
tic

rs
per. For
r-
c
igital
antly de-
es a

o unity,
al
d so they

he

ar
r
sily deter-
uming,
f initial

e a great
system is

analysis.
European Journal of Mechanics A/Solids 23 (2004) 1041–1050

Dynamical stability of the response of oscillators with
discontinuous or steep first derivative of restoring characteris

Hinko Wolf ∗, Zdravko Terze, Aleksandar Sušić
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Abstract

The influence of factors which can lead toincorrect prediction of dynamical stability of the periodic response of oscillato
which contain a non-linear restoring characteristic with discontinuous or steep first derivative is considered in this pa
that purpose, a simple one degree-of-freedom system with a piecewise-linear force-displacement relationship subjected to a ha
monic excitation is analysed. Stability of the periodic response obtained in the frequency domain by the incremental harmoni
balance method is determined by using the Floquet–Liapounov theorem. Responses in the time domain are obtained by d
simulation. The accuracy of determining the eigenvalues of the monodromy matrix (in the considered example) signific
pend on the corrective vector norm‖{r}‖, the accuracyε of numerical determination of the times when the system undergo
stiffness change, and on the number of step functionsM (used in the Hsu’s procedure), only for‖{r}‖ > 1×10−5, ε > 1×10−5

andM < 2000. Otherwise, except if the maximum modulus of the eigenvalues of the monodromy matrix is very close t
their influence on estimation of dynamical stability is minor. On the contrary, neglecting very small harmonic terms of the actu
time domain response can cause a very large error in the evaluation of the eigenvalues of the monodromy matrix, an
can lead to incorrect prediction of the dynamical stability of the solution, regardless of whether the maximum modulus of t
eigenvalues of the monodromy matrix is close to unity or not.
 2004 Elsevier SAS. All rights reserved.
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1. Introduction

Among the great number of various types of non-linear dynamic systems a very specific group constitutes non-line
systems described by differential equations which contain nonlinearities with discontinuous or steep first derivative (fo
example, systems with clearance). Responses (both periodic and aperiodic) of these systems can be relatively ea
mined in the time domain by using digital simulation. But procedures of that kind can be exceptionally time cons
particularly inside the frequency ranges of co-existence of multiple stable solutions (where many combinations o
conditions have to be examined for obtaining all possible steady-state solutions), for lightly damped systems (sinc
number of excitation periods must be simulated to obtain a steady-state response), and when the state of the
near to bifurcation. Moreover, these methods are not suitable for obtaining unstable solutions and for bifurcation
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main are multi-harmonic balance methods (Lau et al., 1983; Pierre et al.,1985; Choi and Noah, 1988; Wong et al., 199
Lau and Yuen, 1993; Leung and Chui, 1995; Kahraman and Blankenship, 1996; Lerusse et al., 1996). These me
come exceptionally efficient in combination with path following techniques (Narayanan and Sekar, 1998; Cardona et a
Raghothama and Narayanan, 1999) and can be successfully applied to a wide range of non-linear problems. The
very well suited for parametric studies because a new solution can be sought by these methods, with the previ
tion used as a very good approximation. Since these methods enable obtaining both dynamically stable and unst
tions, as well as bifurcation analysis, the determination of the dynamical stability of these solutions should be reliable an
numerically efficient. As the estimation of dynamical stability by Floquet–Liapounov theorem could be a sensitive pro
dure (Szemplinska-Stupnicka, 1990; Awrejcewicz et al., 1998; Wolf and Stegić, 1999; Awrejcewicz and Lamarque, 200
Wolf et al., 2004), the influence of the factors which can lead to incorrect prediction of the dynamical stability of the response
is considered in this paper. For that purpose, a simple one degree-of-freedom system with piecewise-linear force-displacemen
relationship subjected to a harmonic excitation is analysed. The considerable advantage of using this piecewise-line
is the possibility to determine elements of Jacobian matrix[k] and the corrector{r} in explicit form, as well as to express th
monodromy matrix exactly as a product of matrix exponentials, what is not possible for a model with a general no
function. The stability of the periodic solutions obtained in the frequency domain by the incremental harmonic balance
(IHBM) is estimated by the Floquet–Liapounov theorem (Minorsky, 1962). Responses in the time domain are obta
digital simulation.

