′ − 2′ − 3′ − 4′ − 5′ as shown in Fig. 5.3. The simple coil shape

shown in Fig. 5.3 is only used to explain the principle of the inductance calculation. The actual

coil shape that has been modelled for the case of a surface PM motor is quite different and contains

more than four segments.

� ��

��
�

��

�

��
�

���

�
�

Fig. 5.3 Principle model of the end coil for calculation of the self inductance due to the flux
linkage outside the wire
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For each straight wire segment, the flux linkage is calculated due to the current flowing through it

and due to the current flowing in all other segments. The total inductance of the coil is then equal

to the sum of the self inductance and the mutual inductance with other coils.

The end winding leakage inductance has been calculated for the six pole surface PM motor an-

alyzed in the previous chapters. The scheme of its two-layer short-pitched lap winding with six

poles and 36 slots is shown in Fig. 5.4. The end coil has been modelled using 20 straight filaments

as shown in Fig. 5.5. The coil pitch is equal to five slot pitches. The number of turns per coil is 14.

The complete model of the end winding containing all the coils is shown in Fig. 5.6.

Very often the windings of small PM motors are built as single-layer overlapping or non-overlapping

windings. For comparison, the full-pitched single-layer overlapping winding for the same motor

has been modelled and shown in Figs. 5.7, 5.8 and 5.9. The number of turns per coil is 28.

The mutual inductances are calculated between the first coil and all other coils obtained by rotating

every subsequent coil by an angle that corresponds to one slot pitch in the two-layer winding and

two slot pitches in the single-layer overlapping winding. Thus, the mutual inductance between any

two coils amounts to calculation of the mutual inductance of the first coil and another coil shifted

by a certain number of slot pitches. The mutual inductance of the coils of one phase is calculated

by adding the mutual inductance of the first coil and all the others that belong to the same phase.

The obtained result is multiplied by two to take into consideration both sides of the machine. The

mutual inductance of two phases contains the sum of mutual inductances of every coil from the first

phase and every coil from the second phase. Due to symmetry, the mutual inductances of any two

phases are equal. The total inductance per phase is equal to the sum of the self inductance and the

mutual inductance with other two phases. With the existence of the parallel paths in the winding,

the obtained result is divided by the squared number of paths (a2
p) because the inductance per phase

is proportional to the squared number of turns connected in series. The mutual inductances between

the first coil and all other coils for different values of iron permeability are shown in Figs. 5.10 and

5.11 for the two-layer winding and the single-layer winding respectively. The curves obtained for

µr = 0 and µr = ∞ represent the lower and upper bounds within which one would expect to find

the actual value of the end winding inductance. Table 5.1 contains the values of the end winding
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Fig. 5.4 Scheme of a two-layer, 36 slot, six pole lap winding
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Fig. 5.5 3-D model of the end coil of a two-layer lap winding comprised of 20 straight filaments
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Fig. 5.6 Full 3-D model of the two-layer end winding of the six pole surface PM motor: (a) xy
plane, (b) perspective view
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Fig. 5.7 Scheme of a single-layer, 36 slot, six pole overlapping winding
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Fig. 5.8 3-D model of the end coil of a single-layer overlapping winding comprised of 20 straight
filaments
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Fig. 5.9 Full 3-D model of the single-layer overlapping end winding of the six pole surface PM
motor. (a) XY plane, (b) Perspective view
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leakage inductance for the two windings calculated for different values of relative permeability of

iron. When µr = 0, it is assumed that the iron is infinitely conductive and impermeable. When

µr = 1, the influence of iron is neglected. Finally, when µr = ∞, it is assumed that the iron is

infinitely permeable and infinitely resistive. For calculation purposes, infinity is replaced by the

value of 109 for the relative permeability.

Table 5.1 End winding leakage inductance for different values of relative iron permeability

Relative permeability Self inductance of Mutual inductance Total leakage

of iron core one phase between two phases inductance

µr Lsew [mH] Mew [mH] Lew = Lsew −Mew [mH]

Two-layer winding

0 0.418 -0.077 0.495

1 0.475 -0.103 0.578

∞ 0.532 -0.129 0.661

Single-layer winding

0 0.755 -0.093 0.848

1 0.791 -0.113 0.904

∞ 0.826 -0.133 0.959

It can be noticed in Table 5.1 that the mutual inductance between two phases relative to the self

inductance of one phase is significantly smaller than in the core region where it is equal to the

negative one half of the phase self inductance for the fundamental component of the flux if the

core leakage and saturation are neglected.

The leakage inductance of the two-layer winding is somewhat lower which can be attributed to the

fact this winding is more distributed around the perimeter than the single-layer winding. Each of

the two-layer coils has half as many turns as the single-layer coil. Hence the self inductance per

coil is lower, but there are twice as many coils. In the case of a perfect magnetic coupling and

identical shapes of the coils, these two windings would have the same inductance. However, in
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Fig. 5.10 Mutual inductance between two end coils as a function of relative coil positions for the
two-layer winding
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Fig. 5.11 Mutual inductance between two end coils as a function of relative coil positions for the
single-layer winding
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the two-layer winding the mutual inductances between the coils of one phase do not contribute to

the self inductance of the phase winding as much as the additional turns of each single-layer coil

contribute to the self inductance of the single-layer winding. Unlike the self inductance, the mutual

inductance between different phase windings does not differ significantly.

The relative permeability of the iron core also affects the value of the end winding leakage induc-

tance. For higher values of µr the core is more permeable which increases the leakage inductance.

In an actual motor, the core, the shaft and the frame would act more as a conductive screen than

as a permeable, highly resistive surface. Therefore, it is reasonable to take the value of the end

winding leakage inductance calculated with µr = 0 as an actual motor parameter.

It is useful to compare the end winding leakage inductance for the two-layer winding from Ta-

ble 5.1 with the results calculated using formulas given by Liwschitz-Garik [75] and Lipo [74].

According to [75] the end winding leakage inductance is given by

Lew = 2µ0
N2
s

p
k2
p1k

2
w12.4

(
le2 +

le1
2

)
(5.5)

where Ns is the number of turns per phase connected in series, p is the number of pole pairs, kp1 is

the pitch factor, kd1 is the distribution factor and le1 and le2 are dimensions according to Fig. 5.12.

In his formulas Lipo [74] also takes into account the effect of the iron core and replaces the core

with an image of the coil. However, his model of the end coil has a simple geometry and it is

assumed that the entire end coil lies in one plane.
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Fig. 5.12 Model of the end coil used in analytical formulas by Liwschitz-Garik and Lipo
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The end winding leakage inductance calculated using these two alternative analytical approaches

is given in Table 5.2. The values in Table 5.2 are somewhat higher than the ones given in Table 5.1.

Nevertheless, they are in the same order of magnitude. A 3-D FE model of the end winding region

should be used to ascertain which of the these results is the most accurate.

Table 5.2 End winding leakage inductance calculated using alternative analytical formulas

Leakage inductance

Lew [mH]

Liwschitz-Garik 0.716

Lipo 0.944
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Chapter 6

Calculation of Inductances in Surface PM Motors

The armature winding air gap field solution derived in Chapter 3 can be used to calculate the phase

winding self and mutual inductances based on integration of flux linkages. The phase winding self

inductance is equal to the ratio of total flux linkage of the winding and the winding current. Due

to symmetry it is sufficient to calculate the self inductance for only one phase (e.g. phase A) since

inductances for the other two phases are equal to the phase A inductance. The same is valid for

different combinations of mutual inductance between the phases.

The total flux linkage of phase A is equal to the sum of the flux linkages of each phase A coil

due to the current that flows through that coil and the currents that flow through all other coils of

phase A. From (3.42) it follows that the total flux linkage of phase A due to current iA is

ψa(t) = laRN
2
c

Qcoil∑

j=1

sgnAj

∫ γc
2

+αAj

− γc
2

+αAj

Qcoil∑

i=1

Na∑

n=1

Barn(R)λg0iA(t)sgnAi cos[n(θ − αAi)]dθ +

laRN
2
c

Qcoil∑

i=1

sgnAj

∫ γc
2

+αAj

− γc
2

+αAj

Qcoil∑

i=1

Na∑

n=1

∞∑

h=1

Barn(R)λghiA(t)sgnAi

cos[n(θ − αAi)] cos[2hp(θ − α)]dθ (6.1)

Knowing that La = ψa(t)
ia(t)

and after solving the integrals in (6.1), the expression for the phase A

self inductance is
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La = laRN
2
c

Qcoil∑

j=1

Qcoil∑

i=1

Na∑

n=1

Barn(R)λg0
2

n
sgnAjsgnAi cos[n(αAj − αAi)] sin

(
n
γc
2

)
+

laRN
2
c

Qcoil∑

j=1

Qcoil∑

i=1

Na∑

n=1

∞∑

h=1

Barn(R)λghsgnAjsgnAi

{
1

n+ 2hp
cos[n(αAj − αAi)+

2hp(αAj − α)] sin
[
(n+ 2hp)

γc
2

]
+

1

n− 2hp
cos[n(αAj − αAi) − 2hp(αAj − α)]

sin
[
(n− 2hp)

γc
2

]}
(6.2)

In the case when n = 2hp, the term

1

n− 2hp
sin

[
(n− 2hp)

γc
2

]

in (6.2) should be replaced with γc

2
. The first part of (6.2) represents the average phase A self in-

ductance, while the second part is the saliency term dependent on the rotor position α. The second

part is a consequence of taking into account the magnet relative permeance which is slightly higher

than one. The saliency term is very small and can readily be neglected. Due to symmetry one has

La = Lb = Lc = Lss. Equation (6.2) does not take into account the slot leakage inductance.

Therefore, it needs to be calculated separately and added to the results in (6.2) together with the

end winding leakage inductance Lew from Chapter 5 to obtain the total self inductance. A classical

approach is used for slot leakage inductance calculation which is based on the assumption that the

core is infinitely permeable and that the flux lines which cross the slot are horizontal. The slot

shape commonly used in PM motors is shown Fig. 6.1. With a general assumption that one has a

two-layer short pitched winding, the slot leakage inductance per one phase is given by [74]

Lsl = µ0
Qs

3a2
p

N2
c la(pT + pB + kslpTB) (6.3)

where pT and pB are the specific permeances of the top and bottom coil sides, pTB is the specific

permeance corresponding to mutual flux linkage between the top and bottom coil sides and ksl

is the coefficient which takes into account the phase shift between the phase belts due to short

pitching of the coils. The coefficient ksl is defined as [74]

ksl = 3
yc
Qs

2p

− 1 (6.4)
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Fig. 6.1 Slot shape used for calculation of the slot leakage inductance

where yc is the coil pitch expressed as the number of slot pitches. The specific permeances for the

slot shape in Fig. 6.1 are given by [74, 80]

pB =
d3

bs
kt1 +

d2

b2 − b1
ln
b2
b1

+ 0.1424 + 0.5 arcsin

√√√√1 −
(
bo
b1

)2

+
do
bo

pT =
d2

b2
kt2 + 0.1424 + 0.5 arcsin

√√√√1 −
(
bo
b1

)2

+
do
bo

(6.5)

pTB =
d2

b2
kt12 + 0.1424 + 0.5 arcsin

√√√√1 −
(
bo
b1

)2

+
do
bo

where

kt1 =
4t21 − t41 − 4 ln t1 − 3

4(1 − t1)(1 − t21)
2

, t1 =
b2
bs

kt2 =
4t22 − t42 − 4 ln t2 − 3

4(1 − t2)(1 − t22)
2

, t1 =
b1
b2

kt12 =
t212 − 2 ln t12 − 1

2(1 − t12)(1 − t212)
, t1 =

b1
b2
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In the case of mutual inductance between phases A and B, the flux linkage of phase A is equal to

the sum of the flux linkages of each phase A coil due to the current that flows in all the coils of

phase B.

ψab(t) = laRN
2
c

Qcoil∑

j=1

sgnAj

∫ γc
2

+αAj

− γc
2

+αAj

Qcoil∑

i=1

Na∑

n=1

Barn(R)λg0iB(t)sgnBi cos[n(θ − αBi)]dθ +

laRN
2
c

Qcoil∑

i=1

sgnAj

∫ γc
2

+αAj

− γc
2

+αAj

Qcoil∑

i=1

Na∑

n=1

∞∑

h=1

Barn(R)λghiB(t)sgnBi

cos[n(θ − αBi)] cos[2hp(θ − α)]dθ (6.6)

After integrating (6.6) the mutual inductance is

Lab = laRN
2
c

Qcoil∑

j=1

Qcoil∑

i=1

Na∑

n=1

Barn(R)λg0
2

n
sgnAjsgnBi cos[n(αAj − αBi)] sin

(
n
γc
2

)
+

laRN
2
c

Qcoil∑

j=1

Qcoil∑

i=1

Na∑

n=1

∞∑

h=1

Barn(R)λghsgnAjsgnBi

{
1

n+ 2hp
cos[n(αAj − αBi)+

+2hp(αAj − α)] sin
[
(n+ 2hp)

γc
2

]
+

1

n− 2hp
cos[n(αAj − αBi) − 2hp(αAj − α)]

sin
[
(n− 2hp)

γc
2

]}
(6.7)

The expression for the mutual inductance also consists of the constant term which is the average

mutual inductance and the saliency term dependent on the rotor position. The saliency term can

readily be neglected. Due to symmetry one has Lab = Lbc = Lca = Lsm.

Since phases are mutually coupled, their total flux linkages are

ψa = (Lew + Lsl + Lss)iA + LsmiB + LsmiC

ψb = LsmiA + (Lew + Lsl + Lss)iB + LsmiC (6.8)

ψc = LsmiA + LsmiB + (Lew + Lsl + Lss)iC

Since in a Y connected three phase machine without a neutral return

iA + iB + iC = 0

the flux linkages in (6.8) become

ψa = (Lew + Lsl + Lss − Lsm)iA
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ψb = (Lew + Lsl + Lss − Lsm)iB (6.9)

ψc = (Lew + Lsl + Lss − Lsm)iC

The total inductance per phase is then

Ls = Lew + Lsl + Lss − Lsm (6.10)

Note that Lss and Lsm already include harmonic leakage inductance because they have been de-

rived by integrating the air gap flux density with all the harmonics included and not only the

fundamental.

The analytically and numerically calculated inductances for the six pole surface PM motor previ-

ously used in the analysis have been compared in Table 6.1. Inductances Lss and Lsm have been

calculated using only the average terms from (6.2) and (6.7) since the saliency terms are negligi-

ble. When the self inductance is calculated using the FE method, the slot leakage inductance is

already included. Therefore, the comparison has to be made between the FE result and the sum of

analytically calculated Lss and Lsl as indicated in Table 6.1.

Table 6.1 Inductances of the six pole surface PM motor calculated analytically and numerically

 Lew [mH] Lsl [mH] Lss [mH] Lsm [mH] Ls [mH] 
Analytical 0.495 1.207 9.608 -4.25 15.56 
FE − 10.59 -4.33 
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Chapter 7

Calculation of Losses in Surface PM Motors

The prediction of losses in the design stage of any electrical machine is one the basic requirements,

especially when optimization is involved. In the case of surface PM motors the emphasis is put on

high efficiency, high torque density, and low torque ripple, which are all conflicting requirements.

The requirement for high torque density naturally leads to designs of reduced size with high flux

densities in the stator and rotor core. High flux densities in turn lead to higher core losses and

lower efficiency. The task of the designer is to find a good balance between these conflicting

requirements. Another important issue is the maximum temperature of the winding insulation and

the temperature of the magnets which need to be limited in all regimes of operation.

The main types of losses in PM motors are winding losses, core losses, magnet losses and mechan-

ical losses due to windage and friction.

7.1 Winding Losses

The copper losses in the armature winding can be calculated with the knowledge of the armature

rms current and the winding resistance. The resistance is given by

Ra =
1

σ

Ns

ap

lc
Ac

(7.1)

where σ is the conductivity of the coil material,Ns is the number of turns per phase connected in se-

ries , ap is the number of parallel paths, lc is the mean length of the coil andAc is the cross-sectional

area of one conductor in the coil. The conductivity of copper at 75o C, which is 47.6 · 106 S/m, is

commonly used for calculation of the resistance.
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The mean length of the coil is

lc = 2la + 2lec (7.2)

where la is the core stack length and lec is the length of the end coil on one side of the machine.

The end coil length lec is calculated by adding the lengths of the straight filaments which have been

used in Chapter 5 to model the three dimensional shape of the coil.

The total winding losses are calculated according to

Pa = 3I2Ra (7.3)

where I is the rms value of the armature current.

For the analyzed six pole surface PM motor with Qs = 36, Nc = 14, ap = 1, Ac = 1.33 mm2,

la = 90 mm, lec = 88.7 mm the resistance per phase at 75o C is

Ra =
1

σ75

NsQs

3a2
p

2(la + lec)

Ac
=

1

47.6 · 106

14 · 36
3 · 12

2 · (90 + 88.7) · 10−3

1.33 · 10−6
= 0.96 Ω (7.4)

With I = 6.91 A the total winding losses are

Pa = 3 · 6.912 · 0.96 = 137.5 W (7.5)

7.2 Core Losses

The variation of flux density in the stator teeth and yoke of PM motors is generally not sinusoidal.

Therefore, the approach to core loss calculations based on the assumption that only fundamental

component of the flux density exists is not valid [81–83]. For good estimation of core losses the

effects of harmonics have to be taken into account. The general expression for core losses which

considers the nonsinusoidal shape of the flux density variation is given by

Pc = khfB
α(Bm)
m +

ke
2π2

(
dB

dt

)2

rms

(7.6)

where kh is the hysteresis loss coefficient, ke is the eddy current loss coefficient, Bm is the peak

value of the flux density waveform, α(Bm) is an exponent dependent on Bm and f is the fre-

quency. Coefficients kh, ke and α(Bm) can be determined by curve fitting the data provided by
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manufacturers of the steel laminations. The basic procedure for the extraction of the core loss co-

efficients given by Hendershot and Miller [84] will be explained on an example of U.S. Steel M36,

29 Gauge steel lamination. The manufacturer provides information about core losses measured

with sinusoidal fields at different frequencies and flux densities. Fig. 7.1 shows the core losses for

three values of the flux density, i.e. 0.3 T, 0.5 T and 0.7 T, with the frequency ranging from 60 Hz

to 200 Hz.
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Fig. 7.1 Core losses for U.S. Steel M36, 29 Gauge steel laminations given as a function of
frequency for three different values of flux density

In the case of sinusoidal fields the flux density is given by

B = Bm sin(2πft) (7.7)

The derivative of its rms value is then
(

dB

dt

)

rms

=
2πf√

2
Bm (7.8)

Substituting (7.8) into (7.6) gives an expression for the core losses in the form

Pc = khfB
α(Bm)
m + kef

2B2
m (7.9)
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If α(Bm) is written in the form

α(Bm) = ah + bhBm (7.10)

then (7.9) becomes

Pc = khfB
ah+bhBm
m + kef

2B2
m (7.11)

The next step is to divide (7.11) by f which yields

Pc
f

= khB
ah+bhBm
m + kefB

2
m (7.12)

The data in Fig. 7.1 is then used to plot the graphs of Pc

f
for each of the three values of Bm. The

resulting graphs are practically straight lines which can be expressed in the form

Pc
f

= D + Ef (7.13)

The coefficients D and E can be determined for each line using linear regression. The graphs of
Pc

f
, together with their approximations by straight lines, are shown in Fig. 7.2.
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Fig. 7.2 Plots of core losses
freqency

for U.S. Steel M36, 29 Gauge steel laminations given as a function of
frequency for three different values of flux density

Equations (7.12) and (7.13) can now be combined to determine the core loss coefficients. It is easy

to recognize that

D = khB
ah+bhBm
m (7.14)
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E = keB
2
m (7.15)

The three values of ke can be determined directly from (7.15) for the three values of Bm. The final

value can be taken as an average.

ke =
1

3

(
E1

B2
m1

+
E2

B2
m2

+
E3

B2
m3

)

=
1

3

(
7.669 · 10−5

0.32
+

8.944 · 10−5

0.52
+

8.280 · 10−5

0.72

)

= 8.298 · 10−5 W

kgHz2T2
(7.16)

The coefficients kh, ah and bh can be determined by solving the system of linear equations which

is formed by substituting D1, D2 and D3 obtained for the three values of Bm into the logarithm of

equation (7.14). The system of equations is then



1 lnBm1 Bbm1 lnBm1

1 lnBm2 Bbm3 lnBm2

1 lnBm3 Bbm3 lnBm3







ln kh

ah

bh




=




D1

D2

D3




(7.17)

The system is solved for ln kh, ah and bh. The coefficient kh is then simply

kh = eln kh (7.18)

The coefficients for M36 sheet steel calculated from (7.17) are

kh = 0.02264
W

kgTα(Bm)Hz

ah = 1.582

bh = 0.147 T−1

The flux density waveforms in the stator and rotor core need to be calculated next so that Bm and
(

dB
dt

)
rms

can be determined and used in (7.6) to calculate the core losses.

The flux density in the stator tooth can be determined from the waveform of the flux passing

through the tooth. This flux can be calculated by integrating the radial component of the magnet

field given by (4.3) within one slot pitch. Hence

φts(t) = laR
∫ π

Qs

− π
Qs

Bsr(R, θ, t)dθ (7.19)
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The expression obtained after integration of (7.19) is

φts(t) = laR
∑

n

{
λ0Brn2

1

np
sin

(
np

π

Qs

)
+

∑

m

(Brnλam −Bθnλbm)
1

np+mQs

sin

[
(np+mQs)

π

Qs

]
+ (7.20)

∑

m

(Brnλam +Bθnλbm)
1

np−mQs

sin

[
(np−mQs)

π

Qs

]}
cos(nωt)

If np = mQs, the term

1

np−mQs

sin

[
(np−mQs)

π

Qs

]

is replaced with π
Qs

.

