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We study the effect of antiferromagnetic (AF) correlations in the three-band Emery model, with
respect to the experimental situation in weakly underdoped and optimally doped BSCCO. In the
vicinity of the vH singularity of the conduction band there appears a central peak in the middle
of a pseudogap, which is in an antiadiabatic regime, insensitive to the time scale of the mechanism
responsible for the pseudogap. We find a quantum low-temperature regime corresponding to exper-
iment, in which the pseudogap is created by zero-point motion of the magnons, as opposed to the
usual semiclassical derivation, where it is due to a divergence of the magnon occupation number.
Detailed analysis of the spectral functions along the (π, 0)–(π, π) line show significant agreement
with experiment, both qualitative and, in the principal scales, quantitative. The observed slight
approaching-then-receding of both the wide and narrow peaks with respect to the Fermi energy is
also reproduced. We conclude that optimally doped BSCCO has a well-developed pseudogap of the
order of 1000 K. This is only masked by the narrow antiadiabatic peak, which provides a small
energy scale, unrelated to the AF scale, and primarily controlled by the position of the chemical
potential.

I. INTRODUCTION

The Fermi surface phenomena in the high-Tc cuprates, and especially BSCCO, have been extensively investigated,
and a broad consensus has developed concerning their main features. The Fermi surface is large and hole-like, with
a simple topology of a rounded square, or barrel, centered around the M-point [1]. Single-particle phenomenology
is routinely invoked on the ARPES spectra, thus the ‘self-energy’ and ‘damping’ are often extracted from the main
peak as if it were a coherent, weakly perturbed quasiparticle [2]. However, in the underdoped regime and below a
temperature scale T∗, the metallic state is surfeit with low-energy correlations, about whose relevance for either the
pseudogap, or the superconducting mechanism itself, there is no general agreement at present. Various experimental
observations at low energy have been interpreted in terms of stripes [3], paramagnons [4], phonons [5], and supercon-
ducting fluctuations above Tc [6]. All these correlations are at present the object of intense scrutiny, mainly with a
view to ascertaining whether they enhance or suppress superconductivity.

Theoretical understanding of the measured electronic spectral functions of high-Tc superconductors has received
significant attention in the context of these efforts [7, 8, 9, 10, 11, 12, 13, 14, 15]. Physically, conduction occurs in the
copper oxide planes, so the most important electronic states are directly accessible to surface probes such as ARPES.
This naturally allows for a concentration of theoretical effort, especially because the observed spectra offer some
outstanding puzzles of their own. Such a long-standing issue is the appearance of the pseudogap [16], observed near
the vH points for underdoped systems, and its connection with the AF gap at lower doping on the one hand, and with
the superconducting (SC) gap at lower temperature, on the other. Experimentally, the pseudogap is clearly connected
with a (π, π) correlation [15], and the most natural candidate for its origin are antiferromagnetic fluctuations above
their transition point [4].

The present work attempts to connect several aspects of the low-energy phenomenology of the cuprates in the hope
of realistically constraining the eventual theory of the optimally doped and weakly underdoped state. We adopt an
effective weak-coupling framework, and concentrate on aspects least sensitive to model details. Our most important
observation is that the pseudogap does not really disappear at optimal doping, but is instead rather inefficient at
suppressing part of the spectral strength around the vH points. The unsuppressed strength appears at the Fermi level
as an ‘antiadiabatic’ central peak in the middle of a still fairly wide and deep pseudogap. It is the latter ‘high-energy
pseudogap’ which indicates the underlying physical scale, while the ‘leading edge’ scale, associated with the central
peak, turns out to be incidental to the dynamics. It is primarily controlled by doping. This result does not even
depend on the pseudogap being due to antiferromagnetism as such, but only on the fact that the dominant perturbing
correlation occurs around the wavevector Q = (π, π).

∗Electronic address: dks@phy.hr

mailto:dks@phy.hr


We do not enter here the important question why the magnetic correlations undergo an essential change at Tc.
Our main aim is to show that when their observed low-temperature behavior is introduced phenomenologically in the
calculation of the single-electron propagator, the resulting antiadiabatic peak and pseudogap behave consistently with
the main features of the ‘peak-dip-hump’ structure, found in experiments on superconducting optimally doped BSCCO.
In this way our calculation refers to the superconducting state. We only omit the direct effect of superconductivity
on the single electron propagation, namely the appearance of a superconducting gap. This is justified by the fact that
the SC gap scale in ARPES is an order of magnitude below the AF scale, manifested by the high-energy ‘hump.’ In
order to reproduce typical normal-state ARPES profiles, which do not show a narrow low-energy peak, we only need
to overdamp the paramagnons. Our work provides a connection between the observed simultaneous appearances of a
magnetic resonance and of a narrow low-energy peak in the ARPES profile, as the temperature drops below Tc.