2. Model of a mechanical system with a clearance

A model of a simple mechanical system with clearance is shown in Fig. 1. It consists of an inertia elementm, a linear viscous
damperc, and a non-linear elastic elementkg(x). The non-linear elastic element is defined by a piecewise-linear functiong(x)

and a coefficientk. When the system is excited by a periodic harmonic forceF(t), the motion of the system can be describ
by the non-linear differential equation:

m
d2x

dt2
+ c

dx

dt
+ kg(x) = F(t) = f0 + fC cos(Ωt) + fS sin(Ωt), (1)

wheref0 represents mean transmitted force,fC andfS are force component amplitudes of the corresponding harmonic term
andΩ is the excitation frequency.

The piecewise linear functiong(x) and its derivative are shown in Fig. 2(a) and Fig. 2(b) respectively.b denotes one-hal
of the clearance space. Since the procedure of prediction of the dynamical stability is based on the derivative of a non-line
function, the expressions for the non-linear function and its derivative are given:

g(x) = h∗(x − b∗), (2)

∂g(x)

∂x
= h∗, (3)

where:

h∗ =



1, b < x,

0, −b � x � b,

1, x < −b,

b∗ =



b, b < x,

0, −b � x � b,

−b, x < −b.

(4)

Fig. 1. Model of the dynamic system.
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Fig. 2. Non-linear functiong(x) (a) and its derivative (b).

3. Short description of the incremental harmonic balance method (IHBM)

By introducing a non-dimensional timeθ as a new independent variable, the differential equation (1) can be rewritten
non-dimensional form:

η2

ν2

d2x̄

dθ2
+ 2ζη

ν

dx̄

dθ
+ g(x̄) = f̄0 + f̄C cos(νθ) + f̄S sin(νθ), (5)

where:

x̄ = x

l
, b̄ = b

l
, ω0 =

√
c

m
, ζ = k

2mω0
, f̄0 = f0

mlω2
0

, f̄C = fC

mlω2
0

,

f̄S = fS

mlω2
0

, η = Ω

ω0
, τ = ω0 · t, θ = Ωt

ν
= ητ

ν
.

In this way, the period of the response is always 2π , regardless of the number of subharmonicsν included in the suppose
approximate solution. The non-dimensional timeθ differs from the usually used non-dimensional timeτ = ω0 · t , scaled in the
way that a period of the free oscillation (of corresponding linear system) is 2π . Any characteristic dimension of the system
denoted byl here.

The supposed approximate solution is given by:

x̄ =
N∑

i=0

ai cosiθ + bi siniθ = [T ]{a}, (6)

where:

[T ] = [1,cosθ,cos2θ, . . . ,cosNθ,sinθ,sin2θ, . . . ,sinNθ],
{a} = [a0, a1, . . . , aN ,b1, b2, . . . , bN ]T.

N = νK represents the number of all harmonics included in the supposed solution,ν is the number of subharmonics andK

is the number of superharmonics. By applying this method, which consists of two basic steps: incrementation and G
procedure, the non-linear differential equation (5) is transformed into the system of 2N + 1 linearized incremental algebra
equations:

[k]j {�a}j+1 = {r}j , (7)

{a}j+1 = {aj } + {�a}j+1, (8)

with Fourier coefficients (a0, ai , bi , i = 1, . . . ,N ) as unknowns. In Eqs. (7) and (8)j is the number of iterations. In eac
incremental step, only linear (i.e. linearized) algebraic equations have to be formed and solved. A solution is obtain
the iteration process when the corrective vector norm‖{r}‖ is smaller than a certain (arbitrary) convergence criterion.
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Fig. 3. Solutions to the equationsx̄ = b̄ andx̄ = −b̄.

comprehensive description of the method, its application to piecewise-linear systems and the way of determining ele
Jacobian matrix[k] and the corrector{r} in explicit form is given by Wong et al. (1991). In the case of continuous funct
(for example, a hyperbolic tangent or a sigmoid function (Lok and Wiercigroch, 1996)) some elements of[k] and{r} can be
determined only by numerical integration.

Generally, the accuracy of the approximate solution obtained by using IHBM depends on the number of harmonics includ
in the solution, the accuracy of procedures used for determining elements of[k] and {r}, and the value of the convergen
criterion. The procedures of determining[k] and{r} depend on the system considered, as well as on the multi-harmonic ba
method used. Since the IHBM described by Wong et al. (1991) is used in this work, the accuracy of the procedure of det
elements of[k] and{r} depends only on the precision of the numerical determination of timesθi in which the system undergoe
a stiffness change (Fig. 3).