The stator yoke flux waveform can be determined from the tooth flux waveform. The basic scheme

of tooth and yoke fluxes is shown in Fig. 7.3.
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Fig. 7.3 The scheme of stator tooth and yoke fluxes

If only the fundamental component of the flux is considered, then the flux waveforms of two

adjacent teeth will be phase shifted by an angle

α = p
2π

Qs

(7.21)
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The same is valid for the flux in two adjacent yoke segments. From Fig. 7.3 it follows that

φts2 = φts1e
−jα

φys2 = φys1e
−jα (7.22)

For the fluxes one has

φts2 = φys2 − φys1 (7.23)

Substituting (7.22) into (7.23) yields

φts1e
−jα = φys1

(
e−jα − 1

)

φts1 = φys1
(
1 − ejα

)
= φys1 (1 − cosα− j sinα) (7.24)

The relationship between the flux magnitudes is

|φts1| = |φys1|2 sin
α

2
= |φys1|2 sin

(
p
π

Qs

)
(7.25)

It can be easily shown that the general relationship between the nth harmonic components of the

tooth and yoke flux densities is

|φtsn| = |φysn|2 sin

(
np

π

Qs

)
(7.26)

Since the components of φtsn are known from (7.20), the harmonic components of the yoke flux

simply follow from (7.26).

The flux in the rotor yoke can be calculated in a similar manner. However, in this case one must

recognize that the rotor yoke is travelling with the magnets. Hence for the rotor yoke it appears

that the slots are travelling while the magnets are fixed. In that case the expression for the flux

density in the slotted air gap is given by

Bsr(r, θ, t) =
∑

n

Brn cos(npθ)

{
λ0 +

∑

m

λam cos[mQs(θ − ωrmt)]

}
+

∑

n

Bθn sin(npθ)
∑

m

λbm sin[mQs(θ − ωrmt)] (7.27)

The rotor yoke flux is equal to one half of the flux per pole calculated by integrating (7.27) which

can be written as

φp(t) = laR
∫ π

2p

− π
2p

Bsr(R, θ, t)dθ (7.28)
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After substituting (7.27) into (7.28) and performing integration the flux per pole is

φp(t) = laR
∑

n

λ0Brn2
1

np
sin

(
nπ

2

)
+

laR

{
∑

m

(Brnλam −Bθnλbm)
1

np+mQs

sin

[
(np+mQs)

π

2p

]
+ (7.29)

∑

m

(Brnλam +Bθnλbm)
1

np−mQs

sin

[
(np−mQs)

π

2p

]}
cos(mQsωrmt)

If np = mQs, the term

1

np−mQs

sin

[
(np−mQs)

π

2p

]

is replaced with π
2p

. The rotor yoke flux is then

φyr(t) =
1

2
φp(t) (7.30)

The flux densities in the teeth and yoke can now be easily calculated by dividing the corresponding

flux waveforms with the cross-sectional areas, i.e.

Bts =
φts
Ats

Bys =
φys
Ays

(7.31)

Byr =
φyr
Ayr

Since different segments of the stator tooth from the tooth tip to the bottom of the slot have different

widths, the flux density waveforms can be calculated for each segment separately as suggested

in Fig 7.4. The segments II and IV can be further subdivided for more accurate flux density

calculations.

The flux density waveforms in the stator and rotor teeth and yoke for the analyzed six pole surface

PM motor have been calculated using (7.32) and are shown in Figs. 7.5 to 7.7. The stator tooth

flux density has been calculated in the narrowest segment III. It is apparent from Figs. 7.5 and 7.6

that the stator tooth and yoke flux density waveforms are nonsinusoidal, especially in the case of

stator teeth. The flux density in the rotor yoke, according to Fig. 7.7, is practically constant with a

small ripple component. Hence, the losses in the rotor yoke will be negligible.
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Fig. 7.4 Different segments of the stator tooth where the flux density is evaluated
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Fig. 7.5 Flux density waveform in the stator teeth
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Fig. 7.6 Flux density waveform in the stator yoke
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Fig. 7.7 Flux density waveform in the rotor yoke
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Since the flux density waveforms for the stator teeth and yoke are given in the form of Fourier

series, it is easy to show that the values of
(

dB
dt

)2

rms
needed for calculation of the core losses are

equal to
(

dBts

dt

)2

rms

= 2π2f 2
∑

n

n2B2
tsn

(
dBys

dt

)2

rms

= 2π2f 2
∑

n

n2B2
ysn (7.32)

The final expression for the core losses can now be written in the form

Pc =

[
khfB

ah+bhBm
m + kef

2
∑

n

n2B2
n

]
ρcVc [W] (7.33)

where ρc is the density of the core material in kg/m3, Vc is the volume of the core segment in m3,

Bn are the Fourier coefficients of the flux density waveform and Bm is the peak value of the flux

density waveform defined as

Bm = maxt

[
∑

n

Bncos(nωt)

]

7.3 Magnet Losses

The space harmonics in the armature winding MMF distribution and time harmonics in the current

waveform, together with the harmonics in the air gap permeance function due to slotting, create

field components which do not rotate in synchronism with the rotor. Consequently these field

harmonics induce eddy currents in the rotor magnets and core which in some cases can generate

significant losses.

In surface PM motors rare earth magnets are commonly used which have a moderate conductivity

[85] (Nd2Fe14B : 0.63 − 0.83 Sm/mm2, Sm2Co17 : 1.2 − 1.3 Sm/mm2, SmCo5 : 1.6 − 2 Sm/mm2).

These magnets also have relatively high temperature coefficients of remanence and coercivity,

which in cases of high local heat dissipation due to eddy currents can lead to irreversible demag-

netization. This is why magnet losses are an important issue, especially in the case of high speed

operation of surface PM motors.
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The mathematical model which has been used to calculate the magnet losses in a surface PM

motor is based on the following assumptions:

a) The model is developed in 2-D polar coordinates, thus end effects are ignored and induced

eddy currents flow in the axial direction only.

b) The rotor core is laminated and infinitely permeable, thus no core losses are incurred.

c) The magnet material is homogenous, isotropic and characterized by constant permeability

µ and conductivity σ.

d) The motor is excited with sinusoidal currents, i.e. only the fundamental component of the

armature current is considered.

e) The total losses are calculated by adding the losses obtained separately for each harmonic

component of the field.

f) The phasor form is used to analyze individual field harmonics since they vary sinusoidally

with time.

The eddy current induced in the rotor magnet due to the nth harmonic component of the armature

field satisfies the Helmholtz equation [60]

∆Jzn − µσ
∂Jzn
∂t

= 0 (7.34)

For sinusoidally varying fields, (7.34) can be written in 2-D polar coordinates in the phasor form

∂2J̃zn
∂r2

+
1

r

∂J̃zn
∂r

+
1

r2

∂2J̃zn
∂θ′2

= k2
nJ̃zn (7.35)

where k2
n = jωnµσ and θ′ is the angle with respect to the rotor. The relationship between angle

with respect to the rotor (θ′) and angle with respect to the stator (θ) is given by

θ′ = θ − ωrmt (7.36)

where ωrm is the rotor mechanical speed.
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The general solution of (7.35) can be expressed as [86]

J̃zn(r, θ
′) =

∞∑

m=0

[AmIm(knr) +BmKm(knr)] (Cm cosmθ′ +Dm sinmθ′) (7.37)

where Im and Km are the modified Bessel functions of the first and second kind respectively, both

of order m. Am, Bm, Cm and Dm are constants.

After taking into account that in the phasor form

∇× ~En = −jωnµ ~Hn

~Jn = σ ~En (7.38)

the following equation can be written

∇× ~Jn = −jωnµσ ~Hn = −k2
n
~Hn (7.39)

Since ~Jn = ~azJ̃zn, i.e. eddy currents flow only in the axial direction, then

∇× ~Jn =
1

r

∂J̃zn
∂θ′

~ar −
∂J̃zn
∂r

~aθ′ = −k2
n(H̃rn~ar + H̃θ′n~aθ′) (7.40)

Equation (7.40) defines relations between the radial and tangential components of the field intensity

in the magnet and the induced eddy currents, i.e.

H̃rn = − 1

k2
n

1

r

∂J̃zn
∂θ′

= − m

k2
nr

∞∑

m=0

[AmIm(knr) +BmKm(knr)]

(−Cm sinmθ′ +Dm cosmθ′) (7.41)

H̃θ′n =
1

k2
n

∂J̃zn
∂r

=
1

kn

∞∑

m=0

[AmI
′
m(knr) +BmK

′
m(knr)]

(Cm cosmθ′ +Dm sinmθ′) (7.42)

Similar relations can also be written for the flux density, since B̃n = µH̃n.

The unknown constants in (7.37) can be determined by applying boundary conditions on the rotor

and magnet surfaces. Since the rotor core is infinitely permeable, the tangential component of the

field intensity on its surface is equal to zero. At the same time the radial components of the flux
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density in the magnet (region II) and in the air gap (region I) have to be equal on the boundary

between them. The corresponding relations are

H̃θ′nII(r, θ
′)
∣∣∣
r=Rr

= 0

B̃rnI(r, θ
′)
∣∣∣
r=Rm

= B̃rnII(r, θ
′)
∣∣∣
r=Rm

(7.43)

The armature winding field solution in the air gap is given by (3.28). These equations need to

be written in the phasor form so that boundary conditions can be applied directly. Since only the

fundamental component of the armature current is considered, the instantaneous currents are given

by

iA(t) = Im cos(ωt− β)

iB(t) = Im cos(ωt− β − 2π

3
) (7.44)

iC(t) = Im cos(ωt− β +
2π

3
)

where Im is the peak value of the current and β is the initial phase shift. After substituting (7.44)

and (7.36) into (3.28) and considering that a general relation between an instantaneous value x(t)

and its phasor representation x̃ = |x̃|ejϕ is given by x(t) = Re (x̃ejωt), the radial component of

the armature winding air gap flux density on the magnet surface is

Barn(t) = Re




NcBarn(Rm)

1

2
Im

Qs
3∑

i=1

[
sgnAie

jnαAi + sgnBie
j(nαBi−

2π
3
)+

sgnCie
j(nαCi+

2π
3
)
]
e−jβe−jnθ

′

ej(ω−nωrm)t
}

+

Re




NcBarn(Rm)

1

2
Im

Qs
3∑

i=1

[
sgnAie

−jnαAi + sgnBie
j(−nαBi−

2π
3
)+

sgncie
−j(nαCi+

2π
3
)
]
e−jβejnθ

′

ej(ω+nωrm)t
}

+ (7.45)

= Re
{
C̃r1ne

−jnθ′ejω1nt
}

+Re
{
C̃r2ne

jnθ′ejω2nt
}

where

C̃r1n = NcBarn(Rm)
1

2
Im

Qs
3∑

i=1

[
sgnAie

jnαAi + sgnBie
j(nαBi−

2π
3
)+
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sgnCie
j(nαCi+

2π
3
)
]
e−jβ =

∣∣∣C̃r1n
∣∣∣ ejϕr1n

C̃r2n = NcBarn(Rm)
1

2
Im

Qs
3∑

i=1

[
sgnAie

−jnαAi + sgnBie
j(−nαBi−

2π
3
)+

sgnCie
j(−nαCi+

2π
3
)
]
e−jβ =

∣∣∣C̃r2n
∣∣∣ ejϕr2n

ω1n = ω − nωrm

ω2n = ω + nωrm

The wave function Re
{
C̃r1ne

−jnθ′ejω1nt
}

represents a direct field component which rotates in

the same direction as the rotor, while Re
{
C̃r2ne

jnθ′ejω2nt
}

represents an inverse field component

which rotates in the opposite direction from the rotor. Direct and inverse components of the field

are considered separately. Superposition is then used to take into account their contributions to the

magnet losses.

Comparing (7.41) and (7.45) one can write for the direct field component

m = n

Cm = j (7.46)

Dm = 1

and for the inverse field

m = n

Cm = −j (7.47)

Dm = 1

Furthermore, one can write for the direct field

An1I
′
n(kn1Rr) +Bn1K

′
n(kn1Rr) = 0

− µn

k2
n1Rm

[An1In(kn1Rm) +Bn1Kn(kn1Rm)] = C̃r1n (7.48)

and for the inverse field

An2I
′
n(kn2Rr) +Bn2K

′
n(kn2Rr) = 0
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− µn

k2
n2Rm

[An2In(kn2Rm) +Bn2Kn(kn2Rm)] = C̃r2n (7.49)

where
k2
n1 = jωn1µσ

k2
n2 = jωn2µσ

The constants An1, Bn1, An2 and Bn2 can then be easily calculated from (7.48) and (7.49).

An1 = −
C̃r1n

k2

n1
Rm

µn
K ′
n(kn1Rr)

K ′
n(kn1Rr)In(kn1Rm) −Kn(kn1Rm)I ′n(kn1Rr)

Bn1 =
C̃r1n

k2

n1
Rm

µn
I ′n(kn1Rr)

K ′
n(kn1Rr)In(kn1Rm) −Kn(kn1Rm)I ′n(kn1Rr)

(7.50)

An2 = −
C̃r2n

k2

n2
Rm

µn
K ′
n(kn2Rr)

K ′
n(kn2Rr)In(kn2Rm) −Kn(kn2Rm)I ′n(kn2Rr)

Bn2 =
C̃r2n

k2

n2
Rm

µn
I ′n(kn2Rr)

K ′
n(kn2Rr)In(kn2Rm) −Kn(kn2Rm)I ′n(kn2Rr)

Once the field solution in the magnet region is known, the power losses due to induced eddy

currents can be calculated as an integral of the average Poynting vector across the magnet surface.

The average Poynting vector for sinusoidally varying field components is equal to [60]

~Nav = Re
{

1

2

(
~̃E × ~̃

H
∗)}

= Re





1

2



~̃J

σ
× ~̃
H

∗




 (7.51)

where H̃∗ is the complex conjugate of the field intensity phasor H̃ . The integral of the average

Poynting vector represents the average power that enters through the magnet surface which is equal

to the power dissipated inside the magnet volume, i.e.

Ppm =
∮

S

~Nav~ndS = −
∫

V

~̃E~̃J
∗

dV (7.52)

The power losses in the magnets due to eddy currents at all frequencies are equal to

Ppm = 2p
Na∑

n=1

Re

{∫ α0+αp
π
2p

α0−αp
π
2p

1

2

J̃zn1

σ
H̃∗
θ′n1Rmladθ

′

}
+

2p
Na∑

n=1

Re

{∫ α0+αp
π
2p

α0−αp
π
2p

1

2

J̃zn2

σ
H̃∗
θ′n2Rmladθ

′

}
(7.53)



156

where α0 is the initial angular position of the rotor, αp is the magnet pole arc to pole pitch ratio,

Rm is the radius at the magnet surface and la is the effective stack length.

After substituting (7.37) and (7.42) into (7.53) and performing integration, the final expression for

magnet losses is

Ppm = 2p
Na∑

n=1

Re
{

1

2σ
[An1In(kn1Rm) +Bn1Kn(kn1Rm)]

[
1

kn1

(An1I
′
n(kn1Rm) +Bn1K

′
n(kn1Rm))

]∗
Rmlaαp

π

p

}
+

2p
Na∑

n=1

Re
{

1

2σ
[An2In(kn2Rm) +Bn2Kn(kn2Rm)] (7.54)

[
1

kn2

(An2I
′
n(kn2Rm) +Bn2K

′
n(kn2Rm))

]∗
Rmlaαp

π

p

}

The magnet losses of the six pole surface PM motor calculated analytically using (7.54) and cal-

culated numerically using commercial FE software Magsoft, Flux 2-D are given in Table 7.1.

Table 7.1 Eddy current losses in the magnets of the analyzed six pole surface PM motor

 Magnet losses 
 Direct field Inverse field Total 

Analytical 0.57 W 8.70 W 9.27 W 
FE  7.55 W 

 

7.4 Friction and Windage losses

No detailed analysis has been carried out to determine accurate expressions for friction and windage

losses. Instead, simple equations given by Gieras [80] have been used to estimate these losses. Ac-

cording to [80] the friction losses are given by

Pfr = kfbmrnr10
−3 (7.55)

where kfb is an empirical coefficient ranging from 1 to 3, mr is the mass of the rotor and nr is the

rotor speed in rpm. The windage losses for the speeds below 6000 rpm can be approximated using

Pwind = 2D3
rolan

3
r10

−6 (7.56)
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where Dro is the outer diameter of the rotor la is the core length and nr is the rotor speed in rpm.

7.5 Efficiency

The motor efficiency is defined as

η =
Pout
Pin

(7.57)

where Pout is the mechanical output power and Pin is the electrical input power. The output power

at the shaft is given by

Pout = Pem − Pc − Ppm − Pfr − Pwind (7.58)

where Pem is the electromechanical power, Pc are the core losses, Ppm are the magnet losses, Pfr

are the friction losses and Pwind are the windage losses. The electromechanical power is given by

Pem = Temωrm (7.59)

where Tem is the electromagnetic torque determined in Chapter 3. The input power to the motor is

Pin = Pem + Pa (7.60)

where Pa are the winding losses.

The power balance and efficiency for the six pole surface PM motor calculated using expressions

for losses derived earlier in this chapter are shown in Table 7.2.
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Table 7.2 Power balance and efficiency of the analyzed six pole surface PM motor

Parameter Symbol Value Unit

Electromechanical power Pem 3729 W

Winding losses Pa 137.5 W

Core losses Pc 29.6 W

Magnet losses Ppm 9.27 W

Friction losses Pfr 18.5 W

Windage losses Pwind 2.1 W

Output power Pout 3669.5 W

Input power Pin 3866.5 W

Efficiency η 0.949 –
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Chapter 8

Optimization

The theory presented in the previous chapters has been developed to predict the motor performance

and calculate its parameters. That knowledge can be used in the design stage to determine the

motor dimensions and the parameters required to fulfill a specific design task. For surface PM

motors the emphasis is usually put on high efficiency, high torque density, low cost and for some

applications low pulsating torque. For interior PM motors the design goals are similar. However,

since their tasks usually involve applications where wide speed range is required, there are some

additional requirements that can be set for this type of motor which are discussed in more detail in

Section 8.3.

Most of the requirements for both types of motors are in contradiction to each other. Therefore

finding a design that will satisfy all of them can be an overwhelming task due to a large number

of parameters whose effects on the motor performance and quality of the design are strongly cou-

pled. There is an obvious need for a systematic approach to decision making based on an iterative

scheme that would gradually lead to an optimal motor design which satisfies all the constraints

imposed upon it and still fulfills its main task to produce torque. There is a wide variety of opti-

mization techniques which can be used for motor design. Some of the techniques require providing

a feasible starting point for the search process to begin. Finding a feasible starting point that would

lead to a global minimum of the objective function is an almost impossible task. The optimization

techniques which do not require a specific starting point represent a more flexible and attractive

approach. Evolutionary algorithms are such techniques capable of solving global optimization

problems subject to nonlinear constraints. One of the most promising novel evolutionary algo-

rithms is the Differential Evolution (DE) first introduced by Price and Storn [54] in 1995. Since
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then several authors have tested the algorithm using some well known and difficult test problems

[56, 59] and showed that it was capable of outperforming several other well known algorithms.

These are the reasons why DE has been selected to be used in this thesis for the optimized design

of surface and interior PM motors.

8.1 Differential Evolution Algorithm

The optimized motor design can be generally formulated as a single objective or multiobjective

minimization problem. The single objective approach can be used if enough is known about all of

the constraints imposed upon the design so that a fixed limit can be determined for each constraint

while leaving one global objective function to be minimized. For instance, efficiency, torque den-

sity, power factor and flux densities in the stator and rotor core can have some fixed minimum

requirements while cost minimization can be set as the main objective. However, sometimes it

may be desirable to get more insight into compromises which have to be made between different

design solutions. In that case more than one objective is observed and minimized simultaneously.

The choice of the optimal design is then left to the decision maker who chooses the design which

is the best compromise between the competing objectives. For instance, an optimization problem

can be defined in which efficiency, power factor, minimum pulsating torque and flux densities in

the core are set as constraints while minimum cost and maximum torque density are chosen as the

objectives. The cost and torque density are competing objectives because the designs with high

torque density naturally lead to a selection of magnets with high remanence which are more ex-

pensive. Consequently, the selection of these magnets deteriorates the other objective which is to

minimize the cost. It is apparent that a compromise needs to be made here to achieve the satisfying

level of both goals.

The multiobjective approach has been used in this thesis from which a single solution can be

selected as the best compromise between the competing multiple objectives. The general multiob-

jective optimization problem can be defined as:
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Find the vector of parameters

~x = [x1, x2, . . . , xD], ~x ∈ RD

subject to m inequality constraints

gj(~x) ≤ 0, j = 1, . . . ,m

and subject to D boundary constraints

x
(L)
i ≤ xi ≤ x

(U)
i , i = 1, . . . , D

which will minimize the vector function

f(~x) = [f1(~x), f2(~x), . . . , fk(~x)]

The result of the optimization is a population of solutions which belong to a Pareto optimal set.

The vector of decision variables ~x0 ∈ F is Pareto optimal if there exists no other ~x ∈ F such

that fi(~x) ≤ fi(~x0) for all i = 1, . . . , k and there exists at least one i = 1, . . . , k for which

fi(~x) < fi(~x0). Here, F denotes the region of the problem where the constrains are satisfied. In

other words the vectors of the Pareto set are not dominated by any other vector in the set. Since

none of the vectors dominate, they are all equally good solutions which provide invaluable insight

to the decision maker on how to choose the best design to satisfy the performance criteria. The

plot of the objective functions whose nondominant vectors are in the Pareto optimal set is called

the Pareto front.

