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Abstract

Modelling of baker’s yeast production by the principal component based artificial neural networks (ANN) is presented. The models are derived for their application in adaptive control of fermentation by the internal model control (IMC) method. Modelling data are from industrial production in 40 m3 deep jet bioreactor and from computer simulations. The modelling effort is focused on selection of ANN structure and model verification. Principal component analysis of process variables results in projection of patterns to a space of low dimension, which enables determination of ANN structure, removes data colinearity and random components of measurement signals, and model degradation by overtrainig is eliminated. In view of IMC application, the models for prediction of the controlled variable (ethanol partial pressure) and the inverse model for manipulative variable (molasses feed rate) are determined. The models are tested for their predictability in the time horizon from 1-20 min. Derived are ANN models with average relative errors for untrained patterns are in the range from 1-10%.
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1. Introduction

Process modelling for control is one of essential areas of research and industrial applications in biotechnology. Processes based on microorganisms are the most complex in all fields of process engineering, and their modelling is still considered as a difficult task. From a viewpoint of a process control engineer, modelling effort can be reduced by application of various artificial intelligence (AI) algorithms (Baughman and Liu, 1995). Such models are seen as “black” or “grey” boxes, depending on the level of explanatory information they contain, which perform input/output mapping (Psichogios and Ungar, 1992). Application of artificial neural networks (ANN) is of considerable interest for process monitoring, faults detection, and control (Bath and McAvoy, 1990;  Ydstie, 1990). When control is based on process models, effect of modelling errors on control must be carefully considered. The internal model control (IMC) structure is proposed to compensate modelling errors by a feedback control loop with a direct and inverse model (Ogunnaike and Ray, 1994; Zhan and Ishida, 1994; Psichogios and Ungar, 1991). Errors encountered in ANN modelling can be a result of many difficulties such as: errors due to representation of process dynamics by network of static neurones, questions in selection of dimension and structure of a network appropriate for a specific dynamic system, incompleteness of set of training patterns, presence of stochastic and redundant patterns, convergence to local minima during training, and lack of rigorous method for model verification. The question of representation of dynamics by ANN is essential for control applications. Two main approaches have been studied. In the first, application of networks with static neurons and use of present and past information of input and output signals which enables ANN to perform nonlinear autoregression or produce discrete nonlinear version of differential equations (Bath and McAvoy 1990; Ydstie, 1990). In the second approach networks are constructed with "dynamic" neurone, i.e. each neurone posses a discrete form of dynamic activation function (Shaw et. al., 1997). 

The problem of determination of network dimension and structure can be approached by principal component analysis (PCA). Numerous on-line measured process variables form sets of high dimension pattern vectors, which if applied directly would produce high dimension network structures. Most of data in these patterns are correlated and contain random components, i.e. they are redundant and do not contribute to information about a process state. The PCA method projects patterns from a high dimension space to a lower dimension space of latent variables but without essential loss of information. The method has successfully been applied for process monitoring (Kresta et. al., 1991; Kaspar and Ray, 1992; Nomikos and MacGregor, 1994; Kurtanjek, 1997). Principal component patterns can be applied for ANN training (Holcomb and Morari, 1992; Kurtanjek, 1995a, 1995b). Dimension of the space of latent variables obtained by PCA closely predetermines neural network structure prior to pattern training. 

The aim of this work is to apply PCA for ANN modelling of baker’s yeast fermentation based on extensive measurements from industrial production and patterns obtained by the process computer simulations. Direct and inverse ANN models are derived for their application in IMC control. The focus of the modelling effort is on model verification.

2. Materials and methods 

Theory

Process variables are represented by a matrix A with ns (number of samples) rows and nv columns (number of variables).  The matrix A is decomposed into a series of nv matrixes:



                                                              (1)

Measure of information contained in the matrix A is expressed as (2  (A), i.e. by the total variance of A. The matrixes  Ai form a descending order and satisfy the inequality:



                  (2)

Matrixes with small variances are considered to contain only stochastic information and series (1) is truncated only to few significant contributions, i.e. the principal components:



                                               (3)

Each matrix Ai is represented as a product of the two corresponding vectors:
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si are score vectors (principal patterns) and Li are vectors of principal directions determined by minimisation of the norm of A:
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The minimisation leads to the eigenvalue problem:
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This is readily solved by the iterative QR algorithm ( Press et. al, 1987).


