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Abstract

The influence of factors which can leadit@orrect prediction of dymaical stability of the periodic response of oscillators
which contain a non-linear restoring characteristic with discontinuous or steep first derivative is considered in this paper. For
that purpose, a simple one degiefreedom system with a piecesé-linear force-displacemerglationship subjected to a har-
monic excitation is analysed. Stability ofetlperiodic response adihed in the frequency domaily Ibhe incremental harmonic
balance method is determined by using the Floquet-Liapouremrém. Responses in the time domain are obtained by digital
simulation. The accuracy of determining the eigenvalues of the monodromy matrix (in the considered example) significantly de-
pend on the corrective vector notfr}||, the accuracy of numerical determination of the times when the system undergoes a
stiffness change, and on the number of step functidr{ssed in the Hsu's procedure), only g} || > 1x 1072, ¢ > 1x 102
andM < 2000. Otherwise, except if the maximum modulus of the eigenvalues of the monodromy matrix is very close to unity,
their influence on estimation of dynamicahbtlity is minor. On the contrary, neglectjivery small harmonic terms of the actual
time domain response can cause a very large error in the evaluation of the eigenvalues of the monodromy matrix, and so they
can lead to incorrect prediction of the dynizal stability of the solution, regardie of whether the maximum modulus of the
eigenvalues of the monodromy matrix is close to unity or not.
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1. Introduction

Among the great number of variougpes of non-linear dynamic systems awepecific group constitutes non-linear
systems described by differential etjpas which contain nonlinearities with disatinuous or steep first derivative (for
example, systems with clearance). Responses (both periodic and aperiodic) of these systems can be relatively easily deter-
mined in the time domain by using digital simulation. But procedures of that kind can be exceptionally time consuming,
particularly inside the frequency ranges of co-existence of multiple stable solutions (where many combinations of initial
conditions have to be examined for obtaining all possible steady-state solutions), for lightly damped systems (since a great
number of excitation periods must be simulated to obtain a steady-state response), and when the state of the system is
near to bifurcation. Moreover, these methods are not suitable for obtaining unstable solutions and for bifurcation analysis.
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On the other side, very efficient methods for solving this type of non-linear differential equations in the frequency do-
main are multi-harmonic balance theds (Lau et al., 1983; Pierre et al985; Choi and Noah, 1988; Wong et al., 1991;

Lau and Yuen, 1993; Leung and Chui, 1995; Kahraman and Blankenship, 1996; Lerusse et al., 1996). These methods be-
come exceptionally efficient in combination with path following techniques (Narayanan and Sekar, 1998; Cardona et al., 1998;
Raghothama and Narayanan, 1999) and can be successfully applied to a wide range of non-linear problems. The latter are
very well suited for parametric studies because a new solution can be sought by these methods, with the previous solu-
tion used as a very good approximation. Since these methods enable obtaining both dynamically stable and unstable solu-
tions, as well as bifurcation analysisgetldetermination of the dynawgal stability of these solutihs should be reliable and
numerically efficient. As the estimation of dynamical sliap by Floquet-Liapounov theorem could be a sensitive proce-

dure (Szemplinska-Stupnicka, 1990; Awrejcewicz et al., 1998; Wolf and St&§b9; Awrejcewicz and Lamarque, 2003;

Wolf et al., 2004), the influence of the facs which can lead to incorrect prediatiof the dynamical stality of the response

is considered in this paper. For that purpose, a simple oneéeagfreedom system with piecese-linear force-displacement
relationship subjected to a harmonic excitation is analysed. The considerable advantage of using this piecewise-linear model
is the possibility to determine elements of Jacobian makrj>and the correctofr} in explicit form, as well as to express the
monodromy matrix exactly as a product of matrix exponentials, what is not possible for a model with a general non-linear
function. The stability of the periodic solutions obtained in the frequency domain by the incremental harmonic balance method
(IHBM) is estimated by the Floquet—Liapounov theorem (Minorsky, 1962). Responses in the time domain are obtained by
digital simulation.