The Differential Evolution operates on a population of candidate solutions. The population is of

constant size NP . In each iteration a new generation of solutions is created and compared to

the population members of the previous generation. The process is repeated until the maximum

number of generations Gmax is reached. The population of the Gth generation can be written in

the form

PG = [~x1,G, ~x2,G, . . . , ~xNP,G] , G = 0, . . . , Gmax (8.1)

Each vector in PG contains D real parameters

~xi,G =
[
xi1,G, x

i
2,G, . . . , x

i
D,G

]
, i = 1, . . . , NP, G = 0, . . . , Gmax (8.2)
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The initial population PG=0 is generated using random values within the given boundaries which

can be written in the form

xij,0 = randj[0, 1]
(
x

(U)
j − x

(L)
j

)
+ x

(L)
j , i = 1, . . . , NP j = 1, . . . , D (8.3)

where randj[0, 1] is the uniformly distributed random number on the interval [0,1] which is chosen

anew for each j.

In every generation new candidate vectors are created by randomly sampling and combining the

vectors from the previous generation in the following manner:

i = 1, . . . , NP, j = 1, . . . , D, G = 1, . . . , Gmax

uij,G =




xr3j,G−1 + F

(
xr1j,G−1 − xr2j,G−1

)
if randj[0, 1] ≤ CR or j = k

xij,G−1 otherwise
(8.4)

where F ∈ 〈0, 1] and CR ∈ [0, 1] are DE control parameters which are kept constant during

optimization, r1, r2, r3 ∈ {1, . . . , NP}, r1 6= r2 6= r3 6= i are randomly selected vectors from the

previous generation, different from each other and different from the current vector with index i,

and k ∈ {1, . . . , D} is a randomly chosen index which insures that at least one uij,G is different

from xij,G−1. The choice of different values for CR and F significantly affects the convergence

speed and can for some values lead to divergence as well. It has been reported in literature [57, 59]

that generally lower values of F and CR are recommended for multiobjective optimization. The

values F = 0.3 andC = 0.3 have proven to be a good combination for most optimization problems

covered in this thesis.

The population for the new generation PG will be assembled from the vectors of the previous

generation PG−1 and the candidate vectors ~uiG according to the following selection scheme:

i = 1, . . . , NP, G = 1, . . . , Gmax

~xiG =




~uiG if ∀ l ∈ {1, . . . , k}, fl(~uiG) ≤ fl(~x

i
G−1)

~xiG−1 otherwise
(8.5)

The result of the selection scheme is that a candidate vector will be chosen into the next generation

only if it dominates its predecessor from the previous generation.
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Parallel to the selection of vectors that will survive into the next generation another selection occurs

which decides whether a candidate vector can be added to a set of nondominant solutions. This

set is built separately and as the optimization progresses its members converge towards the Pareto

optimal set. At the beginning of the optimization the set of nondominant solutions is empty. The

first feasible solution which satisfies all the constraints is added into the set. Each newly generated

candidate which satisfies the constraints is compared with the solutions within the set. If it is

dominated by any of the solutions in the set, the comparison with the rest of the set is stopped and

the new candidate is discarded. If, however, the new candidate dominates any of the solutions in

the set, those solutions are removed from the set and the new vector is added to the set. This basic

principle of selection was proposed by Chang [57].

Since the Pareto set is infinite, the total number of vectors that will be present in the set at any

time during optimization has to be limited. If the maximum allowed number of vectors in the set

is exceeded, then a criterion is used to identify the vector which should be discarded. The criterion

proposed by Abbass [59] is used which is the nearest neighbor distance function defined as

D(~xiG) =
min||~xiG − ~xjG|| + min||~xiG − ~xkG||

2
, i, j, k ∈ {1, . . . , NP} (8.6)

where ~xiG 6= ~xjG 6= ~xkG. Equation (8.6) defines the nearest neighbor distance as the average Euclid-

ian distance between the closest two vectors in the Pareto set. The nondominant solution with the

smallest neighbor distance is removed from the set to retain the maximum allowed size of the set.

This criterion helps to achieve diversity in the Pareto set.

8.1.1 Constraint Handling

In problems with boundary conditions it is required to have all the parameters of the vector within

the prescribed boundaries. After reproduction some parameters of the newly created candidate

vectors may fall out of boundaries. These parameters can be fixed using random values generated

within the feasible range using the scheme proposed by Lampinen [56]

i = 1, . . . , NP, j = 1, . . . , D, G = 1, . . . , Gmax
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uij,G =





randj[0, 1]
(
x

(U)
j − x

(L)
j

)
+ x

(L)
j if uij,G < x

(L)
j or uij,G > x

(L)
j

uij,G otherwise
(8.7)

The inequality constraints are slightly more difficult to handle. A traditional approach uses penalty

functions to penalize the solutions which violate constraints. This principle is implemented in the

form of weighted sums, which modifies each objective function into the following form:

f ′
l (~x) = f(~x) +

m∑

j=1

wjmax[0, gj(~x)], l = 1, . . . , k (8.8)

where wj is the weight factor for each constraint. This method suffers from problems related

to poor choice of the weight factors which can affect the convergence. Therefore, an alternative

approach proposed by Lampinen [56] is used in which the following scheme is applied:

i = 1, . . . , NP, G = 1, . . . , Gmax

~xi
G =





~ui
G

if





(
∀ j ∈ {1, . . . ,m} : gj(~u

i
G

) ≤ 0 ∧ gj(~x
i
G−1

) ≤ 0
)
∧
(
∀ l ∈ {1, . . . , k} : fl(~u

i
G

) ≤ fl(~x
i
G−1

)
)

∨(
∀ j ∈ {1, . . . ,m} : gj(~u

i
G

) ≤ 0
)
∧
(
∃ j ∈ {1, . . . ,m} : gj(~x

i
G−1

) > 0
)

∨(
∃ j ∈ {1, . . . ,m} : gj(~u

i
G

) > 0
)
∧
(
∀ j ∈ {1, . . . ,m} : max

(
gj(~u

i
G

), 0
)
≤ max

(
gj(~x

i
G−1

), 0
))

~xi
G−1

otherwise

The main advantages of this approach are:

• it forces the selection towards feasible regions where constraints are satisfied thus resulting

in faster convergence,

• it saves time since no evaluation of the objective function occurs if constraints are violated.

8.1.2 Handling of Integer and Discrete Variables

The Differential Evolution algorithm assumes that the parameters in the population are continuous

real numbers. However, in the motor design some of the parameters, e.g. the number of pole pairs,

can have only integer values. The example of discrete variables are the standard wire diameters

which can be used for the armature winding. The main difference between integer and discrete

variables is that although they both have a discrete nature, only discrete variables can assume

floating point values. The discrete variables can also be unevenly spaced.
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In the presence of integer and discrete variables our optimization problem can be redefined as

follows:

Find the vector of parameters

~x = [x1, x2, . . . , xD] = [~x(i), ~x(d), ~x(c)], ~x ∈ RD

subject to m inequality constraints

gj(~x) ≤ 0, j = 1, . . . ,m

and subject to D boundary constraints

x
(L)
i ≤ xi ≤ x

(U)
i , i = 1, . . . , D

which will minimize the vector function

f(~x) = [f1(~x), f2(~x), . . . , fk(~x)]

where ~x(i), ~x(d), ~x(c) are feasible subsets of integer, discrete and continuous variables respectively.

The handling of these types of variables in the DE can be made quite simple when using the

approach proposed by Lampinen and Zelinka [87]. The basic idea is to let the DE handle all the

variables internally as continuous floating point values, but when the constraints gj and the cost

function f are evaluated, a new vector is formed which is defined as

i = 1, . . . , D,

x′i =




xi for continuous variables

INT(xi) for integer variables
(8.9)

where INT(xi) is the function which converts a real value to an integer by truncation. This

new vector is then used to calculate the constraints gj(~x′) and to calculate the cost function

f(~x′) = [f1(~x
′), f2(~x

′), . . . , fk(~x
′)]. The discrete variables can also be handled as integer vari-

ables if instead of using the discrete value itself, its index is used as an integer variable which is

being optimized. To clarify this approach suppose that a subset of discrete variables ~x(d) is defined

as

~x(d) = [x
(d)
1 , x

(d)
2 , . . . , x

(d)
Nd

], Nd ≤ D
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where

x
(d)
i < x

(d)
i+1, i = 1, . . . , Nd (8.10)

Now the index i ranging from 1 to Nd is used as a variable in the optimization scheme. However,

when the constraints and the cost function are evaluated, the actual discrete value is used for the

index i which resulted from the DE algorithm.

The vector parameters of the initial population which are integer variables are generated using a

modified equation (8.3)

xij,0 = randj[0, 1]
(
x

(U)
j − x

(L)
j + 1

)
+ x

(L)
j , i = 1, . . . , NP j = 1, . . . , Ni (8.11)

where Ni ≤ D is the number of integer variables in the vector ~xiG=0.

In the case when an integer variable falls out of feasible range, the modified scheme (8.7) is used.

i = 1, . . . , NP, j = 1, . . . , Ni, G = 1, . . . , Gmax

uij,G =





randj[0, 1]
(
x

(U)
j − x

(L)
j + 1

)
+ x

(L)
j if INT(uij,G) < x

(L)
j or INT(uij,G) > x

(L)
j

uij,G otherwise
(8.12)

8.2 Optimized Design of a Surface PM Motor

The general procedure for the multiobjective optimized design of a surface PM motor can be

divided into several stages:

1. Define power level, voltage, speed and type of excitation (trapezoidal or sinusoidal) of the

motor.

2. Define the variables, i.e. motor parameters, which are to be optimized and their limits.

3. Define the objectives of the optimization.

4. Identify other objectives of interest which are not to be optimized, transform them into in-

equality constraints and set their limits.

5. Select the optimization method and define its control parameters.
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6. Select the best compromise solution from the Pareto set after completing the optimization.

Stage 1

The surface PM motor which is used as an example of the design optimization based on the DE

algorithm has the following desired specifications:

Rated power: P = 5 kW

Rated voltage: V = 400 V

Rated speed: nr = 2000 rpm

Excitation: sinusoidal

Stage 2

The design variables contain information about motor dimensions. The basic guideline for the

selection of variables is to minimize their total number and avoid the selection of those which are

redundant, i.e. which can be expressed in terms of other variables. This is important from the

aspect of reduction of time needed to carry out the optimization, but is also important because it

prevents a situation where variables contradict each other. For instance, if the stator outer diameter

Do and inner diameter Ds, together with the yoke thickness dys, are the design variables, then the

total slot depth ds should not be used as another variable because it has already been defined by

the first three variables, i.e. ds = 1
2
(Do −Ds) − dys.

The design variables selected for this study, together with their limits, are listed in Table 8.1. All

the variables which are geometric are expressed as non-dimensional rather than using their absolute

values.

The information about permanent magnet remanence is given in Table 8.2, which is assembled us-

ing the data on selected permanent magnet materials from the manufacturer Vacuumschmelze [85].

This table also provides other important information about the magnet materials which are needed

in the design. The remanent flux density is treated as a discrete variable because magnets are

usually ordered from one particular manufacturer which can supply magnetic material only with

several distinct values of the remanent flux density. From the standpoint of optimal utilization of

the magnets it is desirable to have them magnetized to their full remanence when assembled on
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the motor. Therefore, the design choices during optimization should be limited only to available

distinct values of the permanent magnet remanence.

Besides the design variables there are also a number of parameters with assigned constant values

that do not change during optimization. Those parameters are:

1. Magnetization type: radial

2. Air gap length: g = 0.5 mm

3. Width of the slot opening: bo = 2.5 mm (see Fig. 6.1)

4. Depth of the slot opening: do = 0.6 mm (see Fig. 6.1)

5. Armature current density: J = 6 A/mm2

6. Slot fill factor: ffill = 0.4

The armature current density and the slot fill factor are used to calculate the available number of

ampere-turns per slot using equation

NcI = JSffill (8.13)

where Nc is the number of turns per coil and S is the surface area of the slot. The slot area is

calculated from the slot dimensions which result from the stator outer and inner diameters and the

the yoke and tooth thicknesses which are all design variables.

The coil turns and the current need to be separated. The separation can be done in a straightforward

manner using a phasor diagram and considering the fact that the sum of the motor back emf and the

voltage drops on the armature resistance and inductance have to be equal to the terminal voltage V .

The phasor diagram for the surface PM motor is shown in Fig. 8.1. The current phasor is aligned

with the q axis for maximum torque per amp operation.

The steady state equations after resolving voltages and currents into d and q components can be

written in the general form
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Table 8.1 Variables used in the optimized design of a surface PM motor

 Variable Variable type Limits 

1. Ratio of stator outer diameter to 
maximum outer diameter continuous ( )0 00.6 1 230 mmo o oD D D< < =  

2. Ratio of stator inner diameter to outer 
diameter continuous 0.55 0.75s oD D< <  

3. Ratio of stack length to maximum stack 
length continuous ( )0 00.4 1 150 mma a al l l< < =  

4. Ratio of yoke thickness to difference 
between stator outer and inner radius continuous ( )0.3 2 0.6ys o sd D D< − <  

5. Permanent magnet data discrete Table input 

6. Number of slots discrete 6, 9,12, , 72sQ = �  

7. Number of pole pairs integer 2, 3, 4, 5, 6p =  

8. Ratio of tooth width to slot pitch at Ds continuous 0.3 0.7ts sb τ< <  

9. Ratio of magnet length to air gap length continuous 4 10ml g< <  

10. Angular span of the magnets relative to 
the pole pitch continuous 2 3 1pα< <  

 
 

Table 8.2 Parameters of the available permanent magnet materials 
 

 Type 
Remanent flux 

density 
Br [T] 

Relative 
permeability 

µµµµr 

Demagnetization 
limit at 1000 C 

BD [T] 

Density 
ρρρρm 

[kg/m3] 

Conductivity 
σσσσ 

[Sm/mm2] 

1. SmCo5 0.90 1.085 -1 8400 1.82 

2. SmCo5 0.95 1.05 -0.6 8400 1.82 

3. SmCo5 1.01 1.0645 -0.3 8400 1.82 

4. Sm2Co17 1.04 1.089 -1 8400 1.25 

5. Sm2Co17 1.10 1.0675 -1 8400 1.25 
6. Nd2Fe14B 1.08 1.0355 -1 7800 0.71 
7. Nd2Fe14B 1.13 1.0456 -1 7700 0.71 
8. Nd2Fe14B 1.16 1.043 -0.5 7700 0.71 
9. Nd2Fe14B 1.19 1.052 0.1 7600 0.71 
10. Nd2Fe14B 1.23 1.0525 0.4 7600 0.71 
11. Nd2Fe14B 1.26 1.039 0.25 7700 0.71 
12. Nd2Fe14B 1.30 1.04 0.4 7600 0.71 
13. Nd2Fe14B 1.32 1.0885 0.65 7500 0.71 
14. Nd2Fe14B 1.34 1.04 0.65 7600 0.71 
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Fig. 8.1 Phasor diagram of a surface PM motor with current phasor aligned for maximum torque
per amp operation

Vqs = RaIqs + ωΨds

Vds = RaIds − ωΨqs

Ψds = Ψmd + LsIds (8.14)

Ψqs = LsIqs

At maximum torque per amp operation the d component of the current is equal to zero. Equations

(8.14) then become

Vqs = RI + ωΨmd

Vds = −ωLsI (8.15)

Combining (8.15) into a single expression yields

V 2 = V 2
qs + V ds2 = (RaI + ωΨmd)

2 + (ωLsI)
2 (8.16)

Each of the parameters Ra, Ls and Ψmd can be written in the form
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Ra = N2
cRa0

Ls = N2
cLs0 (8.17)

Ψmd = NcΨmd0

where Ra0, Ls0 and Ψmd0 are parameters calculated assuming that there is only one turn per coil

with NcI as the total current in that single-turn coil. Substituting (8.17) into (8.16) yields

V 2 =
(
N2
cRa0

NcI

Nc

+ ωNcΨmd0

)2

+
(
ωN2

cLs0
NcI

Nc

)2

(8.18)

From (8.18) the number of turns per coil is equal to

Nc =
V√

(Ra0NcI + ωΨmd0)
2 + (ωLs0NcI)

2
(8.19)

Note that NcI is known from (8.13). Once the number of turns per coil is known, the armature

current is simply

I =
NcI

Nc

(8.20)

Stage 3

The main objectives of the optimized design of a surface PM motor are selected as following:

a) Maximize efficiency,

b) Minimize active volume.

These two objectives are in conflict since the requirement for high efficiency naturally leads to

designs of larger volume, which have lower flux densities in the core, smaller number of turns per

coil, smaller linear current density and larger flux linkage per pole. The objective functions have

been defined in the following manner:

a) Efficiency: OF1 = η (see Chapter 7)

b) Normalized active volume: OF2 =
D2

o
4
πla

D2

o0

4
πla0
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where Do0 and la0 are the maximum allowed outer diameter and stack length according to Ta-

ble 8.1. The goal is to obtain a set of nondominant design solutions which show the trade-offs

between these two objectives and provide substantial information, based on which the optimal

solution can be selected as the best compromise between the conflicting requirements.

Stage 4

There are several other important motor parameters for which inequality constraints are set to

assure that they meet minimum requirements. These constraints are:

a) Minimum torque requirement at rated speed: T ≥ 24 Nm

b) Maximum torque ripple: less than 2.5% of the rated torque

c) Minimum power factor: cosϕ ≥ 0.8,

d) Maximum flux density in the stator core tooth: Bts ≤ 1.7 T

e) Maximum flux density in the stator and rotor yoke: By ≤ 1.4 T

f) Maximum rms linear current density: K1s ≤ 25000 A/m

g) Maximum allowed fundamental component of the armature winding MMF for magnet pro-

tection: MMF1max ≤ ksafe
1
µ0

[
Br

lm
µr

−BD

(
g + lm

µr

)]
[A], ksafe = 0.7 - safety factor

The desired torque is to be higher than 24 Nm so that a design goal to have a 5 kW motor at

2000 rpm is met. The maximum allowed value of the torque has not been limited. Its limit is set

indirectly by limiting the design variables and by setting the design constraints.

The minimum allowed torque ripple is set since the emphasis of the thesis is on the design of PM

motors with reduced torque pulsations. The design variables which are used to control the level of

torque pulsations are the number of slots, number of poles and the magnet arc to pole pitch ratio.

The minimum power factor is set to limit the required kVA rating of the inverter relative to the

power rating of the motor.
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The flux densities in the core region are limited to prevent extreme saturation of the core and high

core losses.

Since the thermal model of the motor is not included in the analysis, the linear current density

has been used as a thermal constraint to prevent potential overheating of the armature winding

insulation. The limit of 25000 A/m has been selected based on typical values found in literature

for this power rating of the motor [74, 80]. For more precise calculations the thermal model

should be included to estimate the maximum winding temperature and constrain it according to

specifications for the wire insulation.

The magnet protection constraint imposed on the armature winding is used to protect the magnets

from demagnetization. The safety factor ksafe has been used to shift the margin between the

minimum operating flux density of the magnets which occurs when all the armature MMF opposes

the magnet field and the demagnetization flux density BD.

Stage 5

The selected optimization method is the Differential Evolution which has been explained in detail

in Section 8.1. The decisions that need to be made prior to running the DE algorithm are the size of

the population, the number of vectors in the Pareto set and the values of the DE control parameters

F and CR. The size of the population is usually related to the number of design variables. In most

cases a good initial guess is to set the population size at 3-5 times larger than the number of design

variables. If the population size chosen is too small, there will not be enough variety among the

members of the population. This can lead to a premature convergence to some local minimum.

Alternatively, if the population size is too large, then it will take a lot more computational time

to evaluate all the members of the population without significantly reducing the number of gener-

ations needed to reach the optimal solution. In the case of a surface PM motor design there are

10 variables so the selected population size is NP=50. The maximum number of nondominant

vectors in the Pareto set is chosen to be 50. The values of the DE control parameters F and CR

which would lead to the fastest convergence cannot be determined in a straightforward manner.

Therefore, several runs of the DE algorithm have been carried out for different combinations of
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F and CR to observe their influence on the final results and determine which combination is the

best for this particular motor design problem. These parameters also affect the total number of

nondominant solutions in the Pareto set that can be found in a given number of iterations which is

another important issue in the case of multiobjective optimization. For each simulation the results

were collected after 200 iterations.

Stage 6

The values of the objective functions for the solutions in the Pareto set calculated using different

combinations of DE control parameters have been plotted in Fig. 8.2. It is apparent from this figure

that combination F=0.3 and CR=0.3 is the best choice because it yields the highest efficiency for

any volume of the motor. However, it does not yield the highest number of solutions in the Pareto

set which is a minor trade-off. The Pareto front calculated with F=0.3 and CR=0.3 is shown

separately in Fig. 8.3.

The slope of the Pareto front reduces as both the efficiency and active volume increase. This

means that initially at lower values of efficiency an increase in volume yields a higher increase in

efficiency. The choice of the best solution in the Pareto set is left to the designer as the primary

decision maker. This decision can be based on priority where higher importance can be given to a

smaller size motor while sacrificing the efficiency or vice versa. Another approach to selection can

be based on compromise, where the best design could be selected in the section of the Pareto front

where further increase in volume is no longer significantly beneficial in terms of increased effi-

ciency. Regardless of the selection strategy, the mere fact that a choice exists among a whole set of

solutions which provide insight into design trade-offs is the principle benefit of the multiobjective

approach to optimized design.

