
Packet header compression formal notation requirements

Julije Ozegovic
OPAL COMPUTING d.o.o.

Split, Croatia
E-mail: julije.ozegovic@vest.hr

Abstract: Robust header compression (ROHC) [1] is recently
developed to be used in wireless last hop links of global Internet.
It is built around an extensible core framework that can be
tailored to compress new protocol stacks by adding additional
ROHC profiles. The role of formal notation is to provide a
simple method for ROHC profile specification. It is to be used in
the phase of profile refinement to achieve maximal compression
ratio possible, as well as in the phase of software implementation
to provide unambiguous profile specification. In this paper,
requirements expected to be achieved with profile formal
notation system for ROHC are elaborated.

1. INTRODUCTION

Header compression exploits the strict format of header
fields to enhance the transport of Internet packets over
wireless links. In large proportion of flows that utilize short
packets, like IP/UDP/RTP headers that can waste up to 75%
of bandwidth, header compression is sufficient.

The ROHC working group effort to provide robust header
compression framework resulted in state machine and profiles
specified using "RFC box notation". This is actually a simple
graphical representation with English explanation added
where needed. The profile refinement and specification
clarity were achieved by implementing changes in English
text.

Alternative solution for profile specification was
introduced in Efficient Protocol Independent Compression
(EPIC-Lite) [2] on the basis of Bachus-Naur form (BNF) [3].
The proposed BNF formal language induced lot of discussion
because of its stack oriented functionality. In proposed two
stack model, particular field processing is postponed by
pushing its value to the "control stack".

The authors of EPIC introduced "A Formal Notation for
Header Compression" [4] where explicit stack manipulations
are avoided with the "LABEL" concept. Instead of using
second stack, postponed field value is stored in a variable
defined by LABEL method. This way, particular field
processing can be postponed to the more appropriate time.

Simultaneously, alternative "Generic Header Compression
Notation for ROHC" [5] was proposed with its hierarchical
header extension of EPIC concept. Uncompressed header
structure definition is separated from actual compression.

Based on ROHC WG discussions, improved version of [4],
the "Protocol Enabled BNF-Based Language (PEBBLE)" [6]
is published to be the official ROHC starting point for formal
notation development.

This work resulted in "Formal Notation for Robust Header
Compression(ROHC-FN)" [7], which served the role of
template text for San Francisco IETF-56 formal notation
discussions. IETF-56 was the place where a necessity for
"Formal notation requirements" was recognized [8].

This paper is organized as follows. In Chapter two, the
scope of ROHC formal notation is given. In Chapter three,
the formal notation requirements are elaborated. In Chapter
four, the notation extensibility is mentioned. Conclusions and
future work are given in Chapter six.

2. SCOPE OF ROHC FORMAL NOTATION

The ROHC formal notation is developed to ease
completion of the following tasks and goals

1. Profile writing
2. Profile refinement
3. Profile human readability
4. Profile compactness
5. Profile machine readability
6. Profile validation
7. Profile clarity
8. Hand written code generation
9. Machine automated code generation
10. Profile interpretation

2.1 Human requirements

From the above, human ROHC user can benefit of human
readability, clarity and compactness for profile writing and
refinement, and for hand written code generation.

2.2 Machine requirements

Machine ROHC processing can benefit of machine
readability for profile validation, automated code generation
and profile interpretation.

2.3 Profile interpretation

Profile interpretation is a method of profile execution
which enables the profile to be downloaded to compressor
and decompressor. This way, new profiles can be introduced
without need to download new compressor and decompressor
software.

In profile interpretation environment, processing is
organized in two phases:

1. Offline processing - profile interpretation to build
necessary data structures and parameters

2. Online processing - profile usage for compression
and decompression

To optimize offline processing, profile can be enhanced
with preprocessed parameters.

Opposite to the profile interpretation is (hand or machine)
profile implementation in code. This way, new profiles can be
introduced by installation of new compressor and
decompressor software.

