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Abstract. The motivation for this research 
stemmed from a desire to create visual aids to help 
researchers/managers interpret ensembles of 
decision tree outputs generated by various 
algorithms. The method employed a simulation 
experiment (using only bagging) followed by 
application of the new visualization tools on actual 
survey data. Simulated data, with a pre-specified 
structure, were “bagged” with the results 
presented using five graphical tools that recreated 
(and/or portrayed) the known data structures 
captured by the bagging algorithm. Then the same 
methodology was generalized to a structurally 
unknown, virgin (survey) data set. Results of the 
research are that five visual aids tools were 
examined (two of which are new approaches) and 
found to be useful for making action oriented 
interpretations from e.g., web-survey data. 
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1. Introduction 

Great deal of current classification (decision) 
tree research focuses on improving predictability 
by using various aggregation-based approaches 
([1],[2],[3],[8],[14], etc). However, there is much 
less information available that addresses the 
issue of “ensemble” interpretability. The decision 
to undertake this research was prompted by a 
desire to create visual aids for interpreting 
ensembles of decision tree outputs. 

Classification trees were first introduced by 
the statistical community [12], [5] and 
subsequently developed and popularized by 
researchers in the areas of machine learning / 
computer science ([13], etc.). Among the most 
well-known tree algorithms are CART [5], C4.5 
[13] and CHAID [10].  

Despite their many positive features ( ability 
to handle data of mixed type and missing values, 
robustness to outliers, etc.), classification trees 
have the one major disadvantage of being 

unstable vis-à-vis seemingly minor data 
perturbations (e.g., sampling), thus lowering 
their predictive power. One area of improvement 
has been proposed in the way of ensembles of 
trees obtained from bootstrap [7] re-samples. 
Among these are Breiman’s “bagging” trees [2], 
and the more recently introduced “Random 
Forests” [3]. Other ensemble algorithms, in 
which a large number of tree classifiers are 
“trained” on the training set and then combined 
to provide an improved aggregate / ensemble 
classifier, include AdaBoost [8], stacking [14] 
randomized trees [1], etc. Some of these 
combinations use equal weighting (e.g., 
bagging), whereas in other tree predictor 
scenarios (e.g., boosting) weights are 
subsequently adjusted.  

(Note: Here we demonstrate the visualization 
method using bagging outputs; however it  
applies as well to the many other ensemble 
techniques.) 

As mentioned, prediction error has been 
reduced by various methods; however,  in most 
cases the improvement comes at the expense of 
interpretability, i.e., user/manager confidence in 
explaining, planning, and making specific action 
oriented decisions based on the ensemble tree 
outputs is severely hindered. For example, when 
a decision tree algorithm is applied to, say… 
three successive random samples of (equal) size 
n from a large data set produce different subsets 
of variables purporting to interpret “churn” (or 
retention, up-sell/cross-selling, or fraud, or loan 
default) managers are rightfully confused. 

 The following research offers a procedure 
that retains the benefit of improved predictability 
provided by bagging, etc., while returning the 
benefit of researcher/operational interpretability. 

The basic research methodology was to use  
simulated data with a predetermined (i.e., 
known) structure, apply bagged trees and then 
present the results using 5 different types of 
display tools designed/selected to “recreate” (or 
rediscover) the structure inherent in the data and 
captured by the bagging algorithm. Each display 



 

 

is intended to identify additional patterns in the 
data/algorithm and thus improve  interpretability. 
We then apply the same approach to a  “real” 
data set (web survey) and demonstrate the 
interpretational benefits of the various proposed 
visualization tools. 

The paper is organized along the following 
lines: In Section 2 we briefly explain the basic 
idea behind the bagging ensemble technique and 
the proposed set of graphical displays. The 
simulation experiment and resulting tree outputs 
are displayed and explained in Section 3. In 
Section 4, we apply the proposed methodology to 
data obtained from a web survey concerning ICT 
usage in the Croatian primary and secondary school 
system. Conclusions are offered in Section 5.  