2. Modéd of a mechanical system with a clearance

A model of a simple mechanical system with clearance is shown in Fig. 1. It consists of an inertia eteménear viscous
damperc, and a non-linear elastic elemént(x). The non-linear elastic element is defined by a piecewise-linear fungtion
and a coefficienk. When the system is excited by a periodic harmonic far¢e), the motion of the system can be described
by the non-linear differential equation:

2
m:IT; + c% +kg(x)=F(t) = fo+ fccox82t) + fssin($21), 1)
where fp represents mean transmitted forgg, and fg are force component amplitudes betcorresponding harmonic terms,
and§$2 is the excitation frequency.
The piecewise linear functiog(x) and its derivative are shown in Fig. 2(a) and Fig. 2(b) respectivetienotes one-half
of the clearance space. Since the pohe of prediction of the dymaical stability is based on the derivative of a non-linear
function, the expressions for the non-linear function and its derivative are given:

g(x) =h*(x — b*), 2)
d
89 e, @
0x
where:
1, b<ux, b, b < x,
h*=10, —b<x<b, b*=10, —b < x<b, (4)
1, x<-b, —b, x <-—b.
F() x

kg(x)
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Fig. 1. Model of the dynamic system.
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Fig. 2. Non-linear functiory (x) (a) and its derivative (b).

3. Short description of theincremental harmonic balance method (IHBM)

By introducing a non-dimensional tinseas a new independent variable, the differential equation (1) can be rewritten in the
non-dimensional form:

2 2= _
ncdx  2cndi _ _ _ o
S 7T T = cos\vé sin(vé), 5
gzt g T 8@ = Jot fccodvh) + fssin(vo) 5)
where:
_ X - b c k B fo _ fe
X =—-, b:—, wo = -, =— = — ,
! AR IR T mlw? e mlw?
7 2 Qt
fs= fsz, =2, t=aw-t, §=-—L=""
mla)o wo v v

In this way, the period of the response is always Pegardless of the number of subharmonicicluded in the supposed
approximate solution. The non-dimensional tiéndiffers from the usually used non-dimensional time- «wg - ¢, scaled in the
way that a period of the free oscillatiqof corresponding linear system) is 2Any characteristic dimension of the system is
denoted by here.

The supposed approximate solution is given by:

N
X=Y a;cosif +b;sinio = [T1{a}, (6)
i=0
where:

[T]1=[1,co0sh,cosd,...,cOSNG,sinb,sind, ..., sinNG],

{a} =lag. a1, ...,an.b1.ba,....by1".

N = vK represents the number of all harmonics included in the supposed soluti®ithe number of subharmonics a&d

is the number of superharmonics. By applying this method, which consists of two basic steps: incrementation and Galerkin’s
procedure, the non-linear differential equation (5) is transformed into the system &f 2linearized incremental algebraic
equations:

(k) {Aa) L = (r), @)
(a1 = {al} + (Aa}/ T, (8)

with Fourier coefficientsdp, a;,b;, i =1,..., N) as unknowns. In Egs. (7) and (8)is the number of iterations. In each
incremental step, only linear (i.e. linearized) algebraic equations have to be formed and solved. A solution is obtained from
the iteration process when the corrective vector ndifm| is smaller than a certain (arbitrary) convergence criterion. The
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Fig. 3. Solutions to the equatiofis= b andx = —b.

comprehensive description of the method, its application to piecewise-linear systems and the way of determining elements of
Jacobian matrifk] and the correctofr} in explicit form is given by Wong et al. (1991). In the case of continuous functions
(for example, a hyperbolic tangent or a sigmoid function (Lok and Wiercigroch, 1996)) some elemghitsuad {r} can be
determined only by numerical integration.

Generally, the accuracy of the approximate solution obtaiyagsing IHBM depends on the number of harmonics included
in the solution, the accuracy of procedures used for determining elemefit$ afid {r}, and the value of the convergence
criterion. The procedures of determinifig and{r} depend on the system considered, as well as on the multi-harmonic balance
method used. Since the IHBM described by Wong et al. (1991) is used in this work, the accuracy of the procedure of determining
elements ofk] and{r} depends only on the precision of the numerical determination of timi@swvhich the system undergoes
a stiffness change (Fig. 3).

