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Abstract. Proposed is a generic single gene cell
model as an extension of a “standard” single en-
zyme (Monod) model. The model is structured at
three levels: 1) gene transcription, 2) enzyme
synthesis, 3) metabolite and protein production.

It accounts for a limiting substrate con-
sumption, metabolite and biomass component
production, gene transcription and enzyme syn-
thesis. Assumed are control interactions between
the key components at each level based on cata-
lytic effects.

Simulated is induction of gene tran-
scription and enzyme synthesis as a cell response
to step change of extracellular medium composi-
tion. In view of small number of key molecules
stochastic simulation is applied.
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1. Introduction

Mathematical modelling of microbial cells
can be developed by application of chemical en-
gineering principles of mass and energy balances
for chemical reactors.  Cell as a reactor is viewed
as a multiphase catalytic reactor with an ex-
panding volume due to growth, with about 50·106

molecules, 105 reactions, and with hierarchical
organised and spatially distributed internal con-
trol systems. The robust approach to modelling is
based on standard chemical engineering picture
of a “well mixed cup” with deterministic kinet-
ics. However, due to small number of individual
molecules present in a cell, stochastic effects in
molecular interactions become important. Appli-
cation of Gillespie [1] algorithm for exact simu-
lation of stochastic chemical reaction systems
can be applied for computer cell simulation. Sto-

chastic models are formulated by translation of
deterministic mechanisms and kinetic parameters
into evaluation of probabilities of individual
molecular interactions [2-4]. It is, like in chemi-
cal engineering, a "scale down procedure", where
kinetic parameters are experimentally determined
in large systems (deterministic, "in vitro" enzyme
reactors), and then are extrapolated down to the
molecular level (cells). Such stochastic model-
ling provides deterministic solutions as an as-
ymptotic case of a stochastic model.  However,
this is an "ad hoc" procedure (a pragmatic com-
bination of macroscopic reaction kinetics with
random population of reaction steps) which ne-
glects true stochastic nature at molecular level.
Usefulness of this approach may be hopefully re-
solved by comparison of computer simulation re-
sults and experimental evidence.

2. Single gene model

The simplest, but very useful from practical
point of view, is Monod's model of cell growth
and metabolite production (Fig. 1). It is based on

Figure 1. Single enzyme model. Solid lines
represent mass flows, and the doted line rep-
resents “information” flow by catalytic inter-
action. The + sign denotes activation.
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assumption that all intracellular activities can be
represented as a single global stoichiometric
equation (1) in which substrate S is consumed in
a single reaction catalyzed by enzyme E with
production of metabolite P and biomass X .

PXS PX ⋅+⋅→ υυ             (1)

Metabolic state of a cell is assumed constant and
is reflected by constant concentration of an en-
zyme. Such a simple model, with various modi-
fications, has been found very useful for descrip-
tion of biotechnological processes under  steady,
or pseudo steady, state conditions. Such simple
models are usually applicable only to specific
experimental conditions under which model pa-
rameters are estimated. However, such models
fail to predict important transient effects under
unsteady conditions. To account for major intro
cellular molecular processes a biochemically
structured model can be introduced (2). Model is
based on assumption of a spatially lumped reac-
tions with deterministic kinetic rate expressions
given in a form of a set of ordinary differential
equations (ODE) with specified initial condi-
tions. In Fig 2. are depicted generic intracellular
reactions in the proposed “single gene” model.

Figure 2. Single “gene” model. The solid lines
represent mass flows, the doted lines repre-
sent information flow by catalytic effects. The
+ and - signs denote activation and inhibition
effects.
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The effect of growing cell volume on concentra-
tions c in balances (2) is accounted by the dilu-
tion terms proportional to biomass specific
growth rate m. Included are the following generic
reactions on three levels: 1)  transcription of ge-
netic information, 2) synthesis of enzymes, 3)
substrate assimilation and conversion to metabo-
lite and cell components (biomass). The corre-
sponding stoichiometric matrix is given by:
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Vectors of  intracellular concentrations and rates
are given by:
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Reaction rates and kinetic parameters are adapted
from P. Mendes [4] and are given by (5-10) and
in Table 1:
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Table 1. Parameters of deterministic model.
Specific rates and growth have units min-1,
saturation constants have units nM, stoichi-
ometric and cooperativity parameters are di-
mensionless.

v11 v12 v21 v22 v31 v32
0.1 0.2 1.5 0.5 1 0.7
K11 K12 K3A K3I nI nA
1 1 5 1.5 1 1
nx nE m
0.2 0.7 0.01

The kinetic rate expressions (6,7,9) are model of
cell regulation between level of metabolites,
gene transcription and enzyme synthesis. Regu-
lation includes forward and feedback loops with
activation and deactivation of reaction rates.