3. FORMAL NOTATION REQUIREMENTS

The scope of formal notation can be achieved if formal
notation system developed can be used for the following
tasks:

1. Specification of packet classification parameters
2. Specification of uncompressed header structure
3. Specification of header format
4. Specification of compressed header structure
5. Specification of context management
6. Specification of notation extensions

3.1 Packet classification parameters

Packet classification procedure is performed on
uncompressed packet header to achieve two goals:

1. Recognize protocol stack (profile) to which packet
belongs

2. Recognize packet flow (context) to which packet
belongs

Packet classification is currently considered to be
implementation specific. This situation is acceptable, unless
formal notation system is intended for profile interpretation.

In profile interpreting systems, the main achievement is the
ability to download a new profile in machine readable form to

the compressor and decompressor, instead of installing the
new software with new profile hard coded.

In such a system, it can be foreseen that new profile can
support a totally new, previously unsupported protocol stack.
In this case, it is essential that formally specified profile
submits enough information to recognize a new type of
header structure.

The packet classification actually takes place on
compressor side. Under ROHC framework, decompressor
uniquely classifies compressed packets using Context
Identifier (CID).

3.1.1. Profile selection

To recognize protocol stack, some information from or for
link layer can be used. Different link layer protocols can use
different codes. To support multiple link subsystems, protocol
ID codes must be specified. The following example is one of
possible solutions:

MEDIA = Ethernet

Protocol_ID = <link layer protocol ID for actual protocol>

MEDIA = PPP

Protocol_ID = <link layer protocol ID for actual protocol>

To verify protocol stack, some information can be checked
inside the uncompressed header, e.g. version and protocol
fields to recognize IPv4/TCP stack. For example, failure of
VALUE encoding in IR packet can indicate wrong profile
selection. Alternatively profile checking can be defined
explicitly:

Profile_check = <list of fields and values to be checked>

3.1.2. Context selection

After the profile classification, context selection is
performed.

To recognize packet flow (context), some fields inside the
uncompressed header must be checked against the existing
contexts for profile selected. If a match is found among the
existing contexts, packet is assumed to belong to already
established context (and state machine). Otherwise, a new
context is created and profile is negotiated with
decompressor.

Context selection parameters specify packet flow
recognition granularity. Fine granularity can be achieved
using e.g.:

Context_check = <sadr dadr sport dport>

while coarse granularity is possible using e.g.:

Context_check = <sadr dadr>

Flow selection granularity is a method for context
reusability control.

3.2 Profile specification

The profile specification consists of three different parts:
1. Uncompressed header structure specification
2. Header format specification
3. Compressed header structure specification

The three are not totally independent and need to be
interrelated carefully. The readability and compactness as
well as flexibility of profile writing depends on proper
notation balance.

3.2.1. Profile specification degrees of freedom

The profile writing can be seen as a process with several
degrees of freedom. Profile writer can ask for maximal
freedom, i.e. to specify uncompressed header structure,
header format and compressed header structure
independently.

However, not all that freedom is needed. Especially, it is
not needed to reorder compressed header fields, because it is
natural to decompress the header in reverse order than the
compression was done. Another problem is the achievement
of decompressablility for every compressed packet.

The following degrees of freedom are possible:

3.2.1.1. No degrees of freedom

System reads, compresses and packs fields as ordered in
uncompressed header. This system can not yield optimal
compression, because original field ordering for particular
protocol stack is not designed for optimal compression.

3.2.1.2. Half degree of freedom on input

System reads, compresses and packs fields as ordered in
the uncompressed header, but can postpone processing of
particular field. This can yield optimal compression.
Redundant information is present in profile. Systems like
EPIC-Lite, PEBBLE and ROHC_FN belong to this category.

3.2.1.3. One degree of freedom on input with read on
demand

System reads fields randomly when needed by compressor.
This makes it possible to compress and pack fields in optimal
order. The actual format is evaluated at the compression time,
so there is no additional information exchange between the
field reading and compressing processes.