4. Thestability of the steady state solution
When the periodic solution is obtained, the stability of the given solution can be determined by examining the perturbed
solutionx*:
¥ =%+ Ax*, 9

whereAx* is a small perturbation of a periodic soluti®nBy substitution of Egs. (9) in (5and after expanding the non-linear
function g(x) in Taylor's series about the periodic solution while neglecting non-linear incremental terms, one obtains a linear
homogeneous differential equation with time changing periodic coefficberits) /dx:

n2 A% 2¢ndAx N dg(x)

v2 dh2? v do ax
When the steady state solutio®) is determined, the values 8f(x)/dx are known inside the period of the response. A very
efficient and very often used method fagtdrmining the stability of th periodic solution is basl on the Floquet—Liapounov

theorem (Minorsky, 1962; Nayfeh and Balacidram, 1995). For that ppwse Eqg. (10) can be rewrittén the state variable
form as:

AF* =0, (10)

dx* —
{ o }=[A<e)]{X*}, a
where
* Ax* dx* dAx* /do 0 1
{X }z{dM*/dQ } {W} ={d2A)z*/d92}’ [A®)] = [_:_g(a%go) _z%;} (12)

Since the matrifA(6)] is a periodic function ob with period 2r, the stability criteria are related to the eigenvalues of the
monodromy matrix, which is defined as thi&te transition matrix at the end of operiod. According to Floquet—Liapounov
theorem, the solution is stable if all the moduli of the eigenvalues of the monodromy matrix are less than unity. Otherwise the
solution is unstable. Bifurcation occurs when one of the eigenvalues of the monodromy matrix crosses the unit circle in the
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complex plane (i.e. when one of the moduli of the monodromy matrix reaches unity). Generally, it is not possible to derive
an analytic expression for the transitioratrix. But, if the non-linear face-displacementetationship is piecewise-linear, its
derivative(dg(x)/dx = h*) is, according to (4), constant inside each of the interf&l®; 1] (Fig. 3). Fig. 3 shows a period

of the response whem = 0 andfy 1 = 2. There areL times denoted a8, o, ..., 01, in which the system undergoes

a stiffness change. Consequenil§(6;, 6, +1)] is also a constant matrix inside that interval. According to D’Souza and Garg
(1984), for the constanitd (6;, 6;1-1)] (inside the interval6;, 6;11), transition matri{® (6; 11, 6;)] can be expressed as:

[(p(9i+1, 9[)] — e[A(eis9i+1)](0i+1—0i); (13)
and for the whole intervdl0, 2] according to Wong et al. (1991) one obtains:

L
[@(27‘[, O)] — l_[ AO:,6i+1)16;i11—6;) (14)
i=0

Beside the precision of numerical determination of tifjeis which the system changes stage stiffness regioa §, ¥ = —b),

the only approximation occurring in this procedure is the accuracy of computation of the matrix exporlé#ftidife1—:)

and the product of matrix exponentiglg-_, el4©@-%i+D1¢+1-6) To evaluate the matrix exponential and the product of matrix
exponentials as accurately as possible, the algorithms recommended by Cardona et al. (1998) are used. The influence of using
other procedures is not considered in this paper. If a non-linear force-displacement relatigpshig a continuous non-

linear function, its derivative is a time changing function, and, consequéut{y,)] is then a time-changing matrix. So, the
monodromy matrix cannot be obtained in the previously described way, i.e. by using (13) and (14). Among the various methods
of approximating the monodromy matrix, Friedman et al. (1977) concluded that the most efficient procedure is the one proposed
by Hsu and Cheng (1974), i.e. by approximating the periodic matri€)] by a series of step functions. For that purpose the
period of the response £3 is divided intoM equal intervals\d = 27 /M. Inside each of the intervals, the time changing matrix
[A(0)] is replaced by its average value, i.e. by a constant mdrj, j = 1,2, ..., M. For thej-th interval, the transition matrix

can be expressed as:

[@]=eAiA0 (15)
and for the whole period of the resporife2r] as:
M
[@(27,0)] =[] 4147, (16)
j=1

For numerical evaluation of (15) and (16), the algorithms recommended by Cardona et al. (1998) are used, i.e. the same ones as
for the evaluation of (13) and (14).