The principal components are ordered, analogous to singular value decomposition (SVD) method (Press et. al, 1987), so that the first principal vector corresponds to max 

, i.e. it accounts for the most of variations of data. The principal vectors are input patterns x used for ANN modelling
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 The number of input patterns is equal to N=npc+1 due to introduction of a constant xN=1 (bias pattern). A standard McCulloch (Rumelhart and McClelland, 1989) artificial neural network (ANN) is applied. It is designed of the input, hidden and output layer through which discrete signals xi(k) forwardly propagate. The inputs are distributed from neurones on input layer to neurones on hidden layer. Each neurone is a static nonlinear processing unit with outputs from the hidden layer defined by: 
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Neurone activation function is: 



                                                            (9)

Outputs from the hidden layer are forward to the output layer for further processing (activation):
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All network parameters are collected into a single vector ( defined by:
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Network adaptation is based on two sets, ST for ANN neurone adaptation and SU for ANN predictability evaluation (Fig. 1). The set SU contains "unseen" patterns during network training. Corresponding variances for the two sets are:



                          (13)



                        (14)

Gradient of the variance is evaluated by the back propagation algorithm (Rumelhart and McClelland, 1989). At each iteration neurone parameters are calculated by the Ribiera-Polack-Powell conjugate gradients with the one dimensional search procedure (Kurtanjek Z., 1995a, 1995b):



                                 (15)



                                (16)

At each iteration network parameters are adapted by Eq. (16) and variances of the sets with trained and untrained patterns are calculated. The iterative procedure is continued until the minimum of variance with untrained patterns is achieved.


Baker's yeast production here is modelled with the aim to apply ANN for adaptive bioreactor control. Proposed is the internal model control (IMC) structure (Ogunnaike and Ray, 1994) which enables compensation of modelling error. The control structure is a feedback loop, which includes multistep predictive models of controlled (direct model) and manipulative variable (inverse model). The direct model is acting in parallel with process, and the error between the process and prediction is superimposed to the input of the inverse model. The multistep predictions cover a horizon upon which optimal profiles of controlled and manipulative variable are evaluated. Only the first value of the manipulative variable is applied, and the optimisation is reiterated over the next horizon. 


The direct model for ethanol partial pressure cE and inverse model for molasses feed rate Qm are represented by two independent MISO ANN networks with nonlinear autoregression of prediction over a horizon ( with a given present state at t=k. The inputs are: feeds rates of molasses Qm(k), phosphor source QP(k), nitrogen source QN(k), dissolved oxygen concentration DO2(k), liquid volume V(k), pH(k), and ethanol partial pressure cE(k). The model equations are:



         (17)


ANN models based on the computer model (Sonnleitner andKappeli, 1986: Swere et. al, 1988) have the same form as given in (17). The input patterns are feed rate of glucose, volume and the following concentrations in a bioreactor of: glucose, dissolved oxygen, biomass, ethanol, and carbon dioxide.
Methodology


A collection of 10 fermentations with about 100 000 patterns is divided by random selection into two sets ST and SU of patterns (Fig. 1). In the figure is depicted a two dimensional projection of the corresponding subspaces on the coordinates cE and Qm.  Members of the set ST are patterns used to train ANN (depicted with closed circles), while patterns in SU (depicted with open circles) are untrained or "unseen" and are applied for model evaluation. Patterns from the two sets partially fall into in the overlapped space of process variables (state space), indicated by the set intersection ST ( SU .  The "unseen" patterns xU from the ST ( SU  can be interpolated by the neighboring "seen" patterns x1T and x2T  from ST by the expression:
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 for 0 < ( < 1. A part of the "unseen" patterns from SU fall outside the projection of ST and must be extrapolated by Eq. (18) with (<0 or (>1. Therefore, test by untrained patterns from SU includes tests for ANN interpolation and extrapolation powers.  Since the set SU is not covered by the set ST, patterns applied for training must be scaled to a sub range ((min, 1-(max) of the interval (0,1) as determined by the choice of the activation function Eq. (9). The subrange boundaries can be calculated by the ratios:
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or can also be "ad hoc" estimated from expected range of pattern in future ANN applications. In this work is applied symmetrical scaling to the range of ((, 1-() with ( = 0.2 which allows full coverage of ST(SU by the interval (0,1). The complete list of steps of the algorithm is given in the Appendix.