3.2.1.4. One degree of freedom on input with advance
read

System parses uncompressed headers to fields in advance.
This makes it possible to compress and pack fields in optimal
order. The actual format is partly evaluated in advance, so
complex information exchange between the field reading and
compressing processes takes place.

3.2.1.5. One degree of freedom on output

System reads and compresses fields as ordered in the
uncompressed header, but packs compressed fields in
arbitrary order. This system can not yield optimal
compression, because original field ordering for particular
protocol stack is not designed for optimal compression.

It must be noted that freedom on output deals with
compressed fields ordering only. The placement of indicator
bits can be independent of field ordering.

3.2.1.6. Some freedom on input and one degree of
freedom on output

This system combines freedom on input and output.
However, it is natural to decompress the compressed header
in the reverse order than compression was done. Freedom on
output is not absolutely needed.

From the analysis above, it can be evaluated that systems
with half or with full freedom on input and read on demand
are the ones acceptable.

3.2.2. Notation with field processing postponement

In systems with half degree freedom on input, fields are
read as ordered in uncompressed header and then postponed
for later processing (EPIC-Lite, ROHC_FN). System can be
used to achieve optimal compression.

The good property of postponement system is its
simplicity. The uncompressed header structure and header
format can be specified simultaneously or separately.

3.2.2.1. Field postponement and simultaneous
specification

In simultaneous structure and format specification, header
fields are not explicitly named, and human readability suffers.
To improve readability, profile writers tend to use
compression functions and name them by field names. Such
functions are declared later in the profile. In complex profiles
like IP/TCP, function declarations are far away from the place
of usage, and profile is actually human unreadable.

Another drawback in simultaneous specification is
redundancy of parameters. The length of the same field is
declared in all methods related to this field. For example:

header = function1

 function2

function1 = method11(length) | method12(length)

where "length" is actually declared two times. More
elaborate examples can be found in published EPIC-lite [2]
profiles.

3.2.2.2. Field postponement and separate specification

In separate structure and format specification, header fields
are explicitly named with lengths (in bits) declared. Later,
field value can be compressed immediately or postponed for
later compression. In the following example, some_field1 is
read and compressed immediately, and some_field2 is
postponed for later compression and possible multiple usage:

some_field1 = FIELD(length1)

some_field2 = FIELD(length2)

header = some_field1 method11 | method12

POSTPONE some_field2

some_field2 method21 | method212

This way, most header field compressions will be declared
inline.

Decompressor can be made intelligent enough to know
whether to store uncompressed value to local variable, to use
it as a parameter, or to restore it to the uncompressed header
field (exactly like in LABEL concept).

However, to increase readability and to make the parser
simpler, explicit label usage methods can be introduced:

some_field1 = FIELD(length1)

some_field2 = FIELD(length2)

header = some_field1 method11 | method12

POSTPONE some_field2

method(some_field2)

ACTIVATE some_field2 method21 | method212

In this example, POSTPONE method is used to indicate
that the field value is to be stored in local variable when
compressing, and restored from local variable when
decompressing. ACTIVATE method is used to submit the
value from local variable to standard parameter path for
compression, and to store decompressed value to local
variable after decompression.

Among the POSTPONE - ACTIVATE pair of methods,
field value can be used as an input parameter for any
appropriate method at will, and can be changed if needed.
The functional parameter passing:

method(some_field2)

is optimal, because compression and decompression
behavior is internal to the method invoked.

3.2.3. Notation with random access fields and read on
demand

In systems with one degree freedom on input and read on
demand, fields lengths and positions are declared and named
in advance, but actual contents read takes place at the moment
of compression. System can be used to achieve optimal
compression.

