
Kochen-Specker Algorithms for Qubits

Mladen Pavičić1
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Abstract. Algorithms for finding arbitrary sets of Kochen-Specker (KS) qubits as well as all the remaining vectors in a space
of an arbitrary dimension are presented. The algorithms are based on linear MMP diagrams which generate orthogonalities of
KS qubits, on an algebraic definition of states on the diagrams, and on nonlinear equations corresponding to MMP diagrams
whose solutions are either KS qubits or the remaining vectors of a chosen space depending on whether the diagrams allow
0-1 states or not. The complexity of the algorithms is polynomial. New results obtained with the help of the algorithms are
presented.

1. INTRODUCTION

In quantum measurements, particular directions of quantisation axes of the measured observable obey the following
KS conditions: (1) no two of mutually orthogonal directions can both be assigned 1; (2) they cannot all be assigned
0. [1] To these directions we ascribe vectors that we call KS vectors. To stress that the axes and therefore KS vectors
themselves cannot be given a 0-1 valuation, i.e. represented by classical bits, we also call them KS qubits (quantum
bits). In particular because we are not aiming at giving yet another proof of the KS theorem but at determining the
class of all KS vectors from an arbitrary H n as well as the class of all the remaining vectors from H n. In other words,
our aim is to obtain all physically realisable vectors in H n corresponding to orientations of projectors and therefore
measuring devices.

In order to achieve this aim, we first recognise that a description of a discrete observable measurement (e.g., spin)
in H n can be rendered as a 0-1 measurement of the corresponding projectors along orthogonal vectors in R

n to
which the projectors project. Hence, we deal with orthogonal triples in R

3, quadruples in R
4, etc., which correspond to

possible experimental designs. To find KS vectors means finding all such n-tuples in R
n that correspond to experiments

which have no classical counterparts.

2. MMP DIAGRAMS AND THEIR GENERATION

We represent the n-tuples in R
n by means of points of a diagram. The points are called vertices. Groups of orthogonal

vectors are represented by connected vertices and are called edges. Vertices and edges form linear MMP diagrams
[2, 3] which are defined as follows:

1. Every vertex belongs to at least one edge;
2. Every edge contains at least 3 vertices;
3. Every edge which intersects with another edge at most twice contains at least 4 vertices.
The procedure for generation MMP diagrams follows from isomorphism-free generation of linear diagrams estab-

lished in [2, 3, 4]. Here we present the main idea behind such a generation and will present the details elsewhere. [5]
The algorithm for obtaining MMP diagrams is based on the parent-child generation tree as the one shown in Fig. 1

for the particular number of vertices and loops we allow (it will be shown below that for 3 vertices per edge no diagram
containing loops of size less then 5 can generate a set of vectors). At every further level we add an edge until we reach
a desired number of vertices and edges. In doing so the main problem is to avoid generation of diagrams isomorphic
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to an already generated diagram. This is resolved by using the procedure given below. The procedure guarantees that
at each parent level generation of isomorphic children is suppressed. E.g., each of the two diagrams at the third level
could give the third diagram at the fourth level. However, the generation procedure prevents the second generation.

procedure scan (D : diagram; β : integer)
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Fig. 1. An example of a generation tree
for MMP diagrams: 10 vertices, 3 vertices
per edge, and the smallest loop of size 5.

if D has exactly β edges then
output D

else
for each equivalence class of extensions D+ e do

if e ∈ m(D+ e) then scan(D+ e,β )
end procedure

It is the function m(·) which we define in [2] that
enables us to define a unique isomorphism class as
the parent class of the isomorphism class of D. This
way of generation of diagrams enables a very effi-
cient parallelisation of computing on clusters. The
complexity of generation grows exponentially and if
we had not integrated its algorithm with the related
algorithms for solving the corresponding non-linear
equations we would not have been able to realisti-

cally implement the generation of MMP diagrams. Because, e.g., there are 6 3-vertices-per-edge and smallest loops of
size 5 diagrams with 19 vertices and 13 edges and already 7447274324 diagrams with 29 vertices and 20 edges, etc.

We denote vertices of MMP diagrams by 1,2,..,A,B,..a,b,.. By the above algorithm we generate MMP
diagrams with chosen numbers of vertices and edges and a chosen minimal loop size.