2. Ensemble of trees and visualization 

As mentioned previously, for simplicity and 
without loss of generalization, we’ll limit our 
current experiment to “bagging classification 
trees” [2],  which was one of the first in a series 
of aggregation-based tree models introduced 
over the period of the last ten years. 

Suppose that our data arose from a (general) 
statistical (learning) model (i.e., data mining 
model) 

,)( ε+= XfY  
where the random error ε has E(ε)=0, and is 

independent of X, where X are predictors, and Y 
is a response variable.  

For purposes of this research, we assume that 
Y is restricted to 0/1 values (i.e., the Y variable is 
the result of some Bernoulli process).  

The goal then of statistical learning would be 
to find a useful approximation         

 
 

to the function f(x). 

2.1 Ensemble trees: bagging 

Let 
 
  

be the classification tree prediction at input x 
obtained from the full “training” data 
Z={(x1,y1),(x2,y2)…(xN,yN)}  

Let  
 

   
be the classification tree prediction at input x 
obtained from the bootstrap sample Z*b, 
b=1,2,…B. 

The bagging estimate is defined by 
 

 
 

The above aggregation can be implemented 
either as “majority-rule voting” (i.e., the 
predicted class is the one with the most “votes” 
from the B trees), or as averaging class 
probabilities over the B trees. 

It has been shown [2],[9] that bagging can 
lead to improved prediction by reducing 
variance. Other tree ensembles (e.g., Random 
Forests) can reduce both variance and bias. 
However, here we are concerned only with the 
issue of providing tools for qualitative 
understanding of the relationship between the 
input (predictor) variables and the resulting 
responses (i.e., primarily with interpretability).  

2.2 Visualization 

In most tree applications, as in other data 
mining applications, predictor variables are not 
equally relevant. Often, especially given a large 
number of predictors, only a few variables have 
substantial influence on the response. The 
relative importance of a predictor variable Xk for 
a single decision tree was introduced by Breiman 
et.al. [4]  in 1984,  and described in [4] as: 
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where the sum is over the J-1 internal nodes 
for which Xk was chosen as the splitting variable. 
At each node t, one of the input variables Xv(t) is 
used to partition the region associated with that 
node into two sub-regions; within each a 
separate constant is fit to the response values. 
The particular variable chosen is the one that 
gives maximal estimated improvement 2

t̂
i in 

squared error risk over that for a constant fit 
over the entire region.  

In the case of bagged trees, the importance is 
just the average over B trees: 
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In conjunction with Random Forests, 
Breiman [3] introduced another measure of 
relative importance, based on his “out of the 
bag” concept, which shows promising results. 
Here we show only the results based on the 
“standard” measure of importance, as is currently 
estimated by SAS Enterprise Miner1 software. 
                                                      

1 SAS is a registered trademark of SAS Institute Inc. in the 
USA and other countries.  
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While the first three (of five) graphical 
displays (discussed below) are based on the 
predictor’s importance measure, the last two are 
based on a measure of the proximity of cases 
(i.e., observations), and were introduced by 
Breiman for the visualization of Random Forests 
outputs. 

The proximities are obtained using the 
following algorithm:  

1. Repeat for b =1 to B: Apply the tree Tb to 
the training set. If case i and case j both 
“land” in the same terminal node, increase 
the proximity between i and j by 1. 

2. Divide proximities by B, and set the 
proximity between case and itself to 1. 
Form an n x n  (n = number of cases in the 
training set) proximity matrix P. 

In the rest of this Section we briefly explain 
each of the  proposed diagrams. 

Diagram 1 (“Mean Importance”)  is a simple 
bar chart of averaged importance measures for 
all predictor variables. 

Diagram 2 (“BOF Clusters”) is the cluster 
means chart showing clusters of “similar” trees 
formed (or that visually flocked together, like 
Birds of a Feather – BOF) from the B x p matrix 
F of individual importance measures of p 
predictor variables “rated” by B trees Tb (b=1 to 
B). 

