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Abstract: An attempt has been made to establish a nonlinear dynamic discrete-time 
neuron model, the so called Dynamic Elementary Processor (DEP). This dynamic 
neuron disposes of local memory, in that it has dynamic states. To accelerate the 
convergence of proposed extended dynamic error-back propagation learning 
algorithm, the adaptive neuron activation function and momentum method are 
applied. Instead of most popular bipolar and unipolar Sigmoid neuron activation 
functions, the Gauss activation function with adaptive parameters is proposed. Based 
on the DEP neuron with adaptive activation function in hidden layer, a Dynamic 
Multi Layer Neural Network is proposed and tested in prediction of a Glass-Mackey 
time series. The learning results are presented in terms that are insensitive to the 
learning data range and allow easy comparison with other learning algorithms, 
independent of machine architecture or simulator implementation. 
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1. Introduction 
 
Since artificial neural networks can effectively represent complex nonlinear 
functions, they proved to be a very useful tool in identifying of highly nonlinear 
systems. The neuron models most commonly applied are the Feed Forward 
Perceptron used in multi layer networks, and the Radial Basis Function neuron (RBF) 
used in RBF neural networks with one step learning algorithm. Both networks are 
proved to be universal approximators of any static nonlinear mapping. They are 
capable of identifying any nonlinear unique state function to arbitrary desired 
accuracy. 
Recently, interests have been increasing towards the usage of neural networks for 
modeling and identification of dynamic systems. These networks, naturally, involve 
dynamics in the form of feedback connections and are known as Recurrent Neural 
Networks. Several learning methods for recurrent networks have been proposed in 
literature. Most of these methods rely on the gradient methodology and involve the 
computation of partial derivatives, or sensitivity functions. In this sense, they are 
extension of the well-known error back propagation algorithm for feedforward neural 
networks (Zurada, 1992). Examples of such learning algorithms (Narendra, 1990), 
(Kosmatopoulos, 1992) include the error-back propagation through-time algorithms, 
the real-time recurrent learning algorithm, the recurrent back-propagation, and 
dynamic back-propagation. Most of these methods, demanding certain knowledge of 
dynamic system behavior and in their application one must estimate the order of 
identified system in advance. When using dynamic neural network proposed in this 
paper, one does not have to estimate the order of the identified system in advance. 
Unfortunately error-back propagation learning algorithm can be very slow for 
practical applications. Over the last years many improvement strategies have been 
developed to speed up error-back propagation and improve neural network learning 
and generalization features. All of these strategies can be separated in three basic 
categories. The first category deals with the improvement of the error back-
propagation learning algorithm (Smagt, 1994). The second category deals with the 
neurons weights initial values (Nguyen & Widrow, 1990; Darken & Moody, 1991; 
Kecman, 2001) and the third category deals with neural network topology 
optimization (Lawrence at al., 1996). 
In this paper the hidden layer neuron structure modification and activation function, 
with adaptive parameters are proposed. With applying only momentum method for 
speeding up the learning algorithm and proposed neuron activation function, neural 
network training procedure can be much efficient and faster. More over, the neural 
network with proposed activation function has the less number of neurons. And 
finally, trained neural network with smaller topology has much faster response, which 
is more promising in real-time domain applications. 
 
2. Dynamic neuron model 
 
The basic idea of proposed dynamic neuron concept is to introduce some dynamics to 
the neuron transfer function, such that the neuron activity depends on the internal 



neuron states. In this study an ARMA (Auto Regressive Moving Average) filter is 
integrated within the well known static neuron model. Such a filter allows the neuron 
to act like an infinite impulse response filter, and the neuron processes past values of 
its own activity and input signals. The structure of a proposed dynamic neuron model 
is plotted in Fig. 1. The filter input and output at time instant (n) are given in (1) and 
(2) respectively (Novakovic at al., 1998): 
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Fig. 1. Dynamic neuron model. 
 