The results obtained with F=0.3 and CR=0.3 after 200 generations are shown in Table 8.3. The

last two columns of the table are values of the objective functions. The solutions in Table 8.3 are

nondominant according to the definition of Pareto optimality given in Section 8.1.
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F=0.3, CR=0.3 : 40 solutions in the Pareto set
F=0.4, CR=0.4 : >50 solutions in the Pareto set
F=0.5, CR=0.3 : 33 solutions in the Pareto set
F=0.5, CR=0.9 : 32 solutions in the Pareto set

Fig. 8.2 Pareto fronts resulting from multiobjective design optimization of a 5 kW surface PM
motor using different combinations of DE control parameters
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F=0.3, CR=0.3 : 40 solutions in the Pareto set

Fig. 8.3 Pareto front resulting from multiobjective design optimization of a 5 kW surface PM
motor with DE control parameters set to F=0.3, CR=0.3
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Table 8.3 Set of nondominant solutions as a result of multiobjective optimization of a 5 kW
surface PM motor using Differential Evolution with control parameters F=0.3, CR=0.3

 

 
 
 
 
 
 
 

 
Do 

[mm] 
Ds 

[mm] 
la 

[mm] 
dys 

[mm] 
bts 

[mm] 
lm 

[mm] 
αp 

Br 
[T] 

Qs 2p 
Tem 
[Nm] 

η 
[%] 

V/V0 

[%] 
1 171.9 108.8 71.2 14.0 5.14 4.53 0.829 1.19 39 8 24.8 0.9587 0.265 
2 168.4 107.4 75.1 13.5 5.07 4.27 0.829 1.19 39 8 24.3 0.9587 0.268 
3 156.1 101.6 88.3 11.4 5.35 4.82 0.821 1.32 39 8 23.9 0.9608 0.271 
4 161.4 99.6 83.4 13.3 5.26 4.42 0.836 1.32 39 8 25.0 0.9612 0.274 
5 163.3 97.9 83.4 14.1 5.13 4.50 0.785 1.32 39 8 25.8 0.9613 0.281 
6 166.7 106.6 80.3 12.6 5.61 4.82 0.827 1.32 39 8 27.1 0.9619 0.281 
7 175.1 112.1 75.6 14.4 5.95 4.62 0.807 1.32 39 8 26.6 0.9623 0.292 
8 167.8 104.5 83.4 12.8 5.43 4.94 0.821 1.32 39 8 30.5 0.9626 0.296 
9 165.0 103.5 91.6 12.9 5.45 4.62 0.807 1.32 39 8 29.9 0.9629 0.314 

10 167.8 104.5 90.2 13.7 5.47 4.50 0.830 1.32 39 8 30.6 0.9631 0.320 
11 176.2 109.7 83.4 14.4 5.75 4.50 0.790 1.32 39 8 32.5 0.9635 0.327 
12 182.5 115.8 78.6 16.9 6.08 4.78 0.836 1.32 39 8 28.7 0.9636 0.330 
13 180.0 114.3 83.4 14.2 5.99 4.50 0.819 1.32 39 8 34.8 0.9641 0.341 
14 178.9 113.3 85.8 13.7 5.97 4.46 0.822 1.32 39 8 36.1 0.9642 0.346 
15 181.4 115.5 86.1 14.2 6.05 4.50 0.823 1.32 39 8 36.8 0.9646 0.357 
16 185.4 115.4 83.4 15.1 6.05 4.50 0.842 1.32 39 8 39.0 0.9647 0.362 
17 189.3 120.3 83.6 18.0 6.33 4.64 0.809 1.32 39 8 32.3 0.9649 0.378 
18 194.8 121.7 79.4 15.8 6.63 4.84 0.817 1.32 39 8 40.8 0.9653 0.380 
19 189.3 119.5 88.4 18.2 6.29 4.64 0.820 1.32 39 8 34.4 0.9654 0.399 
20 192.5 119.7 87.3 20.0 6.31 4.96 0.822 1.32 39 8 33.4 0.9656 0.408 
21 183.0 113.8 98.7 15.0 6.20 4.84 0.817 1.32 39 8 41.9 0.9659 0.417 
22 188.5 117.1 93.1 19.2 6.17 4.64 0.820 1.32 39 8 34.2 0.9657 0.417 
23 194.6 119.1 90.9 18.8 6.15 3.80 0.826 1.32 39 8 41.7 0.9660 0.434 
24 191.1 122.5 95.3 15.7 6.59 4.23 0.828 1.32 39 8 43.1 0.9661 0.439 
25 193.6 125.2 93.6 15.7 6.85 5.00 0.814 1.32 39 8 43.2 0.9664 0.442 
26 207.5 132.7 81.7 16.7 7.27 5.00 0.833 1.32 39 8 49.0 0.9667 0.443 
27 183.0 112.6 109.6 15.3 6.13 4.84 0.817 1.32 39 8 46.7 0.9667 0.463 
28 200.4 122.6 94.7 19.6 6.57 4.93 0.811 1.32 39 8 45.8 0.9674 0.480 
29 202.0 125.9 96.0 17.4 6.89 5.00 0.833 1.32 39 8 52.3 0.9677 0.494 
30 207.5 134.2 96.0 16.8 7.35 5.00 0.825 1.32 39 8 55.3 0.9679 0.521 
31 187.6 119.2 125.1 14.8 6.25 4.50 0.830 1.32 39 8 59.8 0.9682 0.555 
32 204.5 124.4 107.4 20.8 6.55 4.64 0.822 1.32 39 8 54.1 0.9687 0.566 
33 207.5 134.2 109.2 16.8 7.35 4.87 0.836 1.32 39 8 63.0 0.9687 0.592 
34 199.4 123.5 122.3 17.6 6.38 3.80 0.826 1.32 39 8 65.9 0.9689 0.613 
35 203.7 125.3 129.4 19.8 6.66 4.81 0.846 1.32 39 8 67.2 0.9697 0.677 
36 207.5 129.4 130.8 17.9 6.96 4.23 0.836 1.32 39 8 78.0 0.9700 0.709 
37 209.3 128.7 129.4 20.3 6.79 4.77 0.811 1.32 39 8 72.7 0.9704 0.715 
38 209.3 128.7 139.1 20.3 6.79 4.75 0.811 1.32 39 8 78.1 0.9708 0.768 
39 222.6 129.8 137.9 26.3 6.83 4.62 0.807 1.32 39 8 79.4 0.9715 0.861 
40 227.9 140.7 137.7 22.0 7.57 4.33 0.794 1.32 39 8 96.2 0.9717 0.902 
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Note that all designs have a fractional slot winding with 8 poles and 39 slots. The least common

multiple between the number of slots and poles is 312, which means that the fundamental compo-

nent of the cogging torque is 1/8 of the slot pitch. Such a high common multiple is desirable from

the aspect of cogging torque reduction because it pushes the cogging torque and also the electro-

magnetic torque ripple components to higher frequencies where their magnitudes are significantly

smaller. Since small torque ripple has been one of the design constraints, it is reasonable that

the DE found a slot/pole combination with intrinsically small torque pulsations as the best design

solution.

Table 8.3 also shows that as the volume and efficiency of the motor increase, the produced torque

also increases and for most designs significantly exceeds the torque requirement for the 5 kW

power output at 2000 rpm. This means that with constant current density (6 A/mm2) it is not

possible to find designs with higher efficiency without oversizing the motor in terms of its torque

production. The only way to maintain the output torque close to the required 24 Nm and observe

the trade-offs between the efficiency and the motor volume is to add current density as the design

variable and vary its value. The current density, the slot area and the slot fill factor determine

the total ampere-turns per slot which are proportional to the developed torque. In other words

the design trade-off required to increase the efficiency of the motor for a given power output is to

reduce its current density which in turn reduces the armature winding losses. Since the torque is

proportional to the number of ampere-turns per slot, the reduction of current density requires larger

slot area and consequently larger volume of the motor to produce the desired torque.

To demonstrate this principle another simulation has been carried out with current density added

as a design variable with the constraint

1 A/mm2 ≤ J ≤6 A/mm2

Moreover, the torque constraint has been modified as follows:

24 Nm≤ T ≤25 Nm

This modified torque constraint insures that all designs in the Pareto set have a power output close

to the desired 5 kW. The DE control parameters have been set to F=0.3, CR=0.3.
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The Pareto front resulting from this modified design scheme with varying current density is shown

in Fig. 8.4, while solutions in the Pareto set are given in Table 8.4.

Table 8.4 Set of nondominant solutions as a result of multiobjective optimization of a 5 kW
surface PM motor using Differential Evolution with current density used as a design variable

 

 
 
 

 
Do 

[mm] 
Ds 

[mm] 
la 

[mm] 
dys 

[mm] 
bts 

[mm] 
lm 

[mm] 
αp 

Br 
[T] 

Qs 2p 
J 

[A/mm2] 
Tem 
[Nm] 

η 
[%] 

V/V0 

[%] 
1 169.6 111.4 77.1 10.50 5.83 4.44 0.824 1.04 33 8 5.19 24.68 0.9574 0.279 
2 173.6 110.5 76.9 11.07 4.55 4.34 0.807 1.04 39 8 4.51 24.08 0.9603 0.292 
3 170.5 100.8 81.5 11.04 7.89 4.21 0.852 1.32 27 10 4.28 24.52 0.9612 0.299 
4 170.5 99.3 81.5 11.29 7.77 4.66 0.825 1.32 27 10 4.28 24.61 0.9615 0.299 
5 177.7 103.4 81.5 11.76 8.10 4.21 0.787 1.32 27 10 3.89 24.76 0.9619 0.324 
6 177.0 108.0 86.0 12.89 6.04 4.68 0.788 1.16 39 8 4.79 24.33 0.9621 0.339 
7 178.0 108.6 86.0 12.96 5.45 4.33 0.804 1.16 39 8 4.10 24.17 0.9637 0.343 
8 209.0 121.1 63.0 14.95 4.98 4.40 0.794 1.04 39 8 3.02 24.58 0.9639 0.347 
9 167.6 94.3 102.8 13.21 4.55 4.53 0.789 1.19 39 8 3.81 24.85 0.9647 0.364 

10 170.5 94.9 109.0 12.79 4.63 4.22 0.806 1.23 39 8 3.09 24.26 0.9653 0.399 
11 200.7 111.3 87.6 15.43 5.65 4.53 0.815 1.10 39 8 2.73 24.56 0.9663 0.445 
12 209.0 121.1 95.3 23.03 4.98 4.40 0.794 1.04 39 8 3.02 24.08 0.9670 0.525 
13 210.0 115.5 104.2 24.98 5.17 3.92 0.793 1.04 39 8 3.09 24.87 0.9674 0.579 
 

Note that the number of solutions in the Pareto set found after 200 iterations is only 13 which is

significantly smaller than found in the cases shown in Fig. 8.2. The reason for such a result is

due to the fact that the output torque the motor is required to produce has been constrained more

severely (24 Nm≤T≤25 Nm) than before (T ≥ 24 Nm). This constraint significantly reduces

the number of feasible solutions in the design space and makes it more difficult for the DE to find

those solutions. Since all designs in the Pareto set have a similar torque output, the design trade-off

between the motor size (i.e. volume) and the efficiency is now more apparent. In order to increase

the motor efficiency by 1% it is required to increase its volume by approximately 100%. Such

a significant increase in motor volume is a serious penalty which must be paid if one desires to

improve the motor efficiency.

8.3 Optimized Design of an Interior PM motor

Interior PM motors are attractive for applications where operation in a wide speed range is required

(e.g. traction). Unlike surface PM motors which have the same value of inductance in d and q axes
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Fig. 8.4 Pareto front resulting from multiobjective design optimization of a 5 kW surface PM
motor with current density used as a design variable



180

and where all the torque is produced by the magnet flux, interior PM motors have different d

and q inductances which results in an additional torque component called reluctance torque. The

fundamental torque equation for an IPM motor is given by

Tem =
3

2
p[ ΨmdIqs︸ ︷︷ ︸

Magnet torque

− (Lq − Ld)IqsIds︸ ︷︷ ︸
Reluctance torque

], Lq > Ld (8.21)

where p is the number of pole pairs, Ψmd is the magnet flux, Ld, Lq, Ids and Iqs are the d and q

axis inductances and currents respectively. This torque equation can be derived from the phasor

diagram shown in Fig. 8.5. The maximum torque per amp operation in this case will occur when

the current phasor is shifted by an angle γ relative to the q axis. In surface PM motors the maximum

torque per amp operation occurs at γ = 0.

There are two distinct regimes of operation of an IPM motor: constant torque below corner speed

and constant power above corner speed, as indicated in Fig 8.6. The corner speed is defined as

the maximum speed at which rated torque can be developed with rated current flowing without ex-

ceeding the maximum terminal voltage available from the inverter. Above that speed it is possible

to maintain constant power, but it is not possible to develop rated torque without exceeding the

voltage constraint imposed by the power supply. Moreover, the ability to maintain constant power

is not universally attainable for all interior PM motor designs. Only designs which satisfy the

optimal flux weakening condition first derived by Schiferl and Lipo [52] will give the maximum

constant power output in the field weakening regime above corner speed. This condition is given

by

Ψmd = LdIR (8.22)

where Ψmd is the flux of the magnets alone linked by the armature winding, Ld is the d axis induc-

tance and IR is the rated armature current. The normalized characteristic current is the quantity

used to show the properties of the IPM motor in the flux weakening regime with respect to the

optimal flux weakening condition. It is defined as

Ic =
Ψmd

LdIR
(8.23)

The IPM motor design which satisfies (8.22) apparently has Ic = 1.
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Fig. 8.5 Phasor diagram of an interior PM motor
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Fig. 8.6 Capability curves of an interior PM motor
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Since optimal flux weakening condition has such a profound effect on the IPM motor performance

at high speed, it has been considered as one of the main objectives in the optimization scheme. The

other objective is to minimize cogging torque by shaping the magnets and adjusting their angular

span.

There are many possible configurations of the cavities in the rotor, where the magnets are placed,

with a common purpose to increase the saliency ratio

ξ =
Lq
Ld

(8.24)

thereby increasing the reluctance torque. Soong and Miller [88] showed that there is an apparent

trade off between the saliency ratio ξ and the required magnet flux Ψmd to satisfy the optimal flux

weakening condition. The higher the saliency ratio the lower the magnet flux. This means that

for higher ξ the magnets with lower remanence Br, and thereby lower cost, can be used for the

same constant power output. Another benefit of low Ψmd is lower back emf at high speeds. This

relates to the problem of uncontrolled generation which occurs if the inverter switches lose their

gating signals and the motor back emf induces currents which flow back to the DC bus through

anti parallel diodes.

The IPM motor topology proposed in this thesis follows the work by Lovelace et al. [51]. The

IPM motor in [51] was designed as an integrated starter-alternator and optimized to minimize the

cost of the motor. The motor had two layers of cavities in the rotor. The design proposed here is

a modified version of the one in [51]. The modification of the rotor design has been done so that

magnets of a simple rectangular shape can be used which are cheaper to manufacture. The design

by Lovelace is shown in Fig. 8.7, while the proposed modified design is shown in Fig. 8.8. The

main purpose of this design is to confirm that the proposed multiobjective optimization scheme

based on Differential Evolution can be successfully used for the optimized design of IPM motors.

The IPM motor in [51] was designed using the lumped parameter model. That model can be solved

very quickly on a digital computer which is a great advantage in the optimized design. However, it

does not provide information about cogging torque which is one of the design goals in this thesis.

Therefore, the finite element method remains as an alternative. The FE method has been used

here to calculate the motor parameters, including cogging torque, and find the optimal design of
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Fig. 8.7 One pole pitch of a 10 pole interior PM motor designed by Lovelace

Fig. 8.8 Interior PM motor topology proposed in this thesis
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the motor in Fig. 8.8 which comes as close as possible to satisfying the optimal flux weakening

condition and has a minimum cogging torque. The downside of the FE approach is that it is

computationally more demanding than the lumped parameter model which significantly extends

the computational time needed to find the optimal design solution. To reduce the computational

time, especially for cogging torque calculation, the FE method has been combined with the model

of the complex relative air gap permeance derived in Chapter 2 to estimate the cogging torque

waveform using the results of only two magnetostatic FE simulations. This approach is explained

in more detail in Section 8.3.2.

8.3.1 FE Approach to Calculation of Parameters of an IPM Motor

The motor parameters that have to be calculated for each set of design variables which are being

optimized are the winding resistance and inductances, the magnet flux and the number of turns per

coil. In addition, power factor, efficiency and cogging torque must be calculated as well. The motor

is designed for a rated operating point at corner speed. Each vector of design variables generated

by the DE algorithm which satisfies the inequality constraints must also satisfy the terminal voltage

constraint at corner speed. This constraint is used to separate the number of turns per coil Nc from

the armature current I as done earlier in the case of a SPM motor design. As before, the parameters

are calculated with an assumption that there is only one turn per coil withNcI as the total current in

the coil. The available number of ampere turns per coilNcI is obtained from (8.13). The additional

problem with the IPM motor is the lack of knowledge about the current control angle γTmax (see

Fig. 8.5) at which maximum torque per amp is achieved. To determine γTmax, five nonlinear

magnetostatic simulations with γ ranging from −200 to −600 are run first. The electromagnetic

torque is calculated for each value of γ using the well known equation

Tem =
3

2
p(Ψdsiqs − Ψqsids) (8.25)

where p is the number of pole pairs, Ψds, Ψqs, ids and iqs are the d and q components of the flux

linkage and current respectively. The flux linkages Ψds and Ψqs are determined from the flux

linkages of phases A, B and C. For instance, the phase A flux linkage is calculated as a sum of

the flux linkages of all phase A coils. The flux linkage of each individual coil is equal to the line
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integral of the magnetic vector potential Az along the contour of the coil. In a 2-D FE model this

integral is proportional to the difference between the average potential in the meshed geometric

regions occupied by the coil sides located in different pole regions. The phase A flux linkage is

then

Ψa = p
Qcoilp∑

k=1

Ψcoilk = p
Qcoilp∑

k=1

1

S

(∫

S1

AzdS −
∫

S2

AzdS
)
Ncla (8.26)

where Qcoilp is the number of coil sides per phase in one pole region, p is the number of pole pairs,

Nc is the number of turns of each coil, la is the length of the stator core and S is the cross-section

of the coil region. Subscripts 1 and 2 denote coil sides located in different pole regions. Since

the number of turns per coil is not known at this stage, the flux linkages Ψa0, Ψb0 and Ψc0 are

calculated assuming Nc = 1. The flux vector can now be formed

Ψ0 = Ψds0 + jΨqs0 =
2

3

(
Ψa0 + aΨb0 + a2Ψc0

)
, a = ej

2π
3 (8.27)

with

Ψds0 =
2

3

(
Ψa0 −

1

2
Ψb0 −

1

2
Ψc0

)

Ψqs0 =
1√
3

(Ψb0 − Ψc0) (8.28)

The subscript 0 is used to emphasize the fact that flux linkages are calculated with Nc = 1.

The currents iqs and ids are also not known, but the total ampere turns per slot NcI are known from

(8.13). Using γ and NcI one can calculate

Nciqs = NcI cos γ

Ncids = NcI sin γ (8.29)

Considering the fact that Ψds = NcΨds0 and Ψqs = NcΨqs0, the torque equation (8.25) can be

written in the form

Tem =
3

2
p(Ψds0Nciqs − Ψqs0Ncids) (8.30)

where Nciqs and Ncids are calculated from (8.29).

With the torque calculated for five values of γ, cubic spline is used to generate a smooth Tem

vs. γ curve as shown in Fig. 8.9 and find the value of γTmax where the maximum torque occurs.
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Another nonlinear simulation with γTmax as the control angle is run to get the field solution for

this operating point. The most effective approach to calculate saturated Ld, Lq and Ψmd and still

preserve all the information about the saturation in the motor is to ”freeze” the permeabilities in

the nodes of the finite element mesh. Once the permeabilities are frozen the problem becomes

linear and the parameters can be determined one at the time. This is the only approach that can be

used to accurately calculate saturated parameters at an operating point. Three linear magnetostatic

simulations are needed to determine Ld, Lq and Ψmd. In addition, cross-saturation parameters Lqd,

Ldq and Ψmqd can be determined from the same simulations. Although small in this particular

case, the effect of cross-saturation has been generally recognized as the phenomenon caused by

saturation which manifests itself as the flux linkage in the axis perpendicular to the axis where the

excitation is applied. At this stage the inductances will be calculated for Nc = 1 since the actual

Nc is still unknown.

−60 −55 −50 −45 −40 −35 −30 −25 −20
11

12

13

14

15

16

17

γ (degrees)

T em
 (N

m
)

Cubic spline
FE

T
emmax

 

γ
Tmax

Fig. 8.9 Torque versus control angle curve used to find the control angle for maximum torque.
Cubic spline is used to generate the curve from five points obtained by FE method.



187

Simulation 1

The first linear simulation is used to calculate Ld0 and Lqd0. The magnet flux is turned off by

setting the remanence Br to zero. The current vector must be aligned with the d axis. Since the

problem has become linear after freezing the permeabilites, the magnitude of the current vector

can be chosen arbitrarily. If the magnitude is chosen to be 1 A, then to align the current vector with

the d axis the instantaneous phase currents have to be defined as

ia = 1 A, ib = ic = − ia
2

(8.31)

The d and q components of the current vector are then

ids = 1 A, iqs = 0 (8.32)

The flux linkages of phases A, B and C are calculated according to (8.26). The flux vector is

formed and its d and q components are calculated using (8.27) and (8.28). The inductances for one

turn per coil are then

Ld0 =
Ψds0

ids

Lqd0 =
Ψqs0

ids
(8.33)

Simulation 2

The inductances Lq0 and Ldq0 are calculated in a similar manner, only in this case the current vector

needs to be aligned with the q axis. The phase currents are then

ia = 0, ib = −ic =

√
3

2
A (8.34)

which in turns gives

ids = 0 A, iqs = 1 A (8.35)

After calculating the flux components, the inductances for one turn per coil are given by

Lq0 =
Ψqs0

iqs

Ldq0 =
Ψds0

iqs
(8.36)
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Simulation 3

This simulation is used to calculate magnet flux linked by the armature winding. In this case the

magnets are turned on by setting the magnet remanenceBr to the actual value while phase currents

are equal to zero. The flux linkages of the phase windings are calculated again using the previously

described procedure. Equation (8.28) is then used to calculate the flux linkages Ψmd0 and Ψmqd0.