3. 0-1 STATES ON MMP DIAGRAMS

To find diagrams that do not allow 0-1 states we use an algorithm
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which carries exhaustive search on MMP diagrams with backtracking.
The idea of the algorithm follows from our elaboration on states in
the Hilbert space. [6] Essentially, the algorithm ascribes non-dispersive
(0-1) states so as to assign 1 to exactly one vertex within an edge while
the other vertices within the edge are assigned 0. The algorithm scans
the vertices in some order, trying 0 then 1, skipping vertices constrained
by an earlier assignment. When no assignment becomes possible, the
algorithm backtracks until all possible assignments are exhausted or
a valid assignment is found. Again, the algorithm by itself would be
exponential, but the constraints build up quickly so that the exponential

behaviour of the algorithm is reduced to a polynomial one.
In Fig. 2 (a) the smallest diagram with 4 vertices per edge and with the smallest loop of size 2 (two

edges share two vertices) which does not admit 0-1 states is shown. It has 6 vertices and 3 edges, so it
is denoted as 6-3. We can write it down as follows: 1234,2356,1456. Fig. 2 (b) shows one of the two
smallest diagrams with 3 vertices per edge and smallest loops of size 5 that do not admit 0-1 states: 19-13:
123,345,567,789,9AB,BCD,DE1,2GA,4HC,6IG,6JD,8FE,FGH.

4. KOCHEN-SPECKER QUBITS

To obtain KS qubits we merge the algorithms for generation of linear MMP diagrams corresponding to edges of
orthogonal vectors in R

n (Sec. 2), algorithms for filtering out those vectors on which 0-1 states cannot be defined
(Sec. 3), and algorithms for solving nonlinear equations describing the orthogonalities of the vectors by means of
interval analysis so as to eventually generate KS vectors in a polynomially complex way.

Following the idea put forward in [3] we proceed so as to require that the vertices correspond to vectors from R
n,

that the number of vertices within edges corresponds to the dimension of R
n, and that edges correspond to n(n−1)/2



equations resulting from inner products of vectors being equal to zero which means orthogonality. An example for the
edge BCD in R

3 is shown by Eq. (1).
Combinations of edges for a chosen number of vertices and

aB ·aC = aB1aC1 +aB2aC2 +aB3aC3 = 0,

aB ·aD = aB1aD1 +aB2aD2 +aB3aD3 = 0,

aC ·aD = aC1aD1 +aC2aD2 +aC3aD3 = 0. (1)

chosen number of orthogonalities between them correspond
to a system of such nonlinear equations. However, we cannot
first generate all possible MMP diagrams and only afterwards
try to filter them by solving equations because their number
grows exponentially and the required time for such a genera-
tion on the fastest CPU would exceed the age of the universe
for any application of interest. Instead, we restrict generation of MMP diagrams so that as soon as a preliminary pass
determines that an initial set of m n-tuples has no solution, no further systems containing this set will be generated
and the whole sub-tree in the generation tree is discarded. E.g., for 18 vertices and 12 quadruple edges without such
a restriction one should generate > 2.9 · 1016 systems—what would require more than 30 million years on a 2 GHz
CPU—while the filter reduces the generation to 100220 systems (obtainable within < 30 mins on a 2 GHz CPU).
Thereafter we get 26800 systems without 0-1 states in < 5 secs. We also developed a checking program that finds
solutions from assumed sets, say {−1,0,1}, even much faster (< 1 sec on a 2 GHz CPU) by precomputing all possible
scalar products.

For the remaining systems two solvers have been developed. One is based on a specific implementation of Ritt
characteristic set calculation and the other on the interval analysis, in particular the library ALIAS2. We will elaborate
on these solvers and present further details of the algorithms elsewhere. [5]

5. SOME RESULTS

Using our general algorithms presented above, we wrote programs [5] which provided us with a number of special
results that show the power of the algorithms.

(i) A general feature we found to hold for all MMP without 0-1 states we tested is that the number of vertices a and
the number of edges b satisfy the following inequality: nb ≤ 2a, where n is the number of vertices per edge. In R

n this
means that we cannot arrive at systems with more unknown (components of vectors) then equations (orthogonality
conditions).

(ii) Several self-explaining results are presented in Fig. 3. As we can see, two of them have miraculously been
previously found by some ingenious humans (think of billions of positions the vectors can take).