Like some other authors [17, 18, 19, 20], here we use an effective weak-coupling (single-band) approach to describe
the effect of antiferromagnetic correlations on the single-electron propagation. Given that Ud is large in the high-Tc

superconductors, our starting point is the strong coupling limit, and we use the present calculation to develop a
phenomenological framework in which the correct physical regime can be identified for the effective weak-coupling
approach. Section II is thus devoted to placing the present work in this wider theoretical context. Section III describes
the model results. A comparison with experiment is found in Section IV. Finally, Section V is a recapitulation and
discussion.

II. THE ELECTRON SELF-ENERGY AND THE CENTRAL PEAK

A. Separation of charge and spin channels

We enter a brief theoretical discussion now on the validity of the weak-coupling single-band approach, with a large
hole-like Fermi surface, when Ud is large. This is the essential input in our calculation, important for its comparison
with the k-dependencies measured by ARPES.

Recently a considerable improvement in understanding the band dispersion measured by ARPES in the high-Tc

superconductors near optimal doping has been achieved by considering the extended Emery model [21] in the limit of
large interactions Ud on the Cu-site. The original Emery model of the CuO2 plane is extended by taking into account
the direct O-O hopping t′ < 0 in addition to the original Cu-O hopping t0 and the difference ∆pd of the O and Cu
site energies [22].

In the limit of interest |t′| > t20/∆pd this means that the ‘broad’ oxygen band is weakly hybridized with the Cu level.
The Emery model then resembles the Anderson lattice model which includes the accurate symmetry of the electron
(hole) propagation in the CuO2 lattice, either along the O-O axis (t′) or along the Cu-O axis (t0). Notably, the limit
|t′| ≫ t20/∆pd, although probably too extreme for physical purposes, corresponds to the Falicov-Kimball model [23],
also sometimes invoked in the context of high-Tc superconductors [24, 25, 26, 27, 28].

The large Ud limit of the Emery model [21] extended by t′ was treated in the homogenous mean field approxi-
mation [22] applied to the slave-boson representation of the Ud = ∞ Emery model. The usual objection that the
mean-field slave boson (MFSB) approximation breaks the local gauge invariance required by the slave-boson theory
was met [29] by emphasizing that the static mean field merely represents the slow component of the slave boson
field. This latter, allowed by local gauge invariance, only appears as static when particular physical properties are
calculated, most notably the physical electron band dispersion. Thus the physical dispersion can be represented by
the usual non-interacting three-band dispersion, but with strongly renormalized tight-binding parameters ∆pf and t
instead of ∆pd and t0, while t′ remains unaffected by the copper on-site repulsion. Most importantly, in this way the
observed regime ∆pf ≈ 4|t′| > t naturally replaces the regime ∆pd > t0 > t′, inferred from chemical valency analysis
and high-energy spectroscopy data. The formula for the antibonding electron band is then

ε(k) =
1

3

√
P

(
cos

Ψ

3
+
√

3 sin
Ψ

3

)
, (1)

where

Ψ = arccos
Q

P 3/2
,

P = 12t2f1 + 48t′2f2 + ∆2
pf ,

Q = 144t′(3t2 + t′∆pf )f2 − ∆pf (18t2f1 + ∆2
pf ),

with f1 = sin2 kx/2+sin2 ky/2 and f2 = sin2 kx/2 sin2 ky/2. It is obvious from Eq. (1) that the effective near neighbor
hoppings t and t′ enter the dispersion ε(k) non-linearly. This is in contrast to those one-band approaches which



include hopping to unphysically [30] distant neighbors, but linearly in the corresponding parameters. We use the
single band (1) from the three-band model with this distinction in mind.

Actually, after taking into account the fast harmonic slave-boson fluctuations around the mean-field saddle point,
the MFSB band (1) decomposes into the narrow resonant band with dispersion ε(k) and a spectral density Ak, which
accomodates approximately δ holes (doping δ > 1) on the O-site and one hole localized in the localized state on the
Cu-site at the energy ∆pd, deep below ε(k) [22, 29]. The observed structure of the resonant band in LSCO is well
described [22] by the regime |t′| > t20/∆pd and evolves with doping δ according to MFSB predictions.