The input of the neuron activation function (AF) is given in (3), and widely used 
nonlinear Sigmoid unipolar activation function and Gauss activation function with 
adaptive parameters are described in (4) and (5) respectively. 
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3. Dynamic neural network 
 
The neural network (Fig. 2) proposed in this study has three layers. Each i-th neuron 
in the first, input layer has a single input which represents the external input to the 



neural network. The second layer is consisting of dynamic neurons, which are 
presented by Fig. 1. Each j-th dynamic neuron in hidden layer has an input from 
every neuron in the first layer, and one additional input with a fixed value of unity 
usually named as Bias. 
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Fig. 2. Dynamic neural network. 
 



In hidden layer adaptive Gauss activation function is suggested. Gauss activation 
function is well known as basic activation function for Radial Basis Function (RBG) 
neural networks. RBF is a real specialist for classification problems, and learns in one 
step learning algorithm. 
Each k-th neuron in the third, output layer of proposed dynamic neural network has 
an input from every neuron in the second layer and, like the second layer one 
additional input with fixed value of unity (Bias). The linear activation function given 
in (6) is a chosen activation function for all static neurons (Fig. 3) in output layer. 
Such static neuron topology is widely used in feed-forward error-back propagation 
neural networks. 

)n(net))n(net()n(O kkkk == γ            (6) 
where  K,...,,k 21=  is the number of neural network outputs. 
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Fig. 3. Static neuron model in output layer with linear activation function. 
 
4. Learning algorithm 
 
The goal of the learning algorithm is to adjust the neural network learning parameters 
ϑ in order to determine the optimal parameter set that minimizes a performance index 
E (Zurada, 1992) as follows : 
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where N is the training set size, and the error is the signal defined as difference 
between the desired response Od(n) and the actual neuron response O(n). This error is 
propagated back to the input layer through the dynamic filters of dynamic neurons in 
hidden layer. Iteratively, the optimal parameters output layer weights (V), hidden 
layer weights (W), filter coefficients (a1, a2, b0, b1, b2) and DEP activation function 



parameters (c and σ, (5)) for all processing elements in hidden layer are approximated 
by moving in the direction of steepest descent (10): 
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where J-1 is number of hidden nodes. J stands for threshold neuron, also known as 
Bias neuron with fixed unity output (Fig. 2).  
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where η is a user-selected positive learning constant (learning rate). The choice of the 
learning constant depends strongly on the class of the learning problem and on the 
network architecture. The learning rate values ranging from 10-3 to 10 have been 
reported throughout the technical literature as successful for many computational 
back-propagation experiments. For large constants, the learning speed can be 
drastically increased. However, the learning may not be exact, with tendencies to 
overshoot, or it may be never stabilized at any minimum. To accelerate the 
convergence of the learning algorithm given in (9), momentum method is applied. 
The momentum method is given in (11) and involves supplementing the current 
learning parameter adjustment (10) with a fraction of the most recent parameter 
adjustment. This is usually done according to the formula  
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where α is a user-selected positive learning constant.  
Typically, α is chosen between 0.1 and 0.8. The arguments n and n-1 are used to 
indicate the current and the most recent training step (instant time), respectively. To 
simplify the derivation of the learning algorithm, a linear time shifting operator can 
be defined by expression (12) as follows, 
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According to the Fig. 1 it is obvious that : 
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Therefore, the used activation function in output and hidden layer has to be 
differentiable. Using the time shifting operator defined in (12), four cases can be 
distinguished: 
 1)   ϑ is a filter coefficient of the numerator B(z) : 
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 2)   ϑ is a filter coefficient of the denominator A(z) : 
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 3)   ϑ is a neuron input weight : 

  [ ] [ ] [ ])n(u
)z(A
)z(B)n(D

jw

)n(y~
j==

=
ϑ

ϑ∂ϑ
∂ ,       (16) 

 4)   ϑ is a neuron threshold : 
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)n(Dϑ  is a current parameter state within the dynamic filters described on the right 
side of equations (14), (15), and (16). Thus, to determine the change of the dynamic 
neuron activity depending on a filter and weight parameters, the gradient has to be 
calculated through time by the memory of the used filter. The weight adjustment in 
output layer (Fig. 2) can be obtained by expansion (19). 