Diagram 3 (“BOF MDPREF”) is the 
multidimensional preference bi-plot [6] based on 
singular value decomposition of the F matrix. 
The tree vector points in (approximately) the 
direction of  the tree’s most preferred (important) 
variables (points), with preference increasing as 
the vector moves away from the origin. 

Diagram 4 (“Proximity Clusters”) is the 
cluster means chart showing clusters of “similar” 
cases formed from the matrix of proximities P, as 
“rated” by B trees. 

Diagram 5 (“Proximity MDS”) is the 
multidimensional scaling plot of “similar” cases  
formed from the matrix of squared distances D 
(D=I-P) between the cases, as “rated” by B trees. 

Partial dependence plots, discussed by Hasti, 
et. al. [9] are an alternative, potentially useful 
visualization tool for ensembles, but because 
they require data sets with a larger number of 
cases, we did not apply them in our simulation 
experiments.   

In the next two Sections we demonstrate the 
use of Diagrams 1-3, and either 4 or 5 for both 
simulated and real data. 

3. Simulation Experiments 

The first simulated data set (S1) uses an 
example introduced by Hasti et. al. [9] for the 
purpose of demonstrating the test error rate 
reductions made possible by using the bagged 
trees technique. It can be defined as follows:  

Generate a sample of size n=30, with two 
classes and p=5 variables (x1-x5), each having a 
standard normal distribution with pair-wise 
correlation 0.95. 

The responses are generated according to 
Pr(Y=1|x1≤0.5) = 0.2,  Pr(Y=1|x1>0.5)=0.8. 
(The Bayes error is 0.2.) 
A test sample of size 2000 was also 

generated. 
Classification trees (CART algorithm) were 

fit to the training sample and to each of B=100 
bootstrap samples. (Pruning was not used.) 

The second simulated data set (S2) differs 
from the first: the pair-wise correlation remains 
at 0.95 between x1 and x2; however, the other 
pair-wise correlations are set to 0. 

At first glance, the diagrams in Figures 1 and 
2 “Mean Importance” for data sets S1 and S2,  
presented in Figures 1 and 2 respectively, do not 
reveal much differentiation between the two 
datasets. Closer examination indicates that the 
decrease in average importance measures for the 
S2 data set is more nonlinear than it is for S1 (as 
is expected). 

Still, the value of this simple chart is 
questionable given the small number of cases 
and variables in the case of S1 and S2. It’s value 
will be demonstrated more convincingly on the 
real data using a larger number of cases and 
many more variables.  
 

 
Figure 1. Diagram 1, Mean importance for the 
simulated data set S1, n= 30 
 



 

 

 
Figure 2. Diagram 1, Mean importance for the 
simulated data set S2, n= 30 
 

Figures 3 and 4 are show much more 
differentiation among the structures 
“rediscovered” from the two data sets. From data 
set S1 BOF identified three clusters of “similar 
trees”: Cluster 1 encompasses trees in which (on 
average) only predictor x1 was “rated” as being 
“important” (for building the trees). In cluster 2 
are trees that split mostly on x1 and x3; in cluster 
3 on x1 and x4. This unstable selection of 
predictors seems to reflect the multicollinearity 
introduced for the simulated data experiment. 
 

 
Figure 3. Diagram 2, “BOF Clusters” for the 
simulated data set S1, n= 30 
 

On the other hand, Diagram 2 (“BOF 
Clusters”) for data set S2 (Figure 4) shows 
almost perfect “recreation” of the induced pattern 
of “surrogate” variables…the first cluster contain 
trees that split almost exclusively on x1, the 
second on x2, with cluster 3 splitting on both x1 
and x2.  
 