4. The stability of the steady state solution

When the periodic solution is obtained, the stability of the given solution can be determined by examining the pe
solutionx̄∗:

x̄∗ = x̄ + �x̄∗, (9)

where�x̄∗ is a small perturbation of a periodic solutionx̄. By substitution of Eqs. (9) in (5),and after expanding the non-line
functiong(x̄) in Taylor’s series about the periodic solution while neglecting non-linear incremental terms, one obtains
homogeneous differential equation with time changing periodic coefficients∂g(x̄)/∂x̄:

η2

ν2

d2�x̄

dθ2
+ 2ζη

ν

d�x̄

dθ
+ ∂g(x̄)

∂x̄
�x̄∗ = 0. (10)

When the steady state solutionx̄(θ) is determined, the values of∂g(x̄)/∂x̄ are known inside the period of the response. A v
efficient and very often used method for determining the stability of the periodic solution is based on the Floquet–Liapouno
theorem (Minorsky, 1962; Nayfeh and Balachandram, 1995). For that purpose Eq. (10) can be rewritten in the state variable
form as:{

d�X∗
dθ

}
= [

A(θ)
]{�X∗}, (11)

where

{�X∗} =
{

�x̄∗
d�x̄∗/dθ

}
,

{
d�X∗
dθ

}
=

{
d�x̄∗/dθ

d2�x̄∗/dθ2

}
,

[
A(θ)

] =
[

0 1

− ν2

η2

( ∂g(x̄)
∂x̄

) −2νζ
η

]
. (12)

Since the matrix[A(θ)] is a periodic function ofθ with period 2π , the stability criteria are related to the eigenvalues of
monodromy matrix, which is defined as thestate transition matrix at the end of oneperiod. According to Floquet–Liapouno
theorem, the solution is stable if all the moduli of the eigenvalues of the monodromy matrix are less than unity. Other
solution is unstable. Bifurcation occurs when one of the eigenvalues of the monodromy matrix crosses the unit circ
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an analytic expression for the transition matrix. But, if the non-linear force-displacement relationship is piecewise-linear, i
derivative(∂g(x)/∂x = h∗) is, according to (4), constant inside each of the intervals[θi, θi+1] (Fig. 3). Fig. 3 shows a perio
of the response whereθ0 = 0 andθL+1 = 2π . There areL times denoted asθ1, θ2, . . . , θL, in which the system undergoe
a stiffness change. Consequently,[A(θi, θi+1)] is also a constant matrix inside that interval. According to D’Souza and G
(1984), for the constant[A(θi, θi+1)] (inside the interval[θi, θi+1]), transition matrix[Φ(θi+1, θi)] can be expressed as:[

Φ(θi+1, θi )
] = e[A(θi ,θi+1)](θi+1−θi ); (13)

and for the whole interval[0,2π] according to Wong et al. (1991) one obtains:

[
Φ(2π,0)

] =
L∏

i=0

e[A(θi ,θi+1)](θi+1−θi). (14)

Beside the precision of numerical determination of timesθi in which the system changes stage stiffness region (x̄ = b̄, x̄ = −b̄),
the only approximation occurring in this procedure is the accuracy of computation of the matrix exponential e[A(θ)](θi+1−θi )

and the product of matrix exponentials
∏L

i=0 e[A(θi ,θi+1)](θi+1−θi ). To evaluate the matrix exponential and the product of ma
exponentials as accurately as possible, the algorithms recommended by Cardona et al. (1998) are used. The influen
other procedures is not considered in this paper. If a non-linear force-displacement relationshipg(x) is a continuous non
linear function, its derivative is a time changing function, and, consequently,[A(θ)] is then a time-changing matrix. So, th
monodromy matrix cannot be obtained in the previously described way, i.e. by using (13) and (14). Among the various
of approximating the monodromy matrix, Friedman et al. (1977) concluded that the most efficient procedure is the one
by Hsu and Cheng (1974), i.e. by approximating the periodic matrix[A(θ)] by a series of step functions. For that purpose
period of the response (2π ) is divided intoM equal intervals�θ = 2π/M . Inside each of the intervals, the time changing ma
[A(θ)] is replaced by its average value, i.e. by a constant matrix[Aj ], j = 1,2, . . . ,M . For thej -th interval, the transition matrix
can be expressed as:

[Φj ] = e[Aj ]�θ , (15)

and for the whole period of the response[0,2π] as:

[Φ(2π,0)] =
M∏

j=1

e[Aj ]�θ . (16)

For numerical evaluation of (15) and (16), the algorithms recommended by Cardona et al. (1998) are used, i.e. the sam
for the evaluation of (13) and (14).