 
)n(

)n(net
)n(net

)n(O
)n(O

)n(E

kjv)n(
)n(E k

k

k

k ∂ϑ
∂

∂
∂

∂
∂

ϑ∂ϑ
∂

=
=

 ,       (18) 

 .)n(y))n(O)n(d(

kjv)n(
)n(E

jkk −−=
=ϑ∂ϑ

∂         (19) 

Finally, a measure of performance must be specified. All learning and test error 
measures will be reported using non-dimensional error index NRMS, Normalized 
Root Mean Square error. “Normalized” means that the root mean square is divided by 
the standard deviation of the target data (Lapedes & Farber, 1987). Thus the resulting 
error index, or index of accuracy is insensitive to the dynamic range of the learning 
data, and allows easy comparison with other learning algorithms, independent of 
machine architecture or simulator implementation. 
 
5. Experimental results 
 
Many conventional signal processing tests, such as correlation function analysis, 
cannot distinguish deterministic chaotic behaviour from stochastic noise. Particularly 
difficult systems to predict are those that are nonlinear and chaotic. It is known that 
chaos has a technical definition based on nonlinear, dynamic systems theory 
(Lapedes & Farber, 1987). Examples of chaotic systems in nature include chemical 



reactions, plasma physics, turbulence in fluids, lasers, to name a few. When 
parameters are varied, chaotic systems also display the full range of nonlinear 
behaviour (limit cycles, fixed points, etc.). Therefore chaotic systems provide a good 
test bed in which to investigate techniques of nonlinear signal processing, such as 
neural networks. 
Lapedes and Farber (Lapedes & Farber, 1987) suggested the Glass-Mackey time 
series as a good benchmark for learning algorithms, because it has a simple 
definition, yet its elements are hard to predict (the series is chaotic). Glass-Mackey 
equation given in (20) is a nonlinear differential delay equation with an initial 
condition specified by an initial function defined over a strip with τ. 
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Choosing the initial function to be constant function, with a = 0.2,  b = 0.1 and τ = 17  
yields a time series x(t) obtained by equation (20), that is chaotic with a fractal 
attractor of dimension 2.1 . Increasing τ to 30 yield more complicated evolution and 
fractal dimension (dA) of  3.5. The time series for 1000 time steps for  τ = 30  (time in 
units of τ) is plotted in Fig. 4. 
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Fig. 4. Glass-Mackey time series. 
 
The goal of the task is to use known values of the time series up to the point x(t), to 
predict the value  x(t+P) at some point P  in the future. The standard method for this 
type of prediction is to create a mapping  f()  as follows : 

 ( ) .)mt(x),...,t(x),t(x),t(xf)Pt(x ∆−∆−∆−=+ 2       (21) 
where P is a prediction time into the future, ∆ is a time delay , and m is an integer. 
According to the equation (21) an attractor can be reconstructed from a time series by 



using a set of time delayed samples of a series. By choosing ∆=P  (Lapedes & 
Farber, 1987) it is possible to predict the value of time series at any multiple of ∆ 
time steps in the future, by feeding the output back into the input and iterating the 
solution. In this study we choose to use 6=∆=P , since results can be compared 
with previous experiments where 6=P . Takens theorem (Takens, 1981) states the 
range for dimension of the attractor (dA)  : 