The good property of random access is that advanced field
declaration and naming avoids redundancy and improves
readability However, profile must include separate
declaration of all fields. Problem can be encountered with
optional fields, whose positions can vary. These fields can not
be freely accessed, but only within the option to which they
belong. Their position is declared notrelative to the beginning
of the header, but relative to the beginning of the option. For
example:

some_field = FIELD(length, offset)

header = some_field method1 | method2

The "offset" parameter can be declared explicitly, or
implicitly as a sum of previously declared fields. This way,
most header field compressions will be declared inline, and
only complex ones will need function declarations. Actual
field contents read is performed when "some_field" is
executed, and data together with length parameter are
transferred to compression methods. Optional fields can be
read inside the option processing structures.

Random access fields usage assumes knowledge of
uncompressed header length at the decompression time. The
issue of variable length options must be considered
appropriately. It can be foreseen that profile writer should
take care of option length communication to the
decompressor, when option length is not available from the
format used.

3.3. Compressed header structure

Compressed header structure consists of two specifications:
1. Order of compressed fields
2. Order of indicator bits

3.3.1. Order of compressed fields

The order of compressed fields is optimal when it is equal
to the order of compression.

3.3.2. Order of indicator bits

Order of indicator bits depends on model of compressed
packet chosen. At the moment, several models are proposed:
ROHC3095, Ordinary Huffman, Hierarchical Huffman etc. It
is possible that new models emerge in the future. At IETF-56
it was proposed to define compressed packet structure in
profile using syntax like:

TCP_IP_PACKET = ROHC3095(TCP_IP_function)

This approach makes it possible to use combinations of
structures

TCP_IP_PACKET = Ordinary_Huffman(IP_function)

Ordinary_Huffman(TCP_function)

or

TCP_IP_PACKET = ROHC3095 (IP_function)

Ordinary_Huffman(TCP_function)

Finally, ageneric profiles are possible:

PACKET = Ordinary_Huffman(IPV4_function | IPV6_function)

Ordinary_Huffman(TCP_function | UDP_function|
SCTP_function)

Ordinary_Huffman(RTP_function | Null)

In generic profile, packet classification takes place on layer
by layer basis.

The point of communication between the header format
choice and compressed header packing is a list of field
compression choices that accompanies the list of compressed
fields. List of choices can be used to encode header format
(like in Huffman) or to generate ROHC3095 compressed

3.3.3. Profile preprocessing

In complex indicator bits coding system, like Huffman is,
lot of processing is needed in the offline phase of the
interpreting system, or during the code generation of the
conventional (hard coded) system. This processing is mainly
concerned with mapping between a list of field compression
choices and actual indicator bits code words. This mapping is
unique for the profile. It is necessary to calculate it only once,
after the profile is standardized, and before it is used
(interpreted or hard coded).

It can be of benefit to submit preprocessed indicator bits
encoding mapping in a standard form together with the profile
itself. Interpretive systems can be made less complex, and
hard coding process can be made easier to software
developers. Interoperability between different implementation
can easier be achieved.

3.3. Context manipulation

The context is memory which stores one or more previous
values of fields in the uncompressed header. Besides header
fields, context can contain some control data. Context is
generally updated with each new packet. Compressor can
maintain more than one context to improve robustness.

In practice, situation is more complex. The following
method behavior is possible:

1. New context is formed as a copy of current one
2. Method updates context value (encoding and some

control methods)
3. Method does not manipulate context (some control

method)
4. Method skips context update on demand
5. Context update is skipped when field does not exist in

uncompressed header

Context updating declaration must be part of method
definition. This way, context behavior can be formally
specified. Context update skipping can be specified when
encoding method is invoked for particular field.

Context for options actually consists of all optional fields,
whether present in current packet or not. For the optional
field that does not exist, old option value is kept.

It is natural that fields from different options do not share
the same context field. However, at least one protocol is
known (DCCP) where field that carries common information
(ACK) is a part of option (specific header). In two packet
types of DCCP, ACK is not present. This field should use the
same context value when present.

The solution is to declare context value to be "common" to
all equally named fields in various options (specific headers).
Context update must be skipped when field in question is not
present, in a manner that all previously stored values are
preserved (i.e. context"rotates", but skipped field does not).
Decompressor must keep previous value.