Consequently, if a non-linear function is continuous, besttiesfactors mentioned in Seati8, the stability estimation
depends additionally on the numb#r of intervalsA¢, and the way of determining the constant mafex ].

5. Numerical examples

Fig. 4 shows an amplitude-frequency plot for the parameter vabuest, ¢ = 0.03, fo = 0.25, f- =0.25, fg = 0, obtained
by IHBM for the value of corrective vector norif{r}|| < 1 x 106, and the absolute accuracy of numerical determination of
times#; in which the system undergoes stiffness change?.22 x 10-16 (since the non-dimensional tindes used, the period
of the response is alwaysr2. The point considered in further examples (obtaineg @t0.5243) is indicated in Fig. 4 by«

". Since the governing equation (5) is written in the non-dimenai form, all values in Figsl—10 are also non-dimensional.
Fig. 5 shows the dependence of accuracy of determining effective ampiiju@dtained by IHBM) and maximum modulus of
the eigenvalues of the corresponding monodromy m#tfiax|, on the value of corrective vector norffr}|| and the number of
harmonicsN included in the supposed solutioN (< 12, 16 and 20). Fig. 5(a) shows that in the considered rand¢rof, the
effective amplitudex,, does not significantly depend difr}|| and N, whereagimaxl can significantly depend both difr} ||
and N (Fig. 5(b)). But, for sufficiently small values df{r}, its influence (in this examplg{r}|| < 10°) on the accuracy
of determining|Amax| is minor. Selection of sufficiently small{r}| is of great importance only ifxmax| iS close to unity,
because then a very small inaccuracy in the procedure of evaluatiag lead to incorrect predion of the dynamical stability
of the solution. Fig. 6 shows the dependenceéi@fax| on the accuracy of numerical determination of times in which the
system undergoes stiffness change, for several valugg Hf, and N = 20. One can see that in this examplanax depends
significantly one only for ¢ > 1.00 x 10~°. Fore < 1.00 x 1073, its influence on predictiv of dynamical stability is not
negligible only if|Amax| is close to unity. Fig. 7 shows the dependenc@\gfax] on the numbei of intervalsA6 (the width
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Fig. 5. The effective amplitud&, obtained by IHBM (a) and maximum modulus of theaigalues of the corresponding monodromy mairix
(b) in dependence on the value of corrective vector narthraumber of harmonics included in the supposed solution.
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Fig. 8. The spectrum of the time domain response.

of the intervals isA@ = 27 /M) when the procedure for general non-linear function (Egs. (15) and (16)) is applied to the
piecewise-linear functionN = 20, ||{r}| < 10-%). The results are shown for the cases of determining matricgkby using:

[A©;+D]+[A0))]

[Aj]= 5 , j=12....M, (17)
and by using:
1 Oj+1
Ail=— A(9)|do i=12,...,M. 18
1= [[A@)e. j=12... (18)
0;

One can see that even a very laidedoes not enable sufficient accuracy of evaluatingax if [A ;] is determined by using (17).

[Amax| is determined much more accuratelyif ;] is determined by using (18). Wolf et al. (2004) showed that neglecting
small harmonic terms of actual time-domain response can cause significant error in the evaluation of the eigenvalues of the
monodromy matrix and can lead to incorrgrediction of the dynamicadtability of the solutionThe previously obtained
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Fig. 9. Maximum modulus of the eigenvalues of the monodromy matriepeddence on the number of hamits included in the approximate
solution (obtained by IHBM) and the value of corrective vector norm.
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Fig. 10. Responses obtained byithfsimulation and IHBM forN = 18 andN = 20.