Note that although the magnets act only in the direction of the d axis, there will also be a small

cross saturation flux linkage in the q axis.

The relationship between the actual parameters and the ones calculated for one turn per coil is

given by

Ra = N2
cRa0

Ld = N2
cLd0

Lqd = N2
cLqd0

Lq = N2
cLq0 (8.37)

Ldq = N2
cLdq0

Ψmd = NcΨmd0

Ψmqd = NcΨmqd0

The number of turns per coil can now be calculated from the equations for d and q components of

the voltage. Those equations, including the cross saturation terms, are

vqs = Raiqs + ωΨds

vds = Raids − ωΨqs (8.38)

V =
√
v2
qs + v2

ds

where

Ψds = Ψmd + Ldids + Ldqiqs

Ψqs = Ψmqd + Lqiqs + Lqdids (8.39)
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Combining (8.38) and (8.39) yields

Nc =
V√

[Ra0Ncids − ωLq0Nciqs − ωLqd0Ncids − ωΨmqd0]
2 +

[Ra0Nciqs + ωLd0Ncids + ωLdq0Nciqs + ωΨmd0]
2

(8.40)

8.3.2 Approximate Calculation of the Cogging Torque Waveform Using Magnetostatic FE
Simulations

The accurate calculation of the cogging torque using the FE method requires field solutions at

multiple rotor positions to get at least a dozen points per half-period of the cogging torque. This

would require an additional computational effort and would increase the total time needed to find

the optimal design by several times. Therefore, in order to save time a combined numerical and

analytical approach has been developed to approximate the cogging torque waveform. It has been

shown earlier in Chapter 2 that cogging torque can be calculated using (2.136) which requires the

knowledge of the flux density distribution in the slotless air gap and the knowledge of the complex

air gap permeance. The problem is that in the case of an IPM motor saturation plays a crucial

role in the basic concept of the motor and hence should not be excluded from the cogging torque

calculations.

The information about open-circuit flux density in the slotless air gap of an IPM motor can be

obtained if the flux density waveform in the slotted air gap obtained by the FE method is divided

by the complex relative air gap permeance derived in Chapter 2. Once the flux density in the

slotless air gap and the complex air gap permeance are known, the cogging torque of an IPM

motor can be calculated approximately using (2.136). This approach requires the results of only

two magnetostatic FE simulations, one when the rotor axis is aligned with the centerline of the

stator tooth and the other when it is aligned with the centerline of the slot opening. The examples

of field solutions for these two cases of rotor alignment are shown in Fig. 8.10. In the case of an

open-circuit field it is sufficient to generate the FE model only for one half of the pole pitch since

the other half, due to symmetry, can be replaced by a Dirichlet boundary condition which sets zero

magnetic vector potential along the centerline of the pole.
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(a)

(b)

Fig. 8.10 Flux lines of the open-circuit field solution for two cases of rotor alignment with
respect to the slot: (a) rotor aligned with the centerline of the stator tooth, (b) rotor aligned with

the centerline of the slot opening
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The radial and tangential components of the air gap flux density are calculated from these solutions,

divided by the complex air gap permeance to approximate their shapes in the slotless air gap and

used to calculate the cogging torque. The waveforms of the radial and tangential components of

the open-circuit air gap flux density for both rotor positions are shown in Figs. 8.11 and 8.12. The

real and imaginary parts of the complex relative air gap permeance are shown in Figs. 8.13 and

8.14. To approximate the air gap flux density distribution in a slotless motor the waveforms in

Figs. 8.11 and 8.12 have been divided by the waveforms in Figs. 8.13 and 8.14 respectively. The

radial and tangential components of the flux density in the slotted air gap have been treated as the

real and imaginary part of complex vectorsBrtc+jBθtc andBrsc+jBθsc. Hence, the flux densities

in the slotless air gap for both rotor positions shown in Figs. 8.15 and 8.16 have been calculated as

Brtc(sless) + jBθtc(sless) =
Brtc + jBθtc

(λatc + jλbtc)
∗

Brsc(sless) + jBθsc(sless) =
Brsc + jBθsc

(λasc + jλbsc)
∗ (8.41)

For all intermediate rotor positions between the centerline of the tooth and the centerline of the

slot opening the waveforms of the flux density in the slotless air gap are obtained by combining

the waveforms in Figs. 8.11 and 8.12. Since the motor has 24 slots and four poles, the period of

the cogging torque corresponds to one slot pitch. Within one slot pitch the rotor travels from the

centerline of the tooth across the centerline of the slot opening (half-period of the cogging torque

waveform) and aligns again with the centerline of the next tooth. Hence, the transition from the

waveforms in Fig. 8.11 to the waveforms in Fig. 8.12 can be described using

Br(sless)(θ) =

√[
Brtc(θ) cos

(
Qs

2
θ
)]2

+
[
Brsc(θ) sin

(
Qs

2
θ
)]2

sgn[cos(pθ)]

Bθ(sless)(θ) =

√[
Bθtc(θ) cos

(
Qs

2
θ
)]2

+
[
Bθsc(θ) sin

(
Qs

2
θ
)]2

sgn[cos(pθ)] (8.42)

where p is the number of slots, θ is the mechanical angle and sgn is the sign function defined as

sgn(x) =





1 , for x > 0

−1 , for x < 0
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Fig. 8.11 Waveforms of the open-circuit air gap flux density of an IPM motor with rotor aligned
with the centerline of the tooth: (a) radial component, (b) tangential component
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Fig. 8.12 Waveforms of the open-circuit air gap flux density of an IPM motor with rotor aligned
with the centerline of the slot: (a) radial component, (b) tangential component
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Fig. 8.13 Waveforms of the complex relative air gap permeance of an IPM motor with rotor
aligned with the centerline of the tooth: (a) real component, (b) imaginary component
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Fig. 8.14 Waveforms of the complex relative air gap permeance of an IPM motor with rotor
aligned with the centerline of the slot: (a) real component, (b) imaginary component
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Fig. 8.15 Waveforms of the open-circuit slotless air gap flux density of an IPM motor with rotor
aligned with the centerline of the tooth: (a) radial component, (b) tangential component
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Fig. 8.16 Waveforms of the open-circuit slotless air gap flux density of an IPM motor with rotor
aligned with the centerline of the slot: (a) radial component, (b) tangential component
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The Fourier coefficients are calculated for each waveform using discrete Fourier transform. The

cogging torque is then calculated using (2.136), as done in the case of a surface PM motor.

8.3.3 Calculation of Losses in an IPM Motor

The basic approach to calculation of losses in an IPM motor is quite similar to the one used for the

SPM motor described in Chapter 7. The armature winding losses and friction and windage losses

are calculated in an identical manner for both motors. However, since calculation of core losses

requires the knowledge of time domain waveforms of flux density in the stator teeth and yoke,

the procedure for extracting these waveforms in the case of an IPM motor is slightly different.

For that motor only single magnetostatic FE simulation for rated load at corner speed is being

used. The information which can be extracted from that simulation relates only to a single time

instant when the rotor is aligned with the phase A axis. Nevertheless, the information about flux

densities in the teeth and yoke in more than one time instant can still be extracted from a single

magnetostatic FE simulation. If one considers that a flux passing through each tooth or through

each yoke segment above each slot is identical to the flux passing through only one tooth or yoke

segment, but at different rotor positions, then from a single magnetostatic FE simulation one can

obtain information about tooth and yoke flux waveforms within one half-period at as many time

instances as the number of slots per pole. That information can be then used to assemble the

approximate flux density waveforms in the teeth and yoke.

The information about the total flux passing through the stator tooth or yoke can be simply ex-

tracted from the FE results as the difference between the values of the magnetic vector potential

evaluated at the points as indicated in Figs. 8.17 and 8.18 multiplied by the stack length. With two

slots per pole per phase this approach yields six sample points per half-period of the flux wave-

form or 12 points per one full period. The cubic spline is used to interpolate the tooth and yoke

flux waveforms anywhere between the sample points. The typical tooth and yoke flux waveforms,

together with the original sample points calculated from FE simulation, are shown in Figs. 8.19 and
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8.20. The flux density waveforms are then equal to the flux waveforms divided by the correspond-

ing surface areas as done in Chapter 7. The Fourier coefficients needed for calculation of the core

losses are obtained using discrete Fourier transforms of the interpolated flux density waveforms.

The magnet losses in the case of an IPM motor are not an issue. However, there are some additional

losses on the rotor core surface associated with space harmonics of the armature winding MMF

which have not been taken into account in this thesis.

8.3.4 Calculation of the Back Emf in an IPM Motor

The back emf waveform can be estimated from a single magnetostatic finite element simulation

by evaluating the distribution of the magnetic vector potential inside the air gap. An example of a

no-load field solution from which the back emf waveform is extracted is shown in Fig. 8.21. The

distribution of the magnetic vector potential along the circular arc inside the air gap is calculated

from this FE solution. Since the FE model represents only one half of the pole pitch, the waveform

of magnetic vector potential for one full period, i.e. two pole pitches, can be easily extrapolated

using the portion of the waveform calculated for one half of the pole pitch. This is shown in

Fig. 8.22.

The instantaneous flux linkage of an armature winding coil is proportional to the difference be-

tween the values of the magnetic vector potential in the air gap at locations along the centerlines

of the slots occupied by both coil sides. The spatial distribution of the magnetic vector potential

in Fig. 8.22 can be also interpreted as the time waveform of the vector potential at one location

inside the air gap, but at different rotor positions. In that case its waveform is proportional to the

flux linkage of a full pitch coil. The derivative of this flux linkage is equal to the voltage induced

in the coil.

The waveform in Fig. 8.22 can be written in the form of Fourier series

Az(t) =
NAz∑

n=1

Azn cos(nωt) (8.43)

where Azn are the Fourier coefficients calculated using discrete Fourier transform, NAz is the

maximum order of the Fourier coefficients and ω is the frequency in rad/s. The flux linkage of a
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Fig. 8.17 Principle of calculating the tooth fluxes from FE magnetostatic simulation utilized to
approximate the tooth flux waveform
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Fig. 8.18 Principle of calculating the yoke fluxes from FE magnetostatic simulation utilized to
approximate the yoke flux waveform
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Fig. 8.19 Approximate waveform of the stator tooth flux for the case of rated load at corner speed
obtained by interpolating the sample points calculated from magnetostatic FE simulation
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Fig. 8.20 Approximate waveform of the stator yoke flux for the case of rated load at corner speed
obtained by interpolating the sample points calculated from magnetostatic FE simulation
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Fig. 8.21 Example of a no-load field solution used for calculation of the back emf waveform
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Fig. 8.22 Distribution of the magnetic vector potential inside the air gap of an IPM motor at
no-load
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full pitch coil is then

Ψc(t) = 2NclaAz(t) (8.44)

The voltage induced in a coil is

Ec(t) = −dΨc(t)

dt
= 2Nclaω

NAz∑

n=1

nAzn sin(nωt) (8.45)

The voltages induced in all the coils of a single phase can be added via distribution and pitch factors

to take into account the phase shifts between them. The distribution factor for the nth harmonic is

defined as

kdn =
sin

(
nqα

2

)

q sin
(
nα

2

) (8.46)

where q is the number of slots per pole per phase and α is the phase shift between the voltages

induced in two adjacent slots. The pitch factor is equal to

kpn = sin

(
p
yc
Qs

π

)
(8.47)

where yc is the coil pitch expressed as the number of slot pitches, Qs is the number of slots and p

is the number of pole pairs. The back emf induced in a single phase winding is then

Ephase(t) = 2Nslaω
NAz∑

n=1

kdnkpnnAzn sin(nωt) (8.48)

where Ns is the number of turns per phase connected in series. This number of turns is calculated

as

Ns =




Nc

Qs

6ap
, for a single-layer winding

Nc
Qs

3ap
, for a two-layer winding

where ap is the number of parallel paths. The phase and line-to-line back emf waveforms at

1000 rpm calculated using (8.48) for the motor in Fig. 8.21 are shown in Figs. 8.23 and 8.24.

8.3.5 Definition of Objectives and Constraints

The interior PM motor for which an optimized design is sought has the following specifications:
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Fig. 8.23 Waveform of the phase back emf of an IPM motor calculated from a single
magnetostatic FE simulation
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Fig. 8.24 Waveform of the line-to-line back emf an IPM motor calculated from a single
magnetostatic FE simulation
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Rated power: P = 1.6 kW

Rated line voltage: V = 230 V

Corner speed: nr = 1000 rpm

Maximum speed: nmax = 6000 rpm

The main objectives of the design are:

a) Minimize cogging torque,

b) Maximize characteristic current of the motor.

The corresponding objective functions are defined as:

a) Cogging torque: OF1 = 1 − 1
max(Tc)+1

b) Normalized characteristic current: OF2 =
∣∣∣ Ψmd

LdIR
− 1

∣∣∣

There are a number of constraints imposed on the design. Those constraints are:

a) Minimum efficiency: η ≥ 0.8,

b) Minimum torque requirement: T ≥ 15 Nm

c) Maximum flux density in the stator core tooth: Bts ≤ 1.8 T

d) Maximum flux density in the stator yoke: By ≤ 1.5 T

e) Maximum rms linear current density: K1s ≤ 22000 A/m

f) Maximum allowed rms value of the fundamental component line-to-line back emf at maxi-

mum speed: E1max ≤ 230 V

The back emf constraint at maximum speed has been set equal to the rated terminal voltage of the

motor. This is a fairly conservative back emf constraint since the rating of the inverter switches is

usually chosen to be 80%-100% higher than required for their rated output voltage. Therefore, the
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back emf constraint could be set somewhat higher than rated voltage of the motor without endan-

gering the inverter switches in the case of uncontrolled generation at maximum speed. However,

since the emphasis of this thesis is on motor design, the inverter which would power the motor

and the rating of its switches for a particular practical purpose have not been analyzed. Hence this

particular choice of the back emf constraint is more universal since the inverter switches have to

be rated at least for the rated voltage of the motor.

The negative consequence of the back emf constraint is the inability to design a motor which would

satisfy the optimum flux weakening condition. To have the back emf lower than rated voltage of

the motor at the maximum speed of 6000 rpm requires weak magnets with low remanence and

consequently low magnet flux Ψmd. In such a case only designs with extremely high saliency ratios

can satisfy both the optimum flux weakening condition and the back emf constraint. Therefore,

most practical IPM motor designs will have a characteristic current Ic less than 1 pu which results

in a lower power output in the field weakening regime than attainable at the corner speed. In order

to maximize the power output of the motor at high speed, one of the objectives of the optimized

design is to maximize the characteristic current of the motor and make it as close to 1 pu as possible.

Some of the parameters have constant values which do not change during optimization. Those

parameters are:

1. Stator outer diameter: Do = 170 mm

2. Rotor inner diameter: Din = 38 mm

3. Air gap length: g = 0.5 mm

4. Width of the slot opening: bo = 2.5 mm (see Fig. 6.1)

5. Depth of the slot opening: do = 0.6 mm (see Fig. 6.1)

6. Rotor bridge thickness: dr0 = 1 mm

7. Radius at the slot bottom: rs2 = 1.2 mm (see Fig. 8.25)

8. Armature current density: J = 5.5 A/mm2



204

9. Slot fill factor: ffill = 0.4

10. Number of slots per pole per phase: q = 2

The diameters Do and Din have been set as constant parameters so that the motor can be fitted into

the standard frame size with standard shaft dimensions used by the manufacturer of the prototype.

The cross-section of the IPM motor with all dimensions needed to fully define the design is shown

in Fig. 8.25. A minimum of 12 design variables can be extracted to be used in the optimization.

The variables are listed in Table 8.5 together with their limits. All geometric design variables have

been normalized. The information about the relevant motor parameters shown in Fig. 8.25 can be

extracted from the design variables in the following manner:

Rin =
Din

2
, Rs =

Ds

2
, Rr = Rs − g, Ro =

Do

2

λh1 = 1 − λh2

λmd3 = 1 − λmd1 − λmd2

dyr = Rr −Rin

dm1 = λh1λmdyr

dm2 = λh2λmdyr

dr1 = λmd1(1 − λm)dyr

dr2 = λmd2(1 − λm)dyr

dr3 = λmd3(1 − λm)dyr

αp = λp
π

p

rm1 =
dm1

2
, rm2 =

dm2

2
, Rr1 = Rr − dr0

The magnets used in the design are hard ceramic ferrites. The ferrite magnets available from the

German manufacturer Tridelta are listed in Table 8.6. In general, ferrites have a lower remanence

than rare earth magnets which in turn results in lower magnet flux Ψmd. This is a desirable property

from the standpoint of designing the motor which satisfies the back emf constraint.
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Fig. 8.25 Proposed IPM motor topology with geometric design parameters
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Table 8.5 Variables used in the optimized design of an IPM motor
 

 Variable Variable type Limits 

1. Ratio of stator inner diameter to outer 
diameter continuous ( )0.45 0.75 170 mms o oD D D< < =  

2. Ratio of stack length to maximum stack 
length continuous ( )0 00.6 1 150 mma a al l l< < =  

3. Ratio of yoke thickness to difference 
between stator outer and inner radius continuous ( )0.2 2 0.6ys o sd D D< − <  

4. Permanent magnet data discrete Table input 
5. Number of pole pairs integer 2, 3, 4, 5, 6p =  

6. Ratio of tooth width to slot pitch at Ds continuous 0.3 0.7ts sb τ< <  

7. Ratio of total cavity to total rotor depth continuous 0.1 0.5mλ< <  

8. Percentage of total cavity depth for 
inner cavity continuous 20.25 0.7hλ< <  

9. Percentage of total rotor depth for the 
outermost rotor core section continuous 10.2 0.6mdλ< <  

10. Percentage of total rotor depth for 
middle rotor core section continuous 20.1 0.4mdλ< <  

11. Angular span of the inner cavity relative 
to the pole pitch continuous 0.6 0.95pλ< <  

12. The angle of the slanted magnet continuous 0 00.5 1 , (1 1/ ) / 2pβ β β π< < = −  

 

Table 8.6 Parameters of the available ferrite magnets
 

 
Remanent flux density 

Br [T] 
Relative permeability 

µµµµr 
Density 

ρρρρm [kg/m3] 
1. 0.225 1.15 4800 
2. 0.27 1.05 4700 
3. 0.39 1.05 4700 
4. 0.395 1.05 4800 
5. 0.405 1.05 4800 
6. 0.41 1.05 4800 
7. 0.415 1.05 4800 
8. 0.44 1.05 4900 
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The DE algorithm for multiobjective optimization described earlier has been used for the design.

The population size is set to NP = 35 and the DE control parameters are F = 0.3, CR = 0.3.

8.3.6 Results

After 250 iterations the DE algorithm found nine solutions in the Pareto set. This is a significantly

smaller number of solutions than found earlier in the case of a surface PM motor. One of the

reasons could be that the DE control parameters which yielded good results for the analytical

model of the SPM motor may not be the best choice for the FE based model of the IPM motor.

However, one must also bear in mind that the back emf constraint is a rigorous limiting factor

which significantly reduces the number of solutions generated during the optimization process

which can be evaluated as the potential candidates to enter the Pareto set. In addition, there will

also be a significant number of solutions generated which will not yield a feasible geometry due

to overlapping of the rotor cavities in adjacent poles. These solutions are immediately discarded.

This means that overall a significantly higher number of iterations may be required to obtain the

total number of solutions in the Pareto set comparable to the size of the set yielded in the case of an

SPM motor. The main obstacle for not running the DE algorithm with higher number of iterations

is the long duration of the optimization process which is measured in days and the limited computer

resources which were available for this purpose.

The values of the objective functions for the nine nondominant solutions are plotted against each

other in Fig. 8.26 while the parameters of the IPM motor designs are listed in Table 8.7.

Note that all the solutions in Table 8.7 have converged to a very similar angular span λp of the

cavities relative to the pole pitch. Moreover, all the solutions have four poles and 24 slots. This

result can be explained by the fact that motors with a smaller number of poles have higher saliency

ratios and thus can achieve higher values of the characteristic current while satisfying the back emf

constraint.

Recently Zhu et al. [10] showed that a criterion used to determine the optimal angular span of the

magnets in surface PM motors to achieve minimum cogging torque can be used for IPM motors as
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main objectives
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Table 8.7 Parameters of the IPM motor designs resulting from multiobjective optimization using
Differential Evolution with minimum cogging torque and maximum characteristic current as the

main objectives

 
 
 
 
 
 

 
Ds 

[mm] 
la 

[mm] 
dys 

[mm] 
bts 

[mm] 
dm1 
[mm] 

dm2 
[mm] 

dr1 
[mm] 

dr2 
[mm] 

dr3 
[mm] 

β 
[deg.] 