(a) (c)(b) (d) (e)

Fig. 3: Smallest 4-dim KS vectors with: (1) loops of size 3: (a) 18-9 (isomorphic to Cabello et al. [7]); (b) 24(22)-
13 not containing (a), with values 6∈ {−1,0,1}; (2) loops of size 2: (2.1) containing (a): (c) 19(18)-10; (2.2) not
containing (a): (d) 20-11-a; (e) 20-11-b (isomorphic to Kernaghan [8]). Solutions are given in [5].

(iii) Between 4-dim systems, with smallest loops of size 3, (a) and (b) of Fig. 3, there are 62 systems with loops
of size 3, all containing the system (a), but 37 of whom do not have solutions from {−1,0,1}. System (b) is the first
system not containing (a); it does not have a solution from {−1,0,1}. The solution is given in [5].

(iv) All 4-dim systems with up to 22 vectors and 12 edges with the smallest loops of size 2 which do have solutions
from {−1,0,1} contain at least one of the systems (d) and (e) and in many cases also (a) of Fig. 3. The two smallest
4-dim systems with the smallest loops of size 2 that contain neither of the latter three systems are 22-13 systems (a)
and (b) of Fig. 4: 1234,4567,789A,ABCD,DEFG,GHI1,2ILA,345J,4JEC,678K,7KMG,9ABL,FGHM and
1234,4567,789A,ABCD,DEFG,GHI1,12IJ,345K,678L,GML7,1J9B,4KEC,FGHM.

2 www.inria.fr/coprin/logiciels/ALIAS/ALIAS.html



(v) (c) and (d) of Fig. 4 are two presentations of the same 24-24 KS system: 1234,4567,789A,ABCD,DEFG,
GHI1,12IJ,345K,678L,7LOG,68FH,1J9B,AMI2,4KCE,DN35,CDEN,IJK5,38KL,6BML,9EMN,
CHNO,2JOF,9ABM,OFGH that make it easier to recognise that the system contains all the previous systems: (a), (c),
(d), and (e) of Fig. 3 and (a) and (b) of Fig. 4. The vectors determined by the solution of the system are nothing but
Peres’ vectors [9], although he has most probably never tried to identify all 24 tetrads for his 24 vectors (our programs
verify all these options in a fraction of a second). We also developed a program for drawing MMP diagrams. [6]
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Fig. 4: (a) and (b): Smallest KS systems systems (22-13) containing neither (a) nor (c) nor (d) nor (e) of Fig. 3.
Solutions are given in [5]; (c) and (d) (isomorphic to each other) are a 24-24 KS system containing (a), (c), (d), and
(e) of Fig. 3 and all Peres’ vectors [9].

(v) 4-dim systems with more than 41 vectors cannot have solutions from {−1,0,1} and there are no such solutions
to systems with minimal loops of size 5 up to 41 vectors, what brings the Hasse (Greechie) diagram approach to the
KS problem into question. Up to 41 vertices with loops of size 5 there is only one diagram that has no 0-1 states.

(vi) It can easily be shown that a 3-dim system of equations representing diagrams containing loops of size 3 and 4
cannot have a real solution. [5]

(vii) We scanned all systems with up to 30 vectors and 20 orthogonal triads and there are no KS vectors among
them. This does not mean that Conway-Kochen’s system is the smallest KS system, though. [5] It turns out that we
cannot drop vectors that belong to only one edge from orthogonal triads because there are cases where a solution to a
full system allows 0-1 valuation while one to a system with dropped vectors does not or where the full system cannot
have a solution. So, Conway-Kochen’s system is actually not a 31 but a 51 vector system. [5] See also [10].

(viii) The class of all remaining (non-KS) vectors from H n we get so as to first filter out all the MMP diagrams that
do have 0-1 states. Then the real solutions to the equations corresponding to these diagrams yield the desired vectors.

(ix) Presented algorithms can easily be generalised beyond the KS theorem. One can use MMP diagrams to generate
Hilbert lattices, partial Boolean algebras, and general quantum algebras which could eventually serve as an algebra
for quantum computers. [6] One can also treat any condition imposed upon inner products in R

n to find solutions not
by directly solving all nonlinear equations but by first filtering the corresponding diagrams and solving only those
equations that pass the filters.
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