Experiment

Data obtained from an industrial production of baker's yeast and a computer model are applied for ANN modelling. The industrial production is supported with Computer Integrated Production (CIP) hardware and software enabling on-line monitoring and acquisition of process variables. The CIP system controls the following production phases: storage tank management, feed preparation, washing, sterilisation, fermentation, product separation, product storage and packing.  In this work data from a 40 m3 "deep jet" fermentor are used. The following on-line measured variables are applied in modelling: liquid level, temperature, pH, concentration of dissolved oxygen, feed rates of C, N, P sources (molasses, ammonium, ammonium sulphate, ammonium phosphate), and ethanol partial pressure in gas outlet stream. off-line Biomass concentration is measured off-line in hourly intervals. On-line variables are sampled with a frequency of  1 min-1 during 13 h of fermentation.  Data include the lag phase and the exponential growth phase until feeding is stopped. 


In order to test hypothesis in modelling of the industrial process data generated from the computer model (Sonnleitner and Kappeli, 1986; Swere et al., 1988) are applied in parallel to the industrial data. Parameters of the computer model are taken from the literature, and the model was not modified to account for mixing dynamics in the large industrial reactor. In the model the volumetric mass transfer coefficient of oxygen is adjusted to fit the simulated profile of dissolved oxygen concentration to the measured response of  the DO2 probe in the industrial fermentor. All other kinetic parameters are taken from the literature. Since the computer model does not account for N and P balances, the computer experiments are carried so that the feeding profiles of glucose follow the measured flow rates of molasses.  
3. Results and discussion


The process variables stored in matrix A are analysed by the principal component analysis. In Fig. 2 the results of analysis for the complete set ST ( SU of patterns for varying horizon lengths from 1 to 20 minutes are shown. Presented is the percentage of variance of the complete set as explained by increasing number of included principal components. From the graph is seen that the first component contains 68% of all information (variability) in the process data, the first three components explain about 93.3% of the total variance, and the first four explain about 98%. The length of the time horizon does not effect the result. Consistency of the principal component analysis between the two sets ST and SU is investigated by the projections of the corresponding loading vectors into the space of process variables (Fig. 3). The first loading vectors for the two sets almost coincide, while for the second and third are present differences. Misalignments of the vectors is more pronounced for smaller projections, i.e. they have less effect in determination of the score values. In Fig. 4a-c are presented time variations for the score signals for three fermentations from the training set ST. In the figure are denoted the starts of each ferementation, each lasting for 13 h. The profiles of the process variables for the given fermentations differ, however, the first three score signals show close patterns. In the Fig. 4c the scores corresponding to 4-8 principal components are depicted in a single graph as they resemble stochastic signals. The projection of the process vector into the space of the first three loading vectors is given in Fig. 5. Based on relative positions of each process variables, a lumping of variables is possible. From Fig. 5 is shown that partial pressure of ethanol, volume and pH can be lumped together. It indicates strong correlation between these variables, they behave similarly, and give almost the same contribution to the score patterns. Lumping of the process variables is also useful in process control design, as it indicates possible decoupling of control loops. 


Determined scores of the training set ST are applied as input patterns for training ANN. The output variables are ethanol partial pressure cE and molasses feed rate Qm for time horizon (. In Fig. 6 are presented average relative errors of the output variables obtained as function of number of scores, corresponding to principal components, and varying time horizon from 1 to 20 minutes. All results are obtained with number of hidden neurones equal to number of components increased by one. The results show a typical effect that ANN can produce “perfect fit” with data from a training set. The relative error decreases with increase of number of components, and when all components are present (i.e. no information is left out) error is practically approaching zero. The rate of the average relative error decrease is smaller for data with longer horizon. Diminishing error is due to the fact that in this case ANN acts only as an interpolation model with sufficient number of parameters to produce “perfect fit”. Any possible remaining error can be a result of inefficient minimisation of the objective function during training procedure. Although such models may seem perfect, they usually lead to large errors when a pattern outside training set ST is applied.