λp 
Br 
[T] 

Qs 2p 
Ic 

[pu] 
Tcmax 

[Nm] 
1 102.0 113.3 16.0 8.51 3.87 6.06 12.58 6.49 2.51 32.14 0.8462 0.225 24 4 0.4408 0.0007 
2 102.8 113.3 15.8 8.57 4.26 6.85 9.23 6.05 5.53 37.23 0.8482 0.270 24 4 0.5318 0.0011 
3 108.3 112.9 15.8 9.03 3.38 7.72 8.10 7.44 8.00 32.39 0.8481 0.270 24 4 0.5721 0.0011 
4 108.4 97.6 14.8 9.04 4.65 6.74 12.22 7.60 3.47 40.67 0.8471 0.270 24 4 0.5882 0.0014 
5 108.4 108.1 14.7 9.04 3.20 5.55 14.24 8.45 3.27 37.80 0.8452 0.270 24 4 0.6158 0.0019 
6 108.3 112.9 16.5 9.03 3.62 5.26 15.01 7.75 3.00 32.39 0.8462 0.270 24 4 0.6207 0.0051 
7 111.9 118.3 15.3 9.33 4.39 7.14 8.80 6.82 9.31 27.99 0.8468 0.270 24 4 0.6294 0.0053 
8 111.9 116.7 14.6 9.33 4.88 6.65 14.20 6.82 3.91 27.99 0.8468 0.270 24 4 0.6365 0.0065 
9 109.8 113.1 16.2 9.16 4.78 6.22 14.18 7.58 2.64 34.23 0.8450 0.270 24 4 0.6446 0.0149 
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well. This criterion is defined as

λp =

lcm(Qs,2p)
2p

− k1

lcm(Qs,2p)
2p

+ k2 (8.49)

where lcm(Qs, 2p) is the least common multiple between the number of slots and the number of

poles, p is the number of pole pairs, k1 = 1, 2, . . . , Qs

2p
and k2 is the factor usually ranging from

0.01 to 0.03 [4] which is used to take into account the fringing flux of the magnets. For the 24

slot, 4 pole combination the optimal angular span of the magnets calculated from (8.49) ranges

between 0.8433 and 0.8633. The angular span of the inner cavities of the optimized IPM motor

designs from Table 8.7 calculated by the DE using the cogging torque estimation described in

Section 8.3.2 is between 0.8450 and 0.8482 which agrees with the criterion (8.49) and with similar

results shown in [10].

8.4 Design and Evaluation of the Prototype IPM Motor

The prototype of the IPM motor has been designed and built to confirm that physical properties

of the motor predicted in the design stage can be actually achieved in practice. The motor has

been designed using the multiobjective optimization algorithm previously described. Since the

emphasis has been to reduce the cost of the prototype, some of its dimensions have been adjusted

to standard sizes used by the manufacturer of the prototype. The manufacturer is KONČAR-MES,

Zagreb, Croatia.

The outer diameter of the stator core has been fixed in order to fit inside the standard aluminum

cast frame. The same has been done with the inner diameter of the rotor core to fit the standard

shaft size. The stack length has been fixed to 120 mm.

There was only one type of hard ferrite permanent magnet material available on the market to be

purchased in a fairly short time with specifications according to Table 8.8. The magnet properties

in Table 8.8 are taken from the magnet vendor specification sheet.
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Table 8.8 Properties of hard ferrite permanent magnets from magnet vendor specification sheet

 

 
 
 

 Remanent flux density 
Br [T] 

Coercivity 
Hc [kA/m] 

Minimum 0.2 130 
Typical 0.22 145 

 
 

The magnet properties were also measured on three samples of purchased magnets which had

already been cut according to design specifications for the prototype. The results of these mea-

surements are shown in Table 8.9. It is apparent that the actual magnet specifications were closer

to the minimum, rather than typical values specified by the vendor.

Table 8.9 Measured properties of three samples of purchased hard ferrite permanent magnets

 

 
 
 
 

 Dimensions 
W×L×H [mm] 

Remanent flux density 
Br [T] 

Coercivity 
Hc [kA/m] 

Sample 1 21.9×20.4×3.67 0.205 128.0 
Sample 2 19.3×30.4×3.67 0.207 133.6 
Sample 3 14.5×30.4×3.67 0.2098 135.2 

 

The magnets were available in two standard sizes: 30.4×20.4×3.67 mm and 30.4×20.4×6.67 mm.

This means that sizes of the cavities (dm1 and dm2 in Fig. 8.25) were allowed to be either 3.67 mm

or 6.67 mm to accommodate the magnets. The actual sizes of the cavities which were to be laser

cut in each rotor lamination had to be made larger by 0.15 mm to take into account the tolerance of

the laser cut and the tolerance of the core assembly because of the accidental shifting of individual

laminations.

During the design process a decision had to be made if during the assembly the magnets were

to be magnetized first and then inserted into the cavities or if they were to be installed first and

then magnetized using the standard manufacturer’s fixture. The fixture is designed for the six

pole motors with stator bore size of 115 mm. It was decided to leave both options open which

consequently led to a decision to utilize the standard six pole stator lamination punching used by

the manufacturer for their product line of surface PM servo motors.



212

Since the motor has six poles and 36 slots, the angular span of the cavities relative to the pole pitch

which yields minimum cogging torque could have the same value as calculated in Section 8.3.6

because the ratio lcm(Qs, 2p)/2p in the cases of four poles and 24 slots and six poles and 36 slots

is the same. Hence, the relative angular span of the cavities has been set to 0.846.

With the stator design already determined and with only one permanent magnet material available

with two standard thicknesses, the total number of design variables utilized to design the rotor has

been reduced to five. These variables with their limits are listed in Table 8.10.

Table 8.10 Variables used in the optimized design of a protoype IPM motor

 

 
 
 
 
 Variable Variable type Limits 

1. Thickness of the magnet in the upper 
layer discrete 1 3.67, 6.67 mmmd =  

2. Thickness of the magnet in the lower 
layer discrete 2 3.67, 6.67 mmmd =  

3. Percentage of total rotor depth for the 
outermost rotor core section continuous 10.2 0.7mdλ< <  

4. Percentage of total rotor depth for 
middle rotor core section continuous 20.1 0.5mdλ< <  

5. The angle of the slanted magnet continuous 0 00.5 1 , (1 1/ ) / 2pβ β β π< < = −  

 

The primary design specifications for the motor are:

Rated line voltage: V = 230 V

Corner speed: nr = 1000 rpm

Maximum speed: nmax = 6000 rpm

The parameters of the motor which have fixed values during optimization are:

1. Number of slots: Qs = 36

2. Number of poles: 2p = 6

3. Stator outer diameter: Do = 170 mm

4. Stator inner diameter: Ds = 115 mm

5. Rotor inner diameter: Din = 38 mm
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6. Stack length: la = 120 mm

7. Stator tooth width: bts = 5.4 mm

8. Stator yoke thickness: dys = 11.3 mm

9. Air gap length: g = 0.5 mm

10. Width of the slot opening: bo = 2.5 mm (see Fig. 6.1)

11. Depth of the slot opening: do = 0.62 mm (see Fig. 6.1)

12. Rotor bridge thickness: dr0 = 1 mm

13. Radius at the slot bottom: rs2 = 1.2 mm (see Fig. 8.25)

14. Angular span of the cavities relative to the pole pitch: λp = 0.846

15. Armature current density: J = 5.5 A/mm2

16. Slot fill factor: ffill = 0.4

17. Number of parallel paths: ap = 1

Since active volume of the motor is fixed, one of the objectives of optimization has been to max-

imize the electromagnetic torque attainable from the constant volume at corner speed. The other

objective is to maximize the characteristic current. The corresponding objective functions are de-

fined as:

a) Electromagnetic torque at corner speed: OF1 = −Tem

b) Normalized characteristic current: OF2 =
∣∣∣ Ψmd

LdIR
− 1

∣∣∣

The first objective function has been defined as a negative value of torque since the DE optimization

algorithm always attempts to minimize the objective function. The minimization problem can

be simply converted into a maximization problem by adding a negative sign to the value of the

objective function.

The constraints imposed on the design are:
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a) Minimum efficiency: η ≥ 0.8,

b) Maximum flux density in the stator core tooth: Bts ≤ 1.8 T

c) Maximum flux density in the stator yoke: By ≤ 1.5 T

d) Maximum rms linear current density: K1s ≤ 22000 A/m

e) Maximum allowed rms value of the fundamental component line-to-line back emf at maxi-

mum speed: E1max ≤ 230 V

The DE control parameters have been set to F=0.3, CR=0.3.

The optimal solution for the prototype IPM motor design has been selected from the set of nondom-

inant solutions obtained after 50 iterations of the DE algorithm. It was decided not to wait longer

and extract results after 150 or more iterations due to time constraints and desire to accelerate the

construction of the motor. However, the code was allowed to continue to run and was terminated

after reaching 150 iterations. The results after 50 and 150 iterations are shown in Fig. 8.27. It is

apparent that after 150 iterations a better result was achieved than after 50 iterations. However, the

total number of solutions in the Pareto set is still small which is consistent with the results from

Section 8.3.6. It is expected that with a higher number of iterations more solutions would have

eventually been found.

According to Fig. 8.27 the design which has been selected as optimal after 50 iterations is the one

with the highest torque. This choice has been made in spite of the fact that this design has the lowest

characteristic current. This is a minor trade-off since the selected design has a characteristic current

0.41 pu while the highest characteristic current attained is 0.422 pu which is a small difference.

The cross section of the motor is shown in Fig. 8.28. All the dimensions in the figure are given in

milimeters.

The main design specifications for the armature winding are given in Table 8.11. The winding

scheme is identical to the one shown in Fig. 5.7.

The parameters of the motor are given in Table 8.12. The inductances and flux linkages in this

table have been calculated for the rated operating point at corner speed using the FE analysis with
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Fig. 8.27 Pareto front resulting from multiobjective optimization of a prototype IPM motor
design using Differential Evolution with maximum torque at corner speed and maximum

characteristic current as the main objectives

Table 8.11 Design specifications for a single layer full pitch lap winding of the prototype IPM
motor

 

 
 
 
 

Winding parameter Value 
Connection Y 
Number of slots 36 
Number of poles 6 
Coil pitch 1-6 
Slot fill factor 0.4 
Number of turns per coil 27 
Number of coils per phase 6 
Number of turns per phase connected in series 162 
Cross-sectional area of the conductor 1.388 mm2 
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Fig. 8.28 Cross-section of the prototype IPM motor
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permeance freezing. The permeance freezing allows one to separate the permanent magnet flux

from the armature winding d and q axis fluxes while retaining information about localized sat-

uration in all parts of the motor which occurs due to the presence of all three flux components

simultaneously. In other words the superposition principle can now be applied to extract informa-

tion about motor parameters, namely open-circuit d axis flux linkage Ψmd and inductances Ld and

Lq. One must not forget the additional cross-saturation parameters Ψmqd, Ldq and Lqd which also

emerge after permeance freezing. The correctness of the IPM motor model based on parameters

thus calculated can be verified by comparing the electromagnetic torque calculated directly from

the FE simulation and calculated from the expression

Tem = 3p(ΨdsIqs − ΨqsIds) (8.50)

with d and q flux and current components given as rms values. After taking into account that

Ψds = Ψmd + LdIds + LdqIqs

Ψqs = LqIqs + LqdIds + Ψmqd

Ldq = Lqd (8.51)

Iqs = I cos γ

Ids = I sin γ

and substituting into (8.50), the torque equation takes the form

Tem = 3p
[
ΨmdIqs − ΨmqdIds + (Ld − Lq)IdsIqs + LdqI

2
qs − LqdI

2
ds

]

= 3p
[
ΨmdI cos γ − ΨmqdI sin γ +

1

2
(Ld − Lq)I

2 sin(2γ) + LdqI
2 cos(2γ)

]
(8.52)

The torque calculated using (8.52) with parameters from Table 8.12 is

Tem = 3 · 3 ·
[
0.1012 · 7.63 · cos(−46.830) − (−0.0017) · 7.63 · sin(−46.830)+

1

2
· (0.0761 − 0.0324) · 7.632 · sin(−2 · 46.830) + 0.001039 · 7.632 · cos(−2 · 46.830)

]

= 16.13 Nm

which is very close to 16.09 Nm in Table 8.12 calculated directly from the FE solution.
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Table 8.12 Parameters of the prototype IPM motor
 

Parameter Symbol Value Unit 
Rated power P 1651 W 
Rated line voltage V 230 V 
Rated current I 7.63 A 
Rated corner speed nr 1000 rpm 
Rated electromagnetic torque Tem 16.09 Nm 
Rated shaft torque T 15.70 Nm 
Power factor cos ϕ 0.628 − 
Efficiency η 0.887 − 
RMS linear current density K1s 20538 A/m 
Stator outer diameter Do 170 mm 
Stator inner diameter Ds 115 mm 
Air gap length g 0.5 mm 
Rotor inner diameter Din 38 mm 
Core length la 120 mm 
Magnet remanence Br 0.20 T 
Magnet relative permeability µr 1.15 − 
Armature resistance at 75oC Ra 1.01 Ω 
Saturated q axis inductance at corner speed Lq 76.1 mH 
Saturated d axis inductance at corner speed Ld 32.4 mH 
Saturated saliency ratio ξ 2.35 − 
Current control angle γ -46.83 degrees 
Cross saturation inductance Ldq 1.039 mH 
Cross saturation inductance Lqd 1.039 mH 
Magnet flux (rms value) ψmd 0.1012 Vs 
Magnet cross saturation flux (rms value) ψmqd -0.0017 Vs 
RMS line-to-line back emf at 6000 rpm Emax 160 V 
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The cogging torque has been calculated using Magsoft, Flux 2D FE software. The waveform is

shown in Fig. 8.29. The peak value of the cogging torque is 0.0016 Nm which is only 0.01% of the

rated torque. Small cogging torque was expected since the angular span of the cavities has been

adjusted to minimize it.

Manufactured parts of the motor are shown in Fig. 8.30.
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Fig. 8.29 Cogging torque waveform of the prototype IPM motor

8.4.1 Comparison of Calculated and Measured Results

The hardware setup which has been used for testing of the prototype IPM motor consists of a

dynamometer coupled to the IPM motor via torque transducer, two 37 kW standard converters by

Danfoss Drives, and a dSpace 1103 controller with interface board. Fig. 8.31 shows the simplified

hardware configuration.
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Fig. 8.30 Manufactured parts of the prototype IPM motor
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Fig. 8.31 Simplified hardware configuration used for testing of the prototype IPM motor

The dynamometer is a 25 kW induction machine which is used as a load for the tested IPM motor.

This induction machine can operate at a maximum speed of 6000 rpm which is suitable for the

operating range of the prototype motor (0-6000 rpm). This setup was originally utilized for testing

of the integrated starter-alternator rated at 9.5 kW with 150 Nm of starting torque up to 600 rpm

and rated current of 350 A rms [89]. Although the setup is oversized for the requirements of the

prototype IPM motor, which is rated at 1.65 kW, its advantage is that it was available and ready to

use. The IPM motor coupled to the induction machine is shown in Fig. 8.32.

One of the commercial Danfoss converters is used to power the IPM motor while the other is used

for the induction machine. In addition, a separate regeneration unit by Danfoss Electronic Drives

(REVCON) is included to allow bi-directional power flow for the dynamometer. The ratings for

the converters and regeneration unit are given in Table 8.13. Fig. 8.33 shows both converters and

regeneration unit.

Another important part of the experimental setup is the interface board, whose functions are out-

lined in Fig. 8.34. These functions include voltage and current filtering, transmission of gate drive
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Fig. 8.32 Prototype IPM motor coupled to the induction machine via torque transducer
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Table 8.13 Ratings of Danfoss converters and REVCON regen unit

 

 
 
 
 

Danfoss Converters 
Model : VLT 5052 

In : 3× 200 – 240 V rms,  50/60 Hz,  165 A rms 

Out : 3× 0 – Vin,  0 – 1000Hz,  37kW 
        170 A rms / 208 V rms,   154 A rms / 230 V rms 

REVCON Regen Unit 
Model : SVCD 40 – 230 – 1 – 230 V AC 

Serial No. : 07/01 SVCD 40-400 

Rating : 3×230 V rms, 101A rms  

 
 

signals and interface between the IPM motor encoder and dSpace 1103 controller. A more detailed

description of the interface board can be found in [89].

Back emf measurement

The initial test performed on the prototype motor using the described hardware setup was the

back emf measurement. Fig. 8.35 compares the line-to-line back emf waveform measured at 1000

rpm with the waveform calculated using a transient finite element simulation. The moving air gap

feature of Magsoft, Flux 2D FE software has been used to simulate rotation in the FE model. There

is excellent agreement between measured and simulated waveforms. However, a slight asymmetry

can be noticed in the measured back emf. It is probably a consequence of uneven magnetization of

the magnets.

During optimization the waveform of the back emf is estimated from a single magnetostatic FE

simulation as previously described in Section 8.3.4. This estimated waveform is compared with the

one calculated using transient FE simulation with motion in Fig. 8.36. The result in Fig. 8.36 shows

that a fairly good estimate of the back-emf waveform is possible from only a single magnetostatic

FE simulation. This saves significant computational time during optimization, compared to the

transient simulation with motion.
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(a) (b)

Fig. 8.33 Experimental setup: (a) Danfoss converters, (b) REVCON regen unit
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Fig. 8.34 Illustration of basic functions of the interface board
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Fig. 8.35 Calculated and measured waveforms of line-to-line back emf of the prototype IPM
motor at 1000 rpm
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Inductance measurement

Armature winding inductances Ld and Lq have been measured using static tests with the locked

rotor. Figs. 8.37 and 8.38 show the basic principle of measurement for both inductances. The rotor

is aligned and locked in a position in which the magnet axis is aligned with the phaseA axis. In the

case of Ld the basic circuit consists of an AC voltage source applied across the phase A terminal

and the short-circuited terminals of phases B and C. The resulting current which flows through the

windings thus produces a pulsating armature field in the d axis. In the case of Lq the AC voltage is

applied across the terminals of phases B and C, while the phase A terminal is open and the phase

A current is zero. The resulting current produces a pulsating armature field in the q axis.

According to Figs. 8.37 and 8.38, the following equations can be written for the voltages and

currents of phases A and B:

va = iaRa + (Ll + Lmd)
dia
dt

− 1

2
Lmd

dib
dt

− 1

2
Lmd

dic
dt

(8.53)

vb = ibRa + (Ll + Lmq)
dib
dt

− 1

2
Lmq

dic
dt

(8.54)

where Ra is the armature resistance, Ll is the total leakage inductance per phase, and Lmd and Lmq

are the main inductances per phase when the resulting armature field is aligned with the d and q

axis respectively. The calculated armature resistanceRa, from Table 8.12, is equal to 1.01 Ω, while

the measured resistance is 1.09 Ω. From Fig. 8.37 it follows that

ib = ic = − ia
2

(8.55)

while from Fig. 8.38 it is apparent that

ic = −ib (8.56)

Hence, (8.53) and (8.54) now become

va = iaRa + (Ll +
3

2
Lmq)

dia
dt

(8.57)

vb = ibRa + (Ll +
3

2
Lmq)

dib
dt

(8.58)

The resulting inductances Ll + 3
2
Lmd and Ll + 3

2
Lmq are equivalent to Ld and Lq inductances

respectively. In addition, one can also write

va = vd , ia = id (8.59)
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Fig. 8.37 Circuit used for measurement of inductance Ld

�

�
�

�

�

�

���	




�

�


�
 ��

�
�
�
�
�
�

�
�
��

�
�

�

Fig. 8.38 Circuit used for measurement of inductance Lq
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vb = vq , ib = iq (8.60)

thus giving

vd = idRa + Ld
did
dt

(8.61)

vq = iqRa + Lq
diq
dt

(8.62)

The time dependent flux linkages in the d and q axes, ψd(t) and ψq(t), can now be determined from

voltage equations (8.61) and (8.62) by integration

ψd(t) =
∫ t

0
(vd(τ) − id(τ)Ra)dτ (8.63)

ψq(t) =
∫ t

0
(vq(τ) − iq(τ)Ra)dτ (8.64)

These flux linkages can be also written as

ψd(t) = ψmd + Ldid(t) (8.65)

ψq(t) = Lqiq(t) (8.66)

where ψmd is the d axis flux linkage due to the permanent magnets, and Ld and Lq are the d and q

axis inductances. The inductances are now defined as

Ld =
ψd(t) − ψmd

id(t)
(8.67)

Lq =
ψq(t)

iq(t)
(8.68)

For comparison, the described experiments have been simulated using transient FE simulation with

the FE model coupled to an electric circuit. The measured and calculated va and ia in the case of

Ld,and vb and ib in the case of Lq, are compared in Figs. 8.39 and 8.40.

After performing integration of the measured voltages va(t) and vb(t), and currents ia(t) and ib(t),

the resulting instantaneous flux linkages Ψd(t) and Ψq(t) have been plotted as functions of the

corresponding currents id(t) and iq(t), which is shown in Figs. 8.41a and 8.41b. The same figures

also show calculated flux vs current characteristics. The finite element approach does not require
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Fig. 8.39 Waveforms of the phase A voltage and current measured with the locked rotor while
the resulting armature field is aligned with the d axis: (a) voltage, (b) current
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Fig. 8.40 Waveforms of the phase B voltage and current measured with the locked rotor while
the resulting armature field is aligned with the q axis: (a) voltage, (b) current
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integration of simulated voltage and current waveforms to determine Ψd and Ψq since those flux

linkages can be calculated directly from the average magnetic vector potentials inside the slot areas.