Another issue is context field naming, which can be of
benefit for context manipulation readability.

4. NOTATION EXTENSIBILITY

Formal notation should be applicable to future protocols,
and thus must keep completeness as well as efficacy in profile
writing. Three levels of extendibility are foreseen:

1. Profile level (the highest level)
2. Method level (encoding, control and basic)
3. Programming level (the lowest level)

Programming extendibility level is the fundamental one.
Programming languages are expected to be complete. This
level is used to introduce new methods (basic, encoding, or

control) from scratch. A method should be provided to
declare new encoding method needed through the profile.

However, no guarantee is provided that new method will
satisfy the requirement for functionality and
decompressability. These issues remain responsibility of
method writer.

Method level extensibility provides a method to build a
new encoding method using basic methods. The difference
compared to the encoding functions is that new method
becomes part of set of encoding methods and is adequately
treated with indicator bits. Again, no guarantee is provided
for decompressability.

Finally, the highest level is profile writing itself.

5. CONCLUSION

In this paper, the header compression formal notation
requirements are elaborated. The approach of an interpreting
system is adopted, because it yields the most comprehensive
set of requirements and provides the richest functional
implementation.

The interpretive systems with download feature require a
complete protocol (profile) and flow recognition parameter
set. Header field declaration is analyzed in degree of freedom
scope. The systems with half degree of freedom on input are
recognized as optimal.

The compressed header structure is restricted to
standardized models, and formal notation should be used to
specify the model chosen. Combination of models can be
used, which leads to the generic profile, the one that can be
used for all protocol stacks.

The context manipulation is important in the scope of
context field naming, and special manipulations when the
same context field is used to store values from more than one
header field.

Formal notation extensibility is analyzed in levels of
programming language, toolbox and profile writing.

The future work will consist of proposed concepts
verification and selection of most appropriate solutions.

REFERENCES

[1] Bormann C, et al, 2001, "Robust Header Compression
(ROHC): Framework and four profiles: RTP, UDP, ESP, and
uncompressed", RFC 3095

[2] Price, R., Hancock, R., McCann, S., Surtees, A., Ollis, P.,
West, M.: "Framework for EPIC-LITE", draft-ietf-rohc-epic-
lite-01.txt, 2002.

[3] Crocker D, et al: “Augmented BNF for Syntax
Specifications: ABNF”, RFC 2234, 1997.

[4] Price, R., Surtees, A., West, M.: "A Formal Notation for
Header Compression", draft-west-rohc-formal-notation-
00.txt, 2002.

[5] Liao, H., Zhang, Q., Zhu, W.: "Generic Header
Compression Notation for ROHC", draft-liao-rohc-notation-
00.txt, 2002.

[6] Price, R., Surtees, A., West, M.: "Protocol-Enabled BNF-
Based LanguagE (PEBBLE)", daft-ietf-rohc-formal-notation-
00.txt, 2002.

[7] Price, R., Surtees, A., West, M.: " Formal Notation for
Robust Header Compression (ROHC-FN)", draft-ietf-rohc-
formal-notation-01.txt, 2003.

[8] Bormann C, et al, " The slides from IETF-56 ROHC
meeting ", http://www.dmn.tzi.org/ietf/rohc/rohc-56.pdf,
2003.

[9] Cizmic, M., Vodopija, T.,, Ozegovic, J.: "EPIC Lite
offline processing", SoftCOM 2002.

[10] Mornar, M., Pezelj, A.,, Ozegovic, J.: " Testbed for
header compression implementation ", SoftCOM 2002.

[11] Price, R., Surtees, A., McCann, S., West, M., Hancock,
R., Findlay, D.: "EPIC Provably Optimal Format Encoding
for Compression in the Internet", SoftCOM 2002.

[12] Stula, M., Vidjak, L.,, Ozegovic, J.: " Program structures
for EPIC-LITE experimental implementation ", SoftCOM
2002.