 
Figure 4. Diagram 2, “BOF Clusters” for 
simulated data set S2 

 
These same findings can be confirmed using 

Diagram 3 (“BOF MDPREF”), shown in Figures 
5 and 6. Clearly, there is not much “preference” 
shown for any particular predictor variable in S1, 
while there are obvious preferences for x1, x2, 
and both x1 and x2 in S2.  

 
Figure 5. Diagram 3, “BOF MDPREF” for 
simulated data set S1 
 

Figure 7 portrays clustering of similar cases 
as captured by the bagged tree algorithm applied 
to the S1 data set. Cluster one includes cases 
with the centroid located on a negative pole (for 
all predictor variables) and includes only the 
cases that were classified as 0. Cluster two is at 
the other extreme  (i.e., all predictor variables 
means being positive and close to 1) and includes 
approximately 80% of the cases classified as 1 in 
this cluster. Cluster three’s variable means are 
slightly above zero, with the overall average 
close to 0.5, containing approximately 20% of 
the cases classified as 1 in this cluster.  



 

 

 
Figure 6. Diagram 3, “BOF MDPREF” for 
simulated data set S2 

By this (BOF) method, the known data 
structure can be inferred (or recreated in its 
essence) almost perfectly. BOF gives us a 
panoramic view of the forest of trees being 
generated by the bootstrap. 
  

 
Figure 7. Diagram 4, “Proximity Clusters” for 
the simulated data set S1, n= 30 

 
Figure 8. Diagram 4, “Proximity Clusters” for 
the simulated data set S1, n= 30  

 
Finally, the same approach (“Proximity 

Clusters” diagram), when applied in the case of 
bicollinearity  (S2) produces  2 clusters: one with 
high positive x1 and x2 means and almost all 
cases classified as 1, and the other with all 
cluster means relatively low, and with 
approximately 20% of the cases classified as 1. 

4. Survey Data  

The proposed visualization tools were applied 
to data from a recent survey of ICT usage in 
Croatian primary and secondary schools [11]. 
Here we present the results of the bagged tree 
algorithm applied to 200+ variables and 25,000+ 
cases (partitioned into training, validation and 
test sets in a 50%: 25%: 25% ratio). The 
response variable that was of major interest was 
a 0/1 variable “classroom use of a computer by 
educators”. 

The value of diagram 1 is obvious in this 
case: only the first 4 or 5 variables are relevant to 
explaining the targeted behavior of the educators. 

A more insightful view is provided with 
diagrams 2 and 3: (BOF Trees): In the first group 
(cluster) are trees that start by splitting on 
variable q038, in the second group, splitting 
starts with Q039, and in the third cluster are trees 
that start with either Q024, Q038, Q046 or Z8. 
(Q038 and Q039 seem to be surrogate variables.) 

Diagram 5 (“Proximity MDS”) shows 3 
groups of observations: A group of educators 
who never use a computer in the classroom, and 
the other two clusters, differentiated along the 
second dimension. Additional interpretably 
useful information can be provided by examining 
the correlations among MDS dimensions 1 and 2 
and the predictor variables.  

 

 
Figure 9. Diagram 1, “Mean importance” for the 
survey data  



 

 

 

 
Figure 10. Diagram 2, “BOF Clusters” for the 
survey data 
 

 
Figure 11. Diagram 3, “BOF MDPREF” for 
survey data 
 

 
Figure 12. Diagram 5, “Proximity MDS” for the 
survey data 

 

5. Conclusion 

A useful  “suite” of visualization tools (five 
altogether, with two being original inventions / 
applications) has been examined and applied to 
both simulated  and actual date structure 
problems/ predictions.  

Results indicate that since BOF type graphics 
more easily enable action oriented interpretation, 
software development effort could profitably be 
applied to “seamlessly” linking outputs from 
ensemble algorithms directly to the types of 
visual “information technology interface” tools 
presented above.  

Future research is envisioned for expansion 
into multi-class problems (versus the binary 
responses used above) and into wider Monte 
Carlo experimentations (different pre-defined 
structures, different   variable / sample sizes, 
etc.).   
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