Since flux characteristics exhibit hysteresis effect, thus giving two values of flux for the same

current, the actual flux has been taken as an average of the two values. This is shown in Figs. 8.42a

and 8.42b. The hysteresis is also present in the simulated results, but it is very narrow. In addition,

one must also take into account that integration of the measured current and voltage waveforms,

which is used to calculate Ψd and Ψq, provides only correct information about the change in flux,

and not about its exact instantaneous value. Consequently, the resulting flux characteristics have a

correct shape, but they are shifted vertically. Moreover, the presence of the permanent magnet flux

in the d axis also causes an offset in position of the flux characteristic with respect to the origin

when determining Ld. Therefore, prior to calculating inductances Ld and Lq, the offsets of the flux

characteristics have to be subtracted.

Figs 8.43a and 8.43b show inductances Ld and Lq determined from the averaged flux character-

istics given in Fig 8.42. In the motoring mode of operation of an IPM machine the current id is

negative and the current iq is positive, so the plots Ld vs id for id < 0 and Lq vs iq for iq > 0 are

usually of interest. These plots are shown in Figs. 8.44a and 8.44b. The measured d axis induc-

tance is approximately 10% higher than calculated, while measured q axis inductance is 10-20%

lower than calculated. This difference indicates that the motor will develop significantly lower

reluctance torque than predicted in the design stage.

Three additional approaches have been used to calculate Ld to make comparison with the exper-

imental results. These approaches are not equivalent to the one used in the experiment, but they

give a useful insight into differences between the values of Ld, which are results of either using a

different IPM machine model, or using a different approach to the separation of the magnet and

armature flux linkages.

In the first magnetostatic simulation the field solution is found with the armature current applied

to produce the field in the negative d axis with the magnet field present at the same time. Next, the

permeabilities are frozen after which the magnets are ”turned off” and the field solution is found

using the same armature current. The inductance Ld is then found as a ratio of the flux linkage Ψd



231

−15 −10 −5 0 5 10 15
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

i
d
 (A)

ψ
d (V

s)

Calculated
Experimental

(a)

−15 −10 −5 0 5 10 15
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

i
q
 (A)

Ψ
q (V

s)

Calculated
Experimental

(b)

Fig. 8.41 Comparison of calculated and experimentally determined flux characteristics:
(a) Ψd vs id, (b) Ψq vs iq

−15 −10 −5 0 5 10 15
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

i
d
 (A)

ψ
d (V

s)

Calculated
Experimental

(a)

−15 −10 −5 0 5 10 15
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

i
q
 (A)

Ψ
q (V

s)

Calculated
Experimental

(b)

Fig. 8.42 Comparison of calculated and experimentally determined flux characteristics averaged
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and the current id which are extracted from the FE solution using the same principle as described

earlier in Section 8.3.1.

In the second approach the total flux in the d axis, ψdtotal, is calculated first, which takes into

account both the magnet flux and the armature current flux. In order to separate these two flux

components, the open-circuit magnet flux linkage ψmd is subtracted from the total flux ψdtotal, thus

giving the net armature winding flux ψd. The inductance Ld then follows as a ratio of ψd and id.

In the final approach the magnets are completely removed from the simulation and the rotor cavities

are filled with air. The armature current is applied to produce field in the negative d axis and ψd

and id are extracted to calculate Ld.

Fig. 8.45 compares inductances Ld calculated using the described approaches. It is apparent that

Ld, calculated by subtracting the open-circuit flux, is closest to the one calculated and determined

experimentally as ψd/id. The inductance based on permeance freezing corresponds to the model

used during optimization. This model was shown on the example of the prototype IPM motor to be

correct for the steady state torque calculation and for calculation of the terminal voltage constraints.

For small values of id the inductance Ld, calculated with magnets replaced by air, is identical to

the calculated inductance Lq in Fig. 8.44. This result is expected since initially the rotor bridges

are not saturated, so the reluctance of the magnetic circuit in both axes for small current mainly

consists of the air gap. As soon as the bridges start saturating as id increases, the inductance Ld

drops faster and at a high current approaches the value calculated using permeance freezing.

Torque measurement

The measurement of torque as a function of speed has been conducted using SHC torque meter with

ratings given in Table 8.14. The d and q components of the armature current which yield maximum

torque per amp at every speed have been calculated using the FE method. These calculated current

components are then used as the current command for the torque control algorithm. The current

command trajectory thus calculated is shown in Fig. 8.46. Three modes of operation have been

identified in Fig. 8.46. In mode I the current follows maximum torque per amp trajectory until

reaching the rated value for the prototype motor. The mode I covers the speed range from zero to
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corner speed (1000 rpm). The motor can operate with any value of the current along the trajectory

in mode I at any speed from zero to 1000 rpm without exceeding the voltage limit. The mode II is

a part of the current trajectory where the current and voltage limits have been reached, but as the

motor speed increases the current can still be kept at its rated value without exceeding the terminal

voltage constraint. This is possible up to a certain speed (2000 rpm) after which it is no longer

possible to sustain rated current without exceeding the voltage limit. The mode III is a part of the

current trajectory from 2000 rpm up to a maximum speed of 6000 rpm. In mode III the current

magnitude has to be modified for every speed so that the voltage constraint is not violated.

Table 8.14 Ratings of SHC torque meter

 

 
 
 
 

Torque meter 
Make: SHC (S. Himmelstein & CO) 

Model : MCRT 2660T (2-3) 

Max. Speed : 8000 rpm 

Range : 2000 lb. in. (226 Nm) 
 

The torque vs. speed curve has been calculated for the entire speed range from zero to 6000 rpm.

In the constant torque regime (0-1000 rpm) the current vector has been kept at its rated value at a

constant control angle. In the flux weakening regime above corner speed (1000 rpm) the magnitude

and the position of the current vector have been adjusted according to Fig. 8.46, so that the rated

terminal voltage of 230 V is not exceeded.

During the torque measurement the maximum available voltage from the inverter was limited by

the maximum DC bus voltage and by the modulation index used in PWM algorithm. The converter

was connected to 230 V, 60 Hz power grid. Since the converter did not provide voltage boosting

with modulation index set to 0.9, the maximum available fundamental voltage for the motor was

0.9 · 230 = 207 V. Fig 8.47 shows torque vs. speed curve calculated for the rated motor voltage

(230 V) and for the maximum available voltage (207 V) so that differences between these two

cases can be observed. The output power for these two cases is shown in Fig 8.48.
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Fig. 8.46 Calculated current trajectory of the prototype IPM motor

The average torque has been calculated using magnetostatic FE simulations with first order ele-

ments, as described earlier in Section8.3.1. A more accurate approach has also been used to verify

the results of magnetostatic simulations which is based on the transient FE solution with motion

using second order elements. Fig. 8.49 compares both calculated results with the measured torque

vs speed curve for the maximum voltage of 207 V. There is an apparent discrepancy between the

measured torque and the one predicted in the design stage. During the experiment it was not pos-

sible to control the motor at a speed higher than 4000 rpm. Since the calculated and measured

back emf waveforms in Fig. 8.35 matched quite closely, it is reasonable to assume that the motor

was capable of producing the required electromagnetic component of the torque. However, the
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experiments also showed that the measured q axis inductance was approximately 10-20% lower

than the calculated one, while the measured d axis inductance was about 10% higher than calcu-

lated. Since the reluctance torque is proportional to the difference Lq − Ld, it is obvious that a

significant reluctance torque will be lost in the actual motor due to discrepancies between the mea-

sured and calculated values of these two parameters. The lower value of the inductance Lq could

be attributed to a larger effective air gap than assumed by the design. The larger air gap can occur

due to manufacturing tolerances, but also can be created by changed properties of the core material

due to punching and laser cutting of the rotor laminations. It is difficult to accurately confirm and

assess these influences without more practical experience. This could be gained by building more

than one prototype IPM motor.

8.5 Comparison of the Optimized IPM Motor Designs With Different Power
Ratings and Two or Three Layers of Cavities

The number of variables used in the optimized design of the prototype motor was significantly

reduced due to limitations imposed by the standard sizes of the shaft and the motor frame and

due to limited availability of the permanent magnets, both in terms of their properties and sizes.

These limitations were accepted as a necessary trade-off in order to accelerate the construction

of the motor and reduce its cost. The small number of design variables and limited selection of

permanent magnet materials have not allowed enough freedom to manipulate the motor parameters

sufficiently to yield the best possible motor design. Therefore, a more comprehensive scheme for

the optimized design has been developed in which a higher number of design variables have been

used. As a consequence a wider variety of design choices has become available which gives more

insight into design limitations for a particular power rating of the motor. The design variables with

their limits are listed in Table 8.15.

Besides increasing the number of design variables, an additional comparison has been made be-

tween IPM motors with two and three layers of cavities in the rotor. The addition of one more

cavity increases the saliency ratio of the motor which in turn increases the reluctance torque. An-

other benefit of the increased saliency ratio is a higher value of the characteristic current due to
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reduced value of the d axis inductance. This results in higher power output in the flux weakening

regime. However, the addition of one more cavity increases the complexity of the rotor construc-

tion and consequently its manufacturing cost. This analysis has been carried out to show whether

or not the third layer of cavities is sufficiently beneficial for improving the motor performance to

justify its higher manufacturing cost. The principle geometry of the IPM motor with three layers

of cavities is shown in Fig 8.50. The design variables are listed in Table 8.16.

The maximum allowed outer diameter (350 mm) and stack length (150 mm) listed in Tables 8.15

and 8.16 are given for the 5 kW motor. For the 50 kW and 200 kW motors the limits for the outer

diameter are set to 500 mm and 700 mm respectively, while the maximum allowed stack lengths

are 350 mm and 500 mm.

The information about the relevant motor parameters shown in Fig. 8.50 can be extracted from the

design variables in the following manner:

Rin =
Din

2
, Rs =

Ds

2
, Rr = Rs − g, Ro =

Do

2

λh1 = 1 − λh2 − λh3

λmd4 = 1 − λmd1 − λmd2 − λmd3

dyr = Rr −Rin

dm1 = λh1λmdyr

dm2 = λh2λmdyr

dm3 = λh3λmdyr

dr1 = λmd1(1 − λm)dyr

dr2 = λmd2(1 − λm)dyr

dr3 = λmd3(1 − λm)dyr

dr4 = λmd4(1 − λm)dyr

αp = λp
π

p

rm1 =
dm1

2
, rm2 =

dm2

2
, rm3 =

dm3

2

Rr1 = Rr − dr0
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The motor parameters which have fixed values during optimization are:

1. Air gap length: g = 0.5 mm

2. Width of the slot opening: bo = 2.5 mm (see Fig. 6.1)

3. Depth of the slot opening: do = 0.62 mm (see Fig. 6.1)

4. Rotor bridge thickness: dr0 = 1 mm

5. Radius at the slot bottom: rs2 = 1.2 mm (see Fig. 8.25)

6. Angular span of the cavities relative to the pole pitch: λp = 0.846

7. Armature current density: J = 5 A/mm2

8. Slot fill factor: ffill = 0.4

9. Number of slots per pole per phase: q = 2

10. Number of parallel paths: ap = 1 (5 kW and 50 kW), ap = 2 (200 kW)

The main objectives of the optimized design are selected as following:

a) Minimize active volume,

b) Maximize characteristic current.

Since the volume of the motor is no longer fixed, the objective to maximize the output torque

used in the design of the prototype has been replaced with minimization of the active volume. At

the same time the motor has to produce the minimum required torque to provide a desired power

output at a desired corner speed.

The IPM motors of 5 kW, 50 kW and 200 kW power ratings with two or three layers of cavities

have been designed and compared. The primary design specifications for all power levels are:
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Fig. 8.50 Geometric design parameters of the IPM motor topology with three layers of cavities
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Table 8.15 Design variables for an IPM motor with two layers of cavities in the rotor

 

 
 
 
 

 Variable Variable type Limits 

1 Ratio of stator outer diameter to 
maximum outer diameter continuous ( )0 00.6 1 350 mmo o oD D D< < =  

2. Ratio of stator inner diameter to outer 
diameter continuous 0.45 0.75s oD D< <  

3 Ratio of rotor inner diameter to stator 
inner diameter continuous 0.2 0.6in sD D< <  

4. Ratio of stack length to maximum stack 
length continuous ( )0 00.5 1 150 mma a al l l< < =  

5. Ratio of yoke thickness to difference 
between stator outer and inner radius continuous ( )0.2 2 0.6ys o sd D D< − <  

6. Ratio of tooth width to slot pitch at Ds continuous 0.3 0.7ts sb τ< <  

7. Permanent magnet remanence continuous 0.2 0.4rB< <  

8. Number of pole pairs integer 2, 3, 4, 5, 6p =  

9. Ratio of total cavity to total rotor depth continuous 0.1 0.5mλ< <  

10. Percentage of total cavity depth for 
inner cavity continuous 20.25 0.7hλ< <  

11. Percentage of total rotor depth for the 
outermost rotor core section continuous 10.2 0.6mdλ< <  

12. Percentage of total rotor depth for 
middle rotor core section continuous 20.1 0.4mdλ< <  

13. The angle of the slanted magnet continuous 0 00.5 1 , (1 1/ ) / 2pβ β β π< < = −  

 

Table 8.16 Design variables for an IPM motor with three layers of cavities in the rotor

 

 
 
 
 
 

 Variable Variable type Limits 

1 Ratio of stator outer diameter to 
maximum outer diameter continuous ( )0 00.6 1 350 mmo o oD D D< < =  

2. Ratio of stator inner diameter to outer 
diameter continuous 0.55 0.8s oD D< <  

3 Ratio of rotor inner diameter to stator 
inner diameter continuous 0.2 0.6in sD D< <  

4. Ratio of stack length to maximum stack 
length continuous ( )0 00.5 1 150 mma a al l l< < =  

5. Ratio of yoke thickness to difference 
between stator outer and inner radius continuous ( )0.2 2 0.6ys o sd D D< − <  

6. Ratio of tooth width to slot pitch at Ds continuous 0.3 0.7ts sb τ< <  

7. Permanent magnet remanence continuous 0.2 0.4rB< <  

8. Number of pole pairs integer 2, 3, 4, 5, 6p =  

9. Ratio of total cavity to total rotor depth continuous 0.1 0.5mλ< <  

10. Percentage of total cavity depth for the 
second cavity continuous 20.15 0.7hλ< <  

11. Percentage of total cavity depth for the 
innermost cavity continuous 30.2 0.6hλ< <  

12. Percentage of total rotor depth for the 
outermost rotor core section continuous 10.1 0.6mdλ< <  

13. Percentage of total rotor depth for the 
second rotor core section continuous 20.1 0.4mdλ< <  

14. Percentage of total rotor depth for the 
third rotor core section continuous 30.1 0.4mdλ< <  

15. The angle of the slanted magnet continuous 0 00.5 1 , (1 1/ ) / 2pβ β β π< < = −  
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Rated line voltage: V = 400 V

Corner speed: nr = 1000 rpm

Maximum speed: nmax = 6000 rpm

The motor designs also need to satisfy the following constraints:

a) Minimum efficiency: η ≥ 0.8,

b) Maximum flux density in the stator core tooth: Bts ≤ 1.8 T

c) Maximum flux density in the stator yoke: By ≤ 1.5 T

d) Minimum torque requirement:





T ≥ 47.75 Nm, 5 kW motor

T ≥ 477.5 Nm, 50 kW motor

T ≥ 1910 Nm, 200 kW motor

e) Maximum rms linear current density:





K1s ≤ 25000 A/m, 5 kW motor

K1s ≤ 35000 A/m, 50 kW motor

K1s ≤ 40000 A/m, 200 kW motor

f) Maximum allowed rms value of the fundamental component line-to-line back emf at maxi-

mum speed: E1max ≤ 400 V

The DE parameters for all simulations have been set to F=0.3, CR=0.3. For each motor design the

results have been collected after 200 iterations of the DE algorithm. The population size for the

motor with two layers of cavities has been set to 40 while in the case of three layers of cavities the

population size has been set to 50.

The trade-offs between the two objective functions for the motor designs which emerged in the

Pareto sets after 200 iterations for all three power levels and for both two and three layers of

cavities are compared in Figs. 8.51 and 8.52. The active volumes of the motors for all power

levels have been normalized with respect to the maximum allowed volume for the 5 kW motor.

The characteristic current for each individual design has been normalized with respect to its rated

current. The basic design parameters for all solutions are listed in Tables 8.17 and 8.18.
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Fig. 8.51 Pareto fronts for 5 kW, 50 kW and 200 kW motors with two layers of cavities
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Fig. 8.52 Pareto fronts for 5 kW, 50 kW and 200 kW motors with three layers of cavities



246

Table 8.17 Design parameters of nondominant solutions resulting from multiobjective
optimization of 5 kW, 50 kW and 200 kW IPM motors with two layers of cavities

 
 
 
 
 
 

 
Do 

[mm] 
Ds 

[mm] 
Din 

[mm] 
la 

[mm] 
dys 

[mm] 
bts 

[mm] 
dm1 
[mm] 

dm2 
[mm] 

dr1 
[mm] 

dr2 
[mm] 

dr3 
[mm] 

β 
[deg.] 

Br 
[T] 

Qs 2p 
Ic 

[pu] 
V/V0(5kW) 

[pu] 
5 kW design – Two layers of cavities 

1 259.6 175.9 83.5 99.8 20.64 7.78 3.98 5.63 21.41 5.98 9.19 42.1 0.243 36 6 0.484 0.366 
2 285.5 181.9 86.3 86.4 29.29 9.26 4.22 5.64 21.91 4.68 11.36 52.2 0.244 36 6 0.520 0.383 
3 286.4 196.8 99.0 91.6 23.01 11.24 5.27 5.88 21.20 5.01 11.57 50.3 0.226 36 6 0.527 0.409 
4 287.0 199.6 100.4 91.6 22.46 11.39 4.38 6.29 22.08 4.82 12.04 50.0 0.226 36 6 0.545 0.411 
5 254.8 172.5 93.2 116.3 19.66 9.70 3.75 5.27 16.28 4.96 9.42 45.7 0.262 36 6 0.556 0.411 
6 298.2 211.8 106.5 91.6 22.18 12.09 5.67 6.33 23.05 5.71 11.89 47.8 0.226 36 6 0.563 0.443 
7 268.6 187.3 97.3 122.0 20.04 11.08 4.26 6.17 18.50 5.95 10.17 42.0 0.247 36 6 0.579 0.479 
8 279.4 193.1 106.1 115.9 23.95 10.93 3.86 6.03 16.95 4.98 11.66 56.2 0.237 36 6 0.580 0.492 
9 313.6 205.8 101.2 93.9 32.08 12.51 3.69 7.06 19.20 5.38 16.99 42.1 0.253 36 6 0.590 0.502 

50 kW design – Two layers of cavities 
1 413.5 275.0 124.8 222.5 30.93 12.26 7.48 8.35 16.57 6.28 36.40 56.48 0.288 48 8 0.453 2.071 
2 437.6 284.7 148.5 200.7 39.55 12.12 4.53 6.77 27.19 6.41 23.19 57.56 0.270 48 8 0.476 2.092 
3 423.1 279.7 123.7 220.5 40.49 9.94 4.42 6.40 23.42 8.79 34.97 59.58 0.272 48 8 0.479 2.148 
4 425.6 297.4 139.7 222.5 35.60 10.86 6.01 8.07 21.84 6.81 36.08 52.88 0.288 48 8 0.561 2.193 
5 371.3 237.4 116.7 315.2 35.49 13.63 3.90 5.55 25.79 6.26 18.83 48.29 0.316 36 6 0.572 2.365 
6 371.3 237.4 116.7 319.9 35.21 14.08 3.90 5.55 25.79 6.26 18.83 48.29 0.321 36 6 0.590 2.400 
7 436.2 301.9 166.1 236.5 38.42 7.68 4.21 3.61 16.11 7.74 36.23 64.00 0.326 72 12 0.598 2.449 
8 436.2 301.9 166.1 242.7 38.85 7.86 4.21 3.61 16.11 7.74 36.23 64.00 0.333 72 12 0.629 2.514 
9 449.5 318.0 167.0 229.8 37.24 10.21 3.13 4.74 34.79 8.22 24.65 61.28 0.315 60 10 0.703 2.527 

10 450.9 320.9 168.5 229.8 36.83 10.31 3.16 4.78 35.11 8.30 24.87 59.51 0.315 60 10 0.707 2.543 
11 457.8 340.2 200.4 247.6 33.69 12.04 3.77 5.93 19.29 7.09 33.83 66.85 0.327 60 10 0.824 2.824 

200 kW design – Two layers of cavities 
1 549.7 388.7 183.7 394.4 43.55 13.98 13.48 12.45 19.63 10.96 46.01 58.57 0.223 48 8 0.339 6.486 
2 557.4 392.8 211.4 393.1 45.86 12.36 9.12 7.86 29.70 11.92 32.11 65.05 0.288 60 10 0.536 6.648 
3 632.5 463.7 232.4 310.1 49.76 13.12 8.77 10.48 35.89 11.28 49.21 60.42 0.311 60 10 0.596 6.751 
4 549.7 391.9 201.1 427.8 46.86 16.17 7.70 7.18 47.00 9.31 24.24 59.68 0.312 48 8 0.707 7.035 
5 560.3 388.1 186.7 412.8 49.64 17.56 7.88 8.64 48.59 8.71 26.93 62.54 0.317 48 8 0.720 7.052 
6 594.7 429.0 240.1 407.2 49.41 18.73 8.45 8.42 46.52 9.01 22.04 56.27 0.322 48 8 0.728 7.839 
7 571.1 418.4 223.2 408.3 45.22 17.27 7.88 7.35 48.09 9.52 24.80 59.68 0.312 48 8 0.728 7.248 
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Table 8.18 Design parameters of nondominant solutions resulting from multiobjective
optimization of 5 kW, 50 kW and 200 kW IPM motors with three layers of cavities

 
 
 
 
 

 
Do 

[mm] 
Ds 

[mm] 
Din 

[mm] 
la 

[mm] 
dys 

[mm] 
bts 

[mm] 
dm1 
[mm] 

dm2 
[mm] 

dm3 
[mm] 

dr1 
[mm] 

dr2 
[mm] 

dr3 
[mm] 

dr4 
[mm] 

β 
[deg.] 