Difficulties encountered in ANN modelling are illustrated with the results given in Fig. 7. Here are given results of training two ANN: first with original process variables as input patterns (Fig. 7a), and the second with principal components (Fig. 7b). Modelled is prediction of ethanol partial pressure over the horizon of 20 minutes. The first ANN has seven input variables given in (17); while the second has three scores corresponding to the first three principal components. Both networks have four neurones on the hidden layer. Included are patterns from the training ST and untrained SU set of patterns. Given are results of the first 500 iterations after which error minimisation becomes very slow. When the ANN with process variables as inputs is trained, the average relative error calculated for patterns from the training set monotonically decreases and after 500 iterations reaches the value of 8%. When the same ANN is used to determine the error for patterns from the untrained set the results shows that the error decrease during first 100 iterations to the value of 8%. After the minimum, the error starts to increase and exceeds the initial value of 16 %. An increase in error with progress of training (iterations) is the well-known effect of  “over-training”. If model verification with untrained patterns were not applied, the model with minimum error would be the worst choice. If the same sets of data are modelled with principal components than the “over-training” effect is avoided (Fig. 7b). The errors for trained and untrained patterns are monotonically decreasing, and minimal errors of 10% and 12% are achieved. This can be explained as a result of rejection of random components and collinearities by principal component decomposition. Process signals contain stochastic components due to measurement errors and the signals can be to a high extent linearly correlated due to pseudo steady conditions as imposed by a control system. When networks are trained with such signals during training neurone parameters adapt to random variations as if they were definite patterns. At the same time collinear input patterns result in over-sized network structures, number of parameters becomes large, minimisation of the error is slow, and errors in the parameter estimates is large. Usually such ANN models give very poor predictions when untrained patterns are presented.


On Fig. 8 and Fig. 9 are presented results of the direct and the inverse ANN model for controlled cE and manipulative variable Qm. The model predicts the output variables over the time horizon of 20 min. The networks are trained with the first four principal components and have five neurones on the hidden layer. In Fig. 8a are results for experimental and model predictions values for ethanol pressure in three fermentations from the training set of patterns ST. The first fermentation from the training set includes a sharp drop in molasses feed rate and ethanol pressure, followed by sharp increase in feed rate. This behaviour is a result of change of a storage tank for molasses. In Fig. 8b are given results with a fermentation from untrained set of patterns SU. The average relative errors are 4% and 8%. From the results it can be seen that most of the error is due to inaccurate ANN prediction of the lag phase of the process. ANN predictions of the sharp peak in ethanol pressure are well interpolated. Results of modelling of molasses feed rate are presented in Fig. 9a and Fig 9b. The average relative error for trained patterns is 3% while for untrained is 9%. Here also ANN predictions during the lag phase are less accurate.


The same conclusions are verified by the results obtained from ANN modelling with patterns obtained in computer simulations of baker’s yeast fermentation. Principal component analysis of patterns also reveals that the first three principal components can account for the most of information (98% of the total variance). The best ANN MISO structure found is composed of three neurones at the input layer connected to the first three score signals, and four neurones at the hidden layer. The average relative errors at the time horizon of 20 min. for trained ST and untrained SU sets of patterns are 2% and 6% respectively. Smaller errors compared to models based on industrial data can be explained by the fact that the model does not simulate process lag, in process simulation are not included simulations of random signals (errors), systematic errors which may be present in the industrial measurements are excluded, and the industrial process probably has greater complexity than the computer model. Model degradation due to the effect of over-training is also observed when input data are process variables and can be avoided by the use of principal component patterns.
4. Conclusions


Based on principal component analysis developed are ANN models of baker’s yeast production in a 40 m3 industrial deep-jet bioreactor. Modelling is aimed for the process control based on IMC concept for feedback compensation of modelling error. Derived are direct and inverse MISO ANN models for ethanol pressure and molasses feed rate for prediction over the time horizon from 1 to 20 min. 


Principal component analysis reveals that 95% information (variability) of process variables is accounted by the first three principal components. Number of principal components leads to determination of optimal ANN structure, i.e. number of needed neurones in a hidden layer. 


Applied is a systematic procedure for determination of ANN optimal structure and model verification based on sets of trained and untrained patterns. Due to PCA network structure is simplified and as the best model structures is proposed ANN MISO with three input nodes and four hidden neurones. 