Consequently, if a non-linear function is continuous, besidesthe factors mentioned in Section 3, the stability estimation
depends additionally on the numberM of intervals�θ , and the way of determining the constant matrix[Aj ].

5. Numerical examples

Fig. 4 shows an amplitude-frequency plot for the parameter values:b̄ = 1, ζ = 0.03, f̄0 = 0.25, f̄C = 0.25, f̄S = 0, obtained
by IHBM for the value of corrective vector norm‖{r}‖ � 1 × 10−6, and the absolute accuracy of numerical determinatio
timesθi in which the system undergoes stiffness changeε � 2.22×10−16 (since the non-dimensional timeθ is used, the period
of the response is always 2π ). The point considered in further examples (obtained atη = 0.5243) is indicated in Fig. 4 by “∗
”. Since the governing equation (5) is written in the non-dimensional form, all values in Figs.4–10 are also non-dimensiona
Fig. 5 shows the dependence of accuracy of determining effective amplitudex̄p (obtained by IHBM) and maximum modulus o
the eigenvalues of the corresponding monodromy matrix|λmax|, on the value of corrective vector norm‖{r}‖ and the number o
harmonicsN included in the supposed solution (N = 12,16 and 20). Fig. 5(a) shows that in the considered range of‖{r}‖, the
effective amplitudēxp does not significantly depend on‖{r}‖ andN , whereas|λmax| can significantly depend both on‖{r}‖
andN (Fig. 5(b)). But, for sufficiently small values of‖{r}‖, its influence (in this example‖{r}‖ � 10−5) on the accuracy
of determining|λmax| is minor. Selection of sufficiently small‖{r}‖ is of great importance only if|λmax| is close to unity,
because then a very small inaccuracy in the procedure of evaluatingλ can lead to incorrect prediction of the dynamical stability
of the solution. Fig. 6 shows the dependence of|λmax| on the accuracyε of numerical determination of times in which th
system undergoes stiffness change, for several values of‖{r}‖, andN = 20. One can see that in this example,|λmax| depends
significantly onε only for ε � 1.00× 10−5. For ε < 1.00× 10−5, its influence on prediction of dynamical stability is no
negligible only if |λmax| is close to unity. Fig. 7 shows the dependence of|λmax| on the numberM of intervals�θ (the width



1046 H. Wolf et al. / European Journal of Mechanics A/Solids 23 (2004) 1041–1050

trix

ing
Fig. 4. Amplitude-frequency plot.

(a) (b)

Fig. 5. The effective amplitudēxp obtained by IHBM (a) and maximum modulus of the eigenvalues of the corresponding monodromy ma
(b) in dependence on the value of corrective vector norm and number of harmonics included in the supposed solution.

Fig. 6. Maximum modulus of the eigenvalues of the monodromy ma-
trix in dependence on numerical precision of determiningθi and the
value of corrective vector norm.

Fig. 7. Maximum modulus of the eigenvalues of the correspond
monodromy matrix in dependence on the number of intervals�θ .
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Fig. 8. The spectrum of the time domain response.

of the intervals is�θ = 2π/M) when the procedure for general non-linear function (Eqs. (15) and (16)) is applied
piecewise-linear function (N = 20,‖{r}‖ � 10−6). The results are shown for the cases of determining matrices[Aj ] by using:

[Aj ] = [A(θj+1)] + [A(θj )]
2

, j = 1,2, . . . ,M, (17)

and by using:

[Aj ] = 1

�θ

θj+1∫
θj

[
A(θ)

]
dθ, j = 1,2, . . . ,M. (18)

One can see that even a very largeM does not enable sufficient accuracy of evaluating|λmax| if [Aj ] is determined by using (17
|λmax| is determined much more accurately if[Aj ] is determined by using (18). Wolf et al. (2004) showed that neglec
small harmonic terms of actual time-domain response can cause significant error in the evaluation of the eigenvalu
monodromy matrix and can lead to incorrectprediction of the dynamicalstability of the solution.The previously obtained
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Fig. 9. Maximum modulus of the eigenvalues of the monodromy matrix in dependence on the number of harmonics included in the approximat
solution (obtained by IHBM) and the value of corrective vector norm.