3. Model simulations

The object of the model simulation is to de-
termine stochastic effects under conditions when,
due to a low extracellular concentration of a lim-
iting substrate, a small number of mRNA mole-
cules is present encoding for the substrate con-
version. Simulated are transients starting from
the moment of a step change in an extracellular
concentration S0.

Figure 3. Number of intracellular substrate S
molecules upon step change of extra cellular
substrate concentration S0.

When a small number of reacting molecules are
present, the “law of large numbers” cease to
hold, and a chance for a reaction to occur must
be considered. Gillespie [1] proposed a simple
method for simulation of stochastic reaction
systems. It is based on two random steps: 1) ran-
dom selection of a moment when next reaction
occurs, 2) random selection which reaction oc-
curs. Random choices are simulated by random

number generator with a uniform probability
density function in the range U[0,1]. Total reac-
tion rate rtot is the sum of all individual reactions
and the dilution rates:
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Total number of reactions is 11 (6 intracellar re-
actions and 5 pseudo reactions of dilution). Time
interval ti between two moments ti and ti+1 is de-
termined by a value of the random variable ui
and the total reaction rate:
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Probability Pi of occurrence of a specific indi-
vidual reaction is equal to the ratio of that par-
ticular reaction and the total reaction rate:
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Which reaction takes place at the moment ti is
selected randomly from all the reaction rates in
accordance with their probabilities.
Balances of number of molecules of individ-
ual species are determined by the product of
stoichiometric matrix and the random vector
z. The vector z has all elements equal to 0,
except for the one which is 1 and corre-
sponds to the randomly selected reaction.

Figure 4. Number of RNA molecules induced
by increase of intracellular substrate.

At each iteration, numbers of all mole-
cules are calculated by:
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where k
jδ  is Kronecker delta symbol and k is a

random integer of reaction choice from the total
number of reactions. The stoichiometric matrix
in (15) is appended matrix (3) by the 5 pseudo
reactions of dilution.

Figure 5. Number of produced enzyme E
molecules used for conversion of substrate
to metabolite and biomass components.

Figure 6. Number of produced metabolite P
molecules.

Figure 7. Number of produced molecules as
components of biomass X.

4. Results and discussion

The stochastic model equations are it-
eratively evaluated by a computer program
Mathematica [5]. Evaluated are 105 iterations
corresponding to the period of 2 minutes of tran-
sients from the initial state presented in Fig. 3-7.
The initial state corresponds to the equilibrium
between cell (reactions of cellular metabolism)
and external media. Cells are growing at the spe-
cific rate of m = 0.6 h-1.  At the start of simulation
external concentration of the limiting substrate is
step like increased from 0.6 to 5 mol L-1. The
simulation results reveal the sequence of cell re-
sponses. Due to the activated process of trans-
membrane transport, intracellular concentration
of substrate is regulated (eq. 5) and approaches
its new steady state, Fig. 3. Increase of substrate
in cell increases gene transcription (eq. 9) and
enzyme synthesis (eq. 7). Increased enzyme ac-
tivity of cell is further reflected by increase in
number of metabolite molecules and biomass
components. Since number of metabolite and
biomass molecules are for an order of magnitude
higher than that of substrate, RNA and enzyme,
their transient responses are almost of determi-
nistic character (Fig. 6-7).

Obtained simulation results are only a
random realisation of the model, and new reali-
sations are obtained with each new set of itera-
tions with the same initial conditions. In order to
obtain average model properties, stochastic
simulations should be repeated many times until
an estimate of a property of the model is evalu-
ated.

5. Conclusions

Single most important benefit of com-
puter simulation of the stochastic cell model is
that it allows exploration of intracellular reac-
tions under transient conditions when number of
molecules is low and random effects are impor-
tant. Rather than a substitute for experiments,
such simulations induce various hypothesis
which can be firstly tested by computers and
verified by experiments.

Application of Gillespie’s algorithm
leads to simple and effective numerical proce-
dure. The proposed numerical procedure has the
important property that stochastic simulation as-
ymptotically approaches the solution of the de-
terministic model as number of molecules is ap-
proaching large numbers [4].
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Stochastic cell models are based on two
sets of essential information: 1) stoichiometric
data which are well known and reliable from
biochemical data banks; 2) reaction rate expres-
sions and kinetic parameters which are mostly
known from in-vitro experiments or chemostat
experiments under steady state conditions. Esti-
mates of kinetic data are sometimes subject to
large errors in view of possible phenomena un-
accounted in models. Therefore, transfer of ki-
netic data obtained from micro-organism popu-
lation to a single cell model needs additional
verification.

Possible applications of stochastic cell
models are their use as a computer tool for pre-
diction of genetic engineering effects in devel-
opment of transgenic biotechnology.
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