Number of tests in search for a best ANN structure can be greatly reduced by principal component analysis. For a given percentage of accounted variance, the optimal number of hidden neurone is approximately equal (plus/minus one) to the number of principal components. 

It is shown that by training networks with PCA patterns the “over-training” effect and model degradation is avoided. 

The results of principal component analysis and optimal network structure for industrial data are supported by conclusions based on modelling with patterns from computer simulation of the process. 

 The average relative errors for the output variables are from 2% to 10% corresponding to the range of time horizon from 1 to 20 min. for industrial data. Errors in prediction for computer simulation data are smaller, from 1-6%, due to lack the process lag phase and random errors in simulation patterns.

Predictions of ANN models in the lag phase account for most of errors. Application of fuzzy logic rules for identification of process phase and separate for each process phase may further improve accuracy of neural network models.

5. Appendix


Prior to modelling all data are scaled to zero mean and unity variance, i.e. they all have properties as samples from Gaussian N(0,1) population.

Applied is the following algorithm for ANN structure determination and neurone training:

1. Patterns are divided into two sets ST and SU.

2. Input patterns from ST are decomposed into scores by principal component analysis.

3. Input patterns from SU are projected into scores by projection with the loading vectors determined from SU.

4. A scale factor ( is selected based on score patterns from the set ST.
5. The scaling factor is tested on score patterns from SU. If untrained patterns fall outside the range (0,1) the scale factor ( is decreased until the condition (5) is satisfied.

6. Selected is the first score from ST as input for ANN.

7. Selected is a number of neurones on the hidden layer (usually one is selected).

8. ANN training is performed by minimisation of variance over the patterns from the set ST by Ribeira-Polack-Powell conjugate gradient method (Eqs. 15-16). For each iteration step are calculated variances for ST and untrained patterns SU.

9. Iterations are continued until minimum of the variance for untrained patterns SU is achieved.

10. Number of hidden neurones is increased by one and the steps (8) and (9) are repeated.

11. Step (10) is continued until further improvement in minimisation is impossible.

12. Number of input patterns is increased by inclusion of the next score patterns. Steps (7)-(11) are continued until further decrease in variance for SU is impossible (negligible).

13. The step (12) is repeated until the number of scores is equal to the dimension of the state space (number of process variables).

14. As the best model, the one ANN structure is selected for which minimum of variance for SU is obtained in the steps from (7) to (13).

15. At the final step, when the best ANN structure is determined, the optimal estimation of network parameters aimed for future applications is obtained by a repeated minimisation of variance over all the available data, i.e. the union of the sets ST ( SU.

Nomenclature

A
process matrix


cE
ethanol partial pressure


d
conjugate vector ( gradient )


DO2
concentration of dissolved oxygen


e
relative error


f
neurone activity function


g
gain in one dimensional optimisation step


i
index


k
sampling index


L
loading vector


N
dimension of a vector


NH
number of hidden neurone


NPT
number of patterns in the set for network adaptation


NPU
number of patterns in the set for network evaluation


npc
number of principal components


ns
number of samples of a process vector


nv
number of process variables 


o
vector of  outputs from a hidden layer


oi
i-th hidden neurone output 


p
vector of output patterns applied for ANN testing 


Qm
feed rate of molasses


QN
feed rate of ammonium


QP
feed rate of ammonium phosphate


s
score vector


ST
set of patterns  applied in ANN training


SU
set of patterns  unused in  ANN training


t
time


t
vector of training output patterns


V
volume


wH,j
vector of weights of j-th hidden neurone 


wO,j
vector of weights of j-th neurone on output layer


x
vector of patterns


x
general variable


yi
output of i-th neurone on output layer 


Greek

(
scaling factor


(
vector of weights for a whole network


(
momentum coefficient


(
number in the definition of interpolation and extrapolation


(2
variance


(
length of time horizon


Abbreviations

AI
artificial intelligence


ANN
artificial neural network


CIP
computer integrated production


IMC
internal model control


MISO
multiple input single output system


NARMA
nonlinear autoregression moving averages


PCA
principal component analysis


QR
method of matrix decomposition


SVD
singular value decomposition
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