(a) (b)

Fig. 10. Responses obtained by digital simulation and IHBM forN = 18 andN = 20.

results are extended here to the other factors that influence the stability prediction (Fig. 5 and Fig. 9). A spectrum of
domain response of the considered system obtained by digital simulation is shown in Fig. 8(a) and Fig. 8(b) (η denotes non-

dimensional frequency andci =
√

a2
i + b2

i denotes a non-dimensional amplitude of thei-th harmonic). The dependence
|λmax| (obtained by IHBM) on the number of harmonicsN included in the supposed approximate solution and the corre
vector norm‖{r}‖ (for ε � 2.22× 10−16) is shown in Fig. 9. Fig. 8 and Fig. 9 show that neglecting small harmonic te
(11th, 12th, . . . ) of actual time-domain response, whose amplitudes are less than 0.11% of the amplitude of the largest (s
harmonic, can cause significant error in the evaluation of the eigenvalues of the monodromy matrix, and can lead to
prediction of the dynamical stability of the solution. If the maximum modulus of the eigenvalues of the monodromy matri
is close to unity, the stability estimation can be an extremely sensitive procedure. In the considered example neg
20th harmonic in the spectrum,whose amplitude is only 0.015% of the amplitude ofthe largest harmonic, causes an incorr
prediction of the dynamicalstability of the solution. Fig. 9 also shows that if‖{r}‖ is not small enough, the stability prediction
can be incorrect even if a sufficient number of harmonics is taken in consideration. The period of the response obta
by digital simulation and IHBM (forN = 18 andN = 20, ε � 2.22× 10−16,‖{r}‖ � 1 × 10−6) and an area in which th
system undergoes a stiffness change are shown in Fig. 10(a) and Fig. 10(b) respectively. Very good agreement of the
obtained by digital simulation and IHBM forN = 20 is achieved, whereas a significant disagreement of the responses is ob
for N = 18. This shows that neglecting very small harmonic terms in the supposed approximate solution can cause s
disagreement of the approximate solution in consideration of the actual time-domain response, and in this way, the erroneo
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determining the times in which the system undergoes a stiffness change. This can significantly affect the accuracy of evaluation
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of the eigenvalues of the monodromy matrix and can lead to incorrect prediction of the dynamical stability of the solution.

6. Conclusions

The influence of factors which can lead toincorrect prediction of dynamical stability of the periodic response of oscillato
with discontinuous or steep first derivative of the restoring characteristic is considered in this paper. It is observed that
of determining the eigenvalues of the monodromy matrix (in the considered example) depend significantly on the c
vector norm,‖{r}‖, the accuracyε of numerical determination of the times at which the system undergoes a stiffness chan
on the number of step functionsM (when the procedure for general non-linear function is applied), only if‖{r}‖ > 1×10−5, ε >

1 × 10−5 andM < 2000. Otherwise, except if the maximum modulus of the eigenvalues of the monodromy matrix is c
unity, their influence on estimation of dynamical stability is minor. On theother hand, neglecting of very small harmonic terms o
actual time domain response (which in-significantly influence the r.m.s values of the response and are very small in co
to other terms of the spectrum) can cause very large error in evaluation of the eigenvalues of the monodromy matri
they can lead to incorrect prediction of the dynamical stability of the solution, regardlessof whether the maximum modulus o
the eigenvalues of the monodromy matrix is close to unity or not. Although the previous analysis is performed for a sim
degree-of-freedom system with piecewise-linear restoring characteristic subjected to a harmonic excitation (the adv
using this model is the possibility to determine elements of Jacobian matrix[k] and the corrector{r} in explicit form, as well as
to express the monodromy matrix exactly as a product of matrix exponentials, what is not possible for a model with a
non-linear function), it can be extended on multiple degree-of-freedom systems witharbitrary number of general non-line
functions subjected to a general periodic excitation, i.e. to the systems on which the incremental harmonic balance m
the Hsu’s procedure can be successfully applied. This analysis can be generalized and the obtained results can be int
stability analysis of dynamic systems with such type of discontinuities when slight differences in obtained response cause lar
changes in the first derivative of the restoring function.
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