Br 
[T] 

Qs 2p 
Ic 

[pu] 
V/V0(5kW) 

[pu] 
5 kW design – Three layers of cavities 

1 254.1 165.6 97.3 98.5 21.11 10.49 0.78 1.93 3.57 12.80 5.49 4.29 5.27 42.3 0.249 36 6 0.480 0.346 
2 270.1 169.7 88.2 90.6 24.27 10.75 1.86 3.42 4.50 6.28 5.35 4.25 15.09 42.3 0.256 36 6 0.502 0.360 
3 251.9 165.1 86.7 104.6 21.63 10.46 1.98 3.31 3.68 10.42 9.92 5.67 4.24 42.3 0.237 36 6 0.528 0.361 
4 267.1 155.1 80.8 97.2 31.21 14.74 2.05 2.93 3.74 6.83 10.50 6.11 4.97 31.7 0.275 24 4 0.533 0.377 
5 280.9 182.1 99.6 88.5 24.91 11.54 2.60 2.63 4.64 7.81 8.72 6.19 8.69 42.3 0.258 36 6 0.556 0.380 
6 259.1 151.0 49.6 105.1 29.37 14.35 2.87 3.03 5.52 10.97 9.79 6.11 12.42 31.7 0.277 24 4 0.590 0.384 
7 267.1 155.1 64.5 108.6 32.78 14.74 2.50 3.58 4.56 8.32 12.81 7.46 6.06 31.7 0.275 24 4 0.614 0.422 
8 270.7 192.5 110.6 113.5 21.23 12.19 3.04 3.96 5.19 10.58 9.47 4.78 3.88 42.3 0.216 36 6 0.615 0.453 
9 259.1 182.6 103.3 128.0 19.07 11.57 2.71 2.76 5.30 10.64 6.63 4.68 6.94 42.3 0.237 36 6 0.619 0.468 

10 298.6 207.1 124.1 117.4 26.42 13.12 2.03 3.62 3.87 11.43 4.83 5.08 10.61 42.3 0.240 36 6 0.652 0.570 

50 kW design – Three layers of cavities 
1 360.3 235.2 126.0 290.1 31.76 16.31 2.37 4.42 6.68 12.90 11.22 4.63 12.40 47.7 0.245 36 6 0.481 2.049 
2 394.1 256.2 135.4 253.5 36.79 17.77 5.03 6.37 5.88 16.58 10.45 6.57 9.53 47.7 0.222 36 6 0.492 2.142 
3 361.9 242.8 132.5 308.1 30.21 12.63 4.90 5.48 5.10 13.38 6.12 5.78 14.36 53.6 0.234 48 8 0.495 2.196 
4 345.9 234.8 133.3 337.9 28.14 16.28 5.39 6.90 7.40 12.36 8.19 3.87 6.64 47.7 0.240 36 6 0.502 2.200 
5 378.6 262.9 140.3 283.2 29.71 13.67 6.15 3.02 8.14 12.57 5.59 7.06 18.79 53.6 0.256 48 8 0.527 2.209 
6 410.1 278.4 157.3 244.0 37.07 19.31 5.17 3.35 7.49 10.49 10.64 8.02 15.37 47.7 0.250 36 6 0.528 2.233 
7 432.1 311.5 183.4 224.2 33.34 16.20 6.09 3.46 8.44 15.69 10.44 6.71 13.21 53.6 0.234 48 8 0.639 2.278 
8 385.6 254.5 135.0 316.6 37.46 17.65 2.98 6.08 6.31 15.66 10.22 7.67 10.85 47.7 0.271 36 6 0.642 2.561 
9 398.7 252.6 138.0 302.5 41.68 17.52 3.87 5.67 5.95 15.61 10.31 5.50 10.38 47.7 0.286 36 6 0.643 2.617 

10 403.3 273.8 158.0 303.3 38.61 18.99 4.96 3.21 7.20 10.02 9.64 6.78 16.09 47.7 0.294 36 6 0.697 2.685 
11 397.3 270.5 139.5 315.5 37.16 18.76 4.78 4.21 9.22 9.93 12.00 6.85 18.54 47.7 0.282 36 6 0.734 2.711 
12 397.3 270.5 140.3 317.3 37.25 18.76 4.75 4.18 9.17 9.87 11.93 6.81 18.42 47.7 0.282 36 6 0.739 2.727 
13 430.2 311.5 167.7 297.8 31.49 16.20 8.94 4.42 4.29 18.49 9.72 7.94 18.11 53.6 0.289 48 8 0.754 3.000 
14 430.2 311.5 173.9 306.5 34.96 16.20 6.37 3.00 7.51 19.37 11.81 7.26 13.47 53.6 0.276 48 8 0.870 3.087 
15 431.8 321.6 168.6 307.6 30.86 16.73 9.36 3.18 4.32 19.27 11.10 8.74 20.56 53.6 0.290 48 8 0.873 3.122 
16 422.0 324.6 186.2 323.2 27.91 16.89 5.13 5.14 7.07 23.09 12.48 5.96 10.33 53.6 0.264 48 8 0.960 3.133 

200 kW design – Three layers of cavities 
1 542.5 414.3 316.4 393.1 37.54 11.78 1.37 4.57 3.42 17.05 5.69 4.30 12.55 50.9 0.237 36 6 0.408 6.297 
2 540.1 412.4 315.0 404.6 36.60 11.68 1.86 4.79 3.30 5.20 10.91 4.83 17.85 60.7 0.316 36 6 0.588 6.422 
3 534.6 408.2 311.7 455.0 33.97 9.26 1.71 2.79 3.52 7.18 7.65 4.84 20.54 54.4 0.362 48 8 0.714 7.075 
4 534.6 408.2 311.7 463.4 37.55 9.26 1.71 2.79 3.52 7.18 7.65 4.84 20.54 54.4 0.362 48 8 0.728 7.206 
5 534.6 408.2 311.7 471.8 33.97 9.26 1.71 2.79 3.52 7.18 7.65 4.84 20.54 54.4 0.362 48 8 0.743 7.338 
6 546.1 417.0 318.5 455.6 37.57 9.31 4.16 4.38 2.73 16.22 5.27 3.92 12.60 76.4 0.307 48 8 0.756 7.395 
7 542.5 414.3 316.3 474.9 37.14 8.72 1.73 3.13 4.24 13.85 7.04 4.36 14.61 68.1 0.323 48 8 0.765 7.605 
8 551.7 421.3 321.8 493.8 36.90 8.85 1.71 3.40 5.97 6.24 4.90 4.05 23.52 78.2 0.325 48 8 0.806 8.181 
9 573.5 438.0 334.5 468.3 38.68 9.81 1.74 3.48 6.30 6.77 7.90 4.04 21.54 66.7 0.321 48 8 0.831 8.384 
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The results of optimization indicate that the addition of the third layer of cavities is beneficial

for increasing the characteristic current of the motor without sacrificing its size. This has been

observed for all three power levels. Another observation is that in most cases a moderate increase

in motor volume can yield quite a significant increase in characteristic current, thus improving

significantly the motor performance in the flux weakening regime.

The highest characteristic currents have been obtained for the 50 kW motor design. In order to

explain this result one must consider the parameters which affect the value of the characteristic

current Ic. Its per unit value is defined as

Ic(pu) =
Ψmd

LdIR
(8.69)

where Ψmd is the flux of the magnets alone linked by the armature winding, Ld is the d axis

inductance and IR is the rated armature current. The machine parameters can be expressed in

terms of device dimensions and material properties in the following manner:

Backemf : E =
√

2πNsBAcf

Current : I =
JAw
Ns

Flux : Ψ = NsBAc

Inductance : L = N 2
s

µAc
lc

where Ns is the number of turns connected in series, B is the flux density, Ac is the core area, J is

the current density, Aw is the total area occupied by the winding, µ is the permeability and lc is the

length of the flux paths in the core and the air gap.

Motor designs for all three power levels have the same rated voltage and the same constant current

density. If linear dimensions of the motor are marked with x, then the back emf varies as NsBfx
2,

the current as x2

Ns
, the flux as NsBx

2 and the inductance as N 2
s x. The characteristic current can

now be expressed as

Ic(pu) = K
NsBx

2

N2
s x

x2

Ns

= K
B

x
(8.70)
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where K is a constant term which takes into account the parameters that do not change. If the back

emf is expressed as

E = keNsBfx
2 (8.71)

then the relationship between the back emf and the linear dimension x is

x =

√
E

keNsBf
(8.72)

After substituting (8.72) into (8.70), the final expression for Ic is

Ic(pu) = K

√
keNsB3f

E
(8.73)

Equation (8.73) indicates that the characteristic current can be increased if the number of turns,

flux density, or frequency are increased while the back emf is decreased. In this particular case

the back emf is constrained so the characteristic current can be increased only if the term NsB
3f

is increased without violating the back emf constraint. However, one must also not forget that

the back emf is a function of all these parameters and that it is not possible to change either the

number of turns, the flux density, or the frequency without changing the back emf. Hence, the

maximization of the characteristic current is a complex process of finding the optimal balance

between all these parameters with the back emf constraint as the main limiting factor in the design.

It may also be possible to further increase the characteristic current if the voltage rating of the

motor is used as a design variable. In that case a voltage level can be found for every required

power output which could yield maximum characteristic current higher than obtained in Figs. 8.51

and 8.52. This analysis remains as a suggestion for future work on the optimized design of IPM

motors.



250

Chapter 9

Conclusion and Suggestions for Future Work

This thesis has introduced new concepts related to analytical field calculations in surface PM mo-

tors. It has been recognized that the complex nature of conformal transformation can be utilized to

extract useful information about the field distribution in the slotted air gap of a surface PM motor.

The concept of complex relative air gap permeance has been developed from conformal transfor-

mation of the slot opening and used to accurately calculate the air gap field for both radial and

tangential components of the flux density.

The knowledge of radial and tangential components of the air gap flux density led to development

of the closed form solutions for cogging torque and electromagnetic torque based on the integral

of Maxwell’s stress tensor in the air gap.

The complex air gap permeance has also been utilized to determine the back emf waveform, the

winding inductances, and the waveforms of the flux density in the core, which in turn are used

for calculation of the core losses. It has also been shown how the armature winding air gap field

solution can be used to calculate the magnet losses caused by the space harmonics in the armature

winding MMF distribution and the time harmonics in the current waveform.

The main advantage of the proposed air gap permeance model over the existing models is its ability

to provide reliable information about the radial and the tangential flux density components in the

air gap of a surface PM motor. All the relevant motor parameters can be determined from this field

solution. The correctness of the model has been verified by comparing it with the finite element

model on an example of a 3.7 kW surface PM motor.

A systematic approach to the optimized design of surface and interior PM motors with the emphasis

on reduced cogging torque and reduced electromagnetic torque ripple has also been developed. The
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Differential Evolution (DE) has been introduced as a reliable method for design optimization which

can solve single and multiobjective optimization problems with continuous, integer or discrete

design variables. The effectiveness of the method has been demonstrated on examples of optimized

design of surface and interior PM motors. The multiobjective approach to design optimization

using the DE has been proposed as an alternative to a single objective optimization because it

gives more insight into the correlation between the conflicting design objectives and provides more

information about the compromises which need to be made between different design solutions.

The DE algorithm along with the analytical model of a 5 kW surface PM motor has been utilized

to find a set of nondominant design solutions with minimized volume and maximized efficiency as

the main design objectives. The correlation between these two objectives has been observed in the

form of a Pareto front. It has been shown that it is not possible to maximize the motor efficiency for

a desired torque output without oversizing the motor, both in terms of its physical dimensions and

torque production, when the current density is kept constant. With current density introduced as a

design variable it has been shown for the 5 kW motor that in order to increase the motor efficiency

by 1%, it is required to increase its volume by 100%.

The same DE algorithm has been successfully used to find the optimal design of an interior PM

motor which has a minimum cogging torque and a minimum difference between the characteris-

tic current and the rated current. The second objective is important, because as the characteristic

current approaches the rated current, the motor becomes capable of producing constant power in

theoretically infinite speed range. However, this goal is usually compromised by the back emf

constraint which does not allow the back emf at maximum speed to exceed a certain value to avoid

uncontrolled generation in the case of inverter failure. The optimal angular span of the rotor cav-

ities, which yields minimum cogging torque, has been found as a result of this simulation. This

optimal angular span corresponds to the similar result for an IPM motor reported in literature. The

IPM motor has been modelled using magnetostatic FE simulation. An approximative method for

cogging torque calculation has been developed which utilizes the complex relative air gap perme-

ance to estimate the cogging torque waveform based on only two magnetostatic FE simulations.
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The described multiobjective approach to optimization has been used to design and build a proto-

type IPM motor with the goals of maximizing the torque output from the constant volume of the

motor and maximizing the characteristic current of the motor. The experiments conducted on the

motor showed that the motor was not capable of producing the torque predicted by the FE method

in the design stage. This result was caused by a lower measured value of the q axis inductance

(∼10-20%) and higher value of the d axis inductance (∼10%) compared to the calculated ones.

This resulted in a significant loss of the reluctance torque. This difference between measured and

calculated Ld and Lq has been attributed primarily to the altered properties of the core material in

the vicinity of the air gap, where laminations had been punched and laser cut. This explanation

remains to be verified in the future by comparing other IPM prototype motors which might be

designed and constructed.

The optimized design and analysis of the IPM motor has been further expanded by comparing

designs of different power levels with two or three layers of cavities in the rotor. It has been shown

that the addition of the third layer of cavities increases the characteristic current of the motor for

all power levels and thus increases the power output at high speed. An additional analysis needs

to be done which would show if the addition of the third layer of cavities enhances the motor

performance sufficiently to justify its higher manufacturing cost.

As a part of the future work, several issues should be further addressed to augment the scope of

this thesis:

1. Make further improvements to the Differential Evolution optimization algorithm to acceler-

ate its convergence and make it a more robust tool for single objective and multiobjective

optimization of different types of electrical machines,

2. Expand the optimized design of IPM motors with two and three layers of cavities to include

the rated terminal voltage as a design variable and assess the possibility to further increase

the characteristic current of the motor,
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3. Investigate more thoroughly how the manufacturing processes, like punching and laser cut-

ting, influence the properties of the core laminations and how they affect the actual motor

performance compared to the performance predicted in the design stage.
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APPENDIX
Solution of the Neumann Integral for Two Filaments in an

Arbitrary Position in Space

The Neumann integral for two straight finite filaments in an arbitrary position to each other, or for

one finite and two semi-infinite antiparallel filaments can be obtained in analytical form [77, 79].

The solution is presented here for all practical cases which may occur.
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Fig. A.1 Two nonintersecting filaments AB and ab in space with common perpendicular Cc

The solution of the Neumann integral for the filaments in Fig. A.1 is given by

N = cosϕ


CB ln

∣∣∣aB
∣∣∣+

∣∣∣bB
∣∣∣+

∣∣∣ab
∣∣∣

∣∣∣aB
∣∣∣+

∣∣∣bB
∣∣∣−

∣∣∣ab
∣∣∣
− CA ln

∣∣∣aA
∣∣∣+

∣∣∣bA
∣∣∣+

∣∣∣ab
∣∣∣

∣∣∣aA
∣∣∣+

∣∣∣bA
∣∣∣−

∣∣∣ab
∣∣∣
+

cb ln

∣∣∣bA
∣∣∣+

∣∣∣bB
∣∣∣+

∣∣∣AB
∣∣∣

∣∣∣bA
∣∣∣+

∣∣∣bB
∣∣∣−

∣∣∣AB
∣∣∣
− ca ln

∣∣∣aA
∣∣∣+

∣∣∣aB
∣∣∣+

∣∣∣AB
∣∣∣

∣∣∣aA
∣∣∣+

∣∣∣aB
∣∣∣−

∣∣∣AB
∣∣∣


−



266

∣∣∣Cc
∣∣∣ cotϕ


arctan




∣∣∣Cc
∣∣∣

∣∣∣bB
∣∣∣
cotϕ+

cbCB∣∣∣Cc
∣∣∣
∣∣∣bB

∣∣∣
sinϕ


 −

arctan




∣∣∣Cc
∣∣∣

∣∣∣bA
∣∣∣
cotϕ+

cbCA∣∣∣Cc
∣∣∣
∣∣∣bA

∣∣∣
sinϕ


− arctan




∣∣∣Cc
∣∣∣

∣∣∣aB
∣∣∣
cotϕ+

caCB∣∣∣Cc
∣∣∣
∣∣∣aB

∣∣∣
sinϕ


+

arctan




∣∣∣Cc
∣∣∣

∣∣∣aA
∣∣∣
cotϕ+

caCA∣∣∣Cc
∣∣∣
∣∣∣aA

∣∣∣
sinϕ




 (A.1)

The distance ca, cb, CA or CB in (A.1) will be positive if the angle between its vector −→ca,
−→
cb ,

−→
CA or −−→CB and the directional vector of the infinite line p1 or p2 on which it lies is equal to zero.

The distance will be negative if that angle is 1800. All other distances in (A.1) are positive. The

directional vectors of the infinite lines p1 and p2 are −→
AB and

−→
ab. The angle ϕ in (A.1) is the angle

between the vectors −→AB and
−→
ab. As an example, the case when ca and CA are negative is shown

in Fig. A.2. The other cases when ca, cb, CA or CB are negative are also possible depending on

the position of the common perpendicular.
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Fig. A.2 Two nonintersecting filaments AB and ab in space with common perpendicular Cc and
negative ca and CA



267

SPECIAL CASES

a) Filaments are perpendicular (ϕ = 900)

N = 0 (A.2)

b) Filaments are parallel (ϕ = 00 or ϕ = 1800)

N =
∣∣∣AB
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(A.3)

If either AB or ab is infinitely long, (A.1) will not give a finite result. However, a finite solution

can be found in the case of two infinitely long parallel filaments which carry current in the opposite

direction. This is shown in Fig. A.3.
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Fig. A.3 One finite length AB and two infinitely long nonintersecting filaments a1b1 and a2b2
with common perpendiculars C1c1 and C2c2
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The Neumann integral for this case is

N = cosϕ


−c2b2 ln

∣∣∣b2A
∣∣∣+

∣∣∣b2B
∣∣∣+

∣∣∣AB
∣∣∣

∣∣∣b2A
∣∣∣+

∣∣∣b2B
∣∣∣−

∣∣∣AB
∣∣∣
− c1a1 ln

∣∣∣a1A
∣∣∣+

∣∣∣a1B
∣∣∣+

∣∣∣AB
∣∣∣

∣∣∣a1A
∣∣∣+

∣∣∣a1B
∣∣∣−

∣∣∣AB
∣∣∣
+

C1B ln

∣∣∣b2B
∣∣∣− C2B cosϕ− c2b2∣∣∣a1B
∣∣∣− C1B cosϕ+ c1a1

+ C1A ln

∣∣∣a1A
∣∣∣− C1A cosϕ+ c1a1∣∣∣b2A
∣∣∣− C2A cosϕ− c2b2

+

C2C1 ln

∣∣∣b2B
∣∣∣− C2B cosϕ− c2b2∣∣∣b2A
∣∣∣− C2A cosϕ− c2b2


−

∣∣∣C1c1
∣∣∣ cotϕ


arctan


 C1B∣∣∣C1c1

∣∣∣
sinϕ


 −

arctan


 C1A∣∣∣C1c1

∣∣∣
sinϕ


− arctan




∣∣∣C1c1
∣∣∣

∣∣∣a1B
∣∣∣
cotϕ+

c1a1C1B∣∣∣C1c1
∣∣∣
∣∣∣a1B

∣∣∣
sinϕ


+

arctan




∣∣∣C1c1
∣∣∣

∣∣∣a1A
∣∣∣
cotϕ+

c1a1C1A∣∣∣C1c1
∣∣∣
∣∣∣a1A

∣∣∣
sinϕ




+

∣∣∣C2c2
∣∣∣ cotϕ


arctan


 C2B∣∣∣C2c2

∣∣∣
sinϕ


 −

arctan


 C2A∣∣∣C2c2

∣∣∣
sinϕ


− arctan




∣∣∣C2c2
∣∣∣

∣∣∣b2B
∣∣∣
cotϕ− c2b2C2B∣∣∣C2c2

∣∣∣
∣∣∣b2B

∣∣∣
sinϕ


+

arctan




∣∣∣C2c2
∣∣∣

∣∣∣b2A
∣∣∣
cotϕ− c2b2C2A∣∣∣C2c2

∣∣∣
∣∣∣b2A

∣∣∣
sinϕ




 (A.4)

All of the distances in (A.4) which are not placed inside the absolute value signs can be positive or

negative, according to the rules given for (A.1).

SPECIAL CASES

a) Filaments are perpendicular (ϕ = 900)

N = 0 (A.5)

b) Filaments are parallel (ϕ = 00 or ϕ = 1800)

N =
∣∣∣AB

∣∣∣ ln

∣∣∣a1B
∣∣∣+ a′1B∣∣∣b2B
∣∣∣+ b′2B

− b′2A ln

∣∣∣b2B
∣∣∣+ b′2B∣∣∣b2A
∣∣∣+ b′2A

+ a′1A ln

∣∣∣a1B
∣∣∣+ a′1B∣∣∣a1A
∣∣∣+ a′1A

−
(
−
∣∣∣a1A

∣∣∣+
∣∣∣b2A

∣∣∣+
∣∣∣a1B

∣∣∣−
∣∣∣b2B

∣∣∣
)

(A.6)