results are extended here to the other factors that influence the stability prediction (Fig. 5 and Fig. 9). A spectrum of the time
domain response of the considered system obtained by digital simulation is shown in Fig. 8(a) and Figd8(imtés non-

dimensional frequency ang = al-2+bi2 denotes a non-dimemsial amplitude of theé-th harmonic). The dependence of

|Amax| (obtained by IHBM) on the number of harmonigsincluded in the supposed approximate solution and the corrective
vector norm||{r}| (for e < 2.22 x 10-16) is shown in Fig. 9. Fig. 8 and Fig. 9 show that neglecting small harmonic terms
(11th, 12th, ...) of actual time-domain mEnse, whose amplitudes are less than 0.11% of the amplitude of the largest (second)
harmonic, can cause significant error in the evaluation of the eigenvalues of the monodromy matrix, and can lead to incorrect
prediction of the dynamical stéilty of the solution. If the maimum modulus of the eigenlizes of the monodromy matrix

is close to unity, the stability estimation can be an extremely sensitive procedure. In the considered example neglecting of
20th harmonic in the spectrumhose amplitude is only 0.015% of the amplitudettod largest harmonic, causes an incorrect
prediction of the dynamicaitability of the solution. Fig. 9 also shows thaf]{i-}|| is not small enough, theability prediction

can be incorrect even if a sufficient number of harmonics is taken in consideration. The period of the response obtained both
by digital simulation and IHBM (forN = 18 andN = 20, ¢ < 2.22 x 10716 ||{r}|| < 1 x 1076) and an area in which the

system undergoes a stiffness change are shown in Fig. 10(a) and Fig. 10(b) respectively. Very good agreement of the responses
obtained by digital simulation and IHBM fa¥ = 20 is achieved, whereas a significant disagreement of the responses is obtained
for N = 18. This shows that neglecting very small harmonic terms in the supposed approximate solution can cause significant
disagreement of the approximate solution in consideratioheo&ttual time-domain response, and in this way, the erroneously
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determining the times in which the system undergoes a stiffness change. This can significantly affect the accuracy of evaluation
of the eigenvalues of the monodromy matrix and can leaddoriect prediction of the dynaeal stability of the solution.

6. Conclusions

The influence of factors which can leadit@orrect prediction of dyrmaical stability of the periodic response of oscillators
with discontinuous or steep first derivative of the restoring characteristic is considered in this paper. It is observed that accuracy
of determining the eigenvalues of the monodromy matrix (in the considered example) depend significantly on the corrective
vector norm||{r}||, the accuracy of numerical determination of the times at which the system undergoes a stiffness change, and
on the number of step functioi (when the procedure for general non-linear function is applied), oty Jij > 1x 1075, & >
1x 10~° andM < 2000. Otherwise, except if the maximum modulus of the eigenvalues of the monodromy matrix is close to
unity, their influence on estimation of dymécal stability is minor. On thether hand, neglecting ofvy small harmonic terms of
actual time domain response (which in-significantly influence the r.m.s values of the response and are very small in comparison
to other terms of the spectrum) can cause very large error in evaluation of the eigenvalues of the monodromy matrix, and so
they can lead to incorrect prietion of the dynamical sthility of the solution, regardless whether the maximum modulus of
the eigenvalues of the monodromy matrix is close to unity or not. Although the previous analysis is performed for a simple one
degree-of-freedom system with piecewise-linear restoring characteristic subjected to a harmonic excitation (the advantage of
using this model is the possibility to determine elements of Jacobian niati@xd the correctofr} in explicit form, as well as
to express the monodromy matrix exactly as a product of matrix exponentials, what is not possible for a model with a general
non-linear function), it can be extended onltiple degree-of-freedom systems wilbitrary number of general non-linear
functions subjected to a general periodic excitation, i.e. to the systems on which the incremental harmonic balance method and
the Hsu’s procedure can be successfully applied. This analysis can be generalized and the obtained results can be interesting for
stability analysis of dynamic systems withcéutype of discontinuities ten slight differences in oained response cause large
changes in the first derivative of the restoring function.
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