 121 +<+< AA dmd .             (22) 
For 30=τ  we choose m=4. It is obvious that for 6=∆=P  and 4=m  the expansion 
(21) has the following form : 
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Takens theorem unfortunately gives no information on the form of the f() in (23). 
Therefore, it is necessary to point out that the neural networks provide a robust 
approximating procedure for continuos f(). 
The network which will be used to predict the chaotic system (23) is given in Fig. 2. 
According to the equation (23) the input layer consists of 5 neurons (input buffer), 
and output layer consists of one static neuron with linear activation function. For 
hidden layer we suggested 5 dynamic neurons. Lapedes and Farber (Lapedes & 
Farber, 1987) for the same task used 20 hidden static neurons arranged in two hidden 
layer architecture. 
For training the neural network described above, we used first 500 values plotted in 
Fig. 4. Training started with random weights values between -1 and +1, while the 
filter coefficients a1 and a2 were initialized to zeros to support a stable learning 
procedure. The network was trained with 010.=η  and 80.=α . 
The trained network were used to predict new sets of values x(t) in the future. 
Learning and testing results are given in Table 1. 
 

Neuron AF Unipolar Sigmoid Adaptive Gauss 
Network Topology 5-10-1 5-5-1 5-10-1 5-5-1 
Learning Epoch's 70000 80000 35000 50000 
Learning (NRMS) 0,069 0,053 0,027 0,057 
Test 1. (NRMS) 0,069 0,071 0,048 0,043 
Test 2. (NRMS) 0,071 0,067 0,052 0,058 
Test 3. (NRMS) 0,073 0,078 0,050 0,052 

Table 1. Learning and test results. 
 
It is obvious that proposed neuron structure modification concerning integrated 
ARMA filter and adaptive Gauss activation function gives very promising results. 
The goal was achieved with only 5 hidden nodes. Neural network with adaptive 
activation function learns faster and have smaller topology. The table 1 shows that 
neural network with adaptive Gauss activation function for almost the same learning 
error rate, needs almost twice less learning steps. More over, neural network with 
adaptive activation function perform mapping in all tests with much smaller error rate 
(NRMS). To illustrate the both networks generalization capability, the 300 data 
points of test 2 are given in Fig. 5. 
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Fig. 5. Test 2. for the 5-5-1 neural network topology.  
 
According to the Fig. 5 it is obvious that both neural networks solved the problem. 
Still, neural network with adaptive activation function perform better mapping. This 
is clearly presented with Fig. 6 where we made a zoom of one part of Fig. 5. 
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Fig 6. The set of 50 data points from test 2. 
 
All other experimental results shows the same results. Another data set of 500 data 
points of test 3 is given in Fig. 7. As in previous test, both neural networks 
generalized well and made a good prediction of chaotic system dynamic behavior. 
Again, the neural network with adaptive activation function perform better mapping. 



In Fig. 8 we zoom one part of Fig. 7. It is easy to see the real domination of neural 
network with adaptive Gauss activation function. 
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Fig. 7. Test 3. for the 5-5-1 neural network topology. 
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Fig. 8. The set of 50 data points from test 3. 
 
6. Conclusion 
 
Within this approach a Multi Layer Perceptron with distributed dynamics based on 
the DEP neuron model and adaptive activation function was proposed to predict a 
time series of nonlinear chaotic system. An attempt was made within this approach to 
establish a basic dynamic neuron model, which processes multi inputs and does not 
require past values of the process measurements or prior information about its 
activity functions. 



The main advantage of proposed dynamic neuron model is that it reduces the network 
input space. The advantage of adaptive activation function is speeding up the learning 
algorithm. For the same learning error, neural network with adaptive Gauss activation 
function need almost twice less learning steps and in the same time obtain better 
generalization then the neural network with unipolar Sigmoidal activation function. 
Adaptive Gauss activation function shows the great possibility in solving the local 
minima's problems. 
The proposed dynamic neural network offers a great potential in solving many 
problems that occurs in system modeling with a special emphasis on the systems with 
characteristics such as nonlinearity, time delays, saturation or time-varying 
parameters. 
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