Once these renormalizations are taken into account, the remaining low-energy analysis concerns only the resonant
band ε(k) containing the Fermi level. In the above slave-boson calculations the spins of the localized holes on the Cu
sites are taken as paramagnetic. This is justified for large enough dopings δ, when the band-width of the resonant
band exceeds the magnetic and/or superconducting energy scales, whereas for δ ≈ 0 models of t-J type may be
more appropriate. Indeed, for optimal dopings the bandwidth is of the order of 1 eV, whereas the magnetic and/or
superconducting effects occur on scales lower by at least an order of magnitude. This approach is in principle well
suited to take magnetic energies into account as a perturbation of the main energy scales associated with the resonant
band. While the formation of the resonant band is associated in the first place with the slow component in the motion
of the slave boson, its fast component is alone responsible for the weak magnetic couplings. Several calculations of
this type were carried out before for strongly interacting electron systems. In particular, for the t′ = 0 Emery model
with large Ud, the residual effective couplings were derived explicitly [31]. The extension of these ideas to finite t′,
in particular to |t′| > t20/∆pd, with a clear distinction between slow and fast components of the slave-boson field is
currently under way. These residual couplings can be treated, for example, by the perturbational 2D parquet theory.
At t′ = 0 the latter was shown [32] to lead to ladder-like results (‘fast parquet’) in most of the space of coupling
parameters, and to the marginal Fermi liquid only under very special conditions. Here we consider this ladder-like
regime appropriate for calculating the electron self-energy Σ from Fig. 1, where the wavy line represents the spin
susceptibility χ, and the triangular vertex corrections are neglected.�" # "

FIG. 1: Phenomenological one-magnon approximation.

To summarize, for large Ud there is a natural separation of the slave-boson fluctuations into fast and slow compo-
nents. The latter appear static when calculating the effective dispersion of the electrons, so in fact our mean-field
slave-boson renormalization of the electronic band parameters corresponds to taking this slow component into account
in the charge channel [29]. This explains why the Fermi surface is large and hole-like. The fast component in the
spin channel is the paramagnon perturbation of the large, hole-like Fermi surface. In the following, we concentrate
entirely on the latter, neglecting triangular vertex corrections in Fig. 1.

B. Electron spectral density

Following the ideas expressed above, the fermion line in Fig. 1 is taken to represent hole propagation in the absence
of magnetic couplings, i.e. a non-selfconsistent perturbative approach is taken, sufficient here for our semiquantitative
purposes. Thus the retarded Green‘s function is just

G
(0)
R (k, ω) =

Ak

ω − ε(k) + µ + iη
, (2)

with ε(k) from Eq. (1), and Ak the spectral density of the resonant band. Based on the above MFSB considerations,
we expect a significant k-dependence in this quantity along the Fermi surface, once the strong on-site repulsion is
explicitly taken into account. In the present work, we concentrate entirely on the vicinity of the vH point, so Ak will
eventually be absorbed into a coupling constant.



The wavy line in Fig. 1 is taken to correspond to the simplest form of the magnetic propagator,

χR(Q + q, ω) =
ω2

0

(ω + iγ)2 − ωD(q)2
, (3)

where Q is close to the AF wave vector (π, π), γ is the damping, and ωD the dispersion

ωD(q)2 = ω̃2 + c2|q|2. (4)

Here ω̃ is the band-edge, and c the paramagnon velocity. An upper cutoff ω0 to the magnons is also introduced,
corresponding to the extension ω0/c of the magnon anomaly around Q.

The static magnetic structure factor related to Eqs. (3) and (4) is characterized by the value of Q and physical
correlation length ξ = c/ω̃. This structural factor is measured directly by the elastic neutron scattering [33, 34] or
indirectly through the nuclear spin relaxation rate T−1

1 . Both these types of experiment were recently shown [35] to be
mutually consistent (in LSCO) when related by the static limit of Eq. (4). For simplicity however, the incommensurate
effects (usually associated with ‘stripes’) will not be included in the present calculation, as they do not seem to be
important for ARPES results. The value of Q is therefore taken to be (π, π) in Eq. (3), and ξ is isotropic.

Turning further to the dynamical features of Eq. (3), it should be noted that the possibility of a central peak in
the magnon response, below ω̃, appearing together with the strong dispersive branches, is not included. We could
include it fairly easily, following an ansatz [36] slightly different from Eq. (3). As shown below, such slow correlations
(usually associated with ‘dynamical stripes’) are not needed to reproduce the main features of the electronic spectral
structure observed by ARPES along the (π, 0)–(π, π) line. At fixed c and low temperature, the main parameter tuning
the AF dynamics in Eq. (3) is the ratio of the damping γ and the band-edge ω̃. Magnetic fluctuations are strongly
overdamped in the normal state, but as soon as superconductivity sets in, a resonance peak appears at 41 meV,
around optimal doping [33, 34]. Notably, Morr [37] has obtained the magnetic resonance peak, observed below Tc,
from a mode with the dispersion (4) and ω̃ ≈ 20 meV, simply by changing from overdamping to underdamping.

The formal expression for the (retarded) fermion self-energy [38] may then be rewritten as a sum of two terms[51]

ΣR(k, ω) = − 1

2π2

∫
g2
k,qd2q

∫
∞

−∞

dω′

[
χR(Q + q, ω − ω′)(1 − f(ω′))Im G

(0)
R (k − q − Q, ω′)

+G
(0)
R (k − q − Q, ω − ω′)n(ω′)Im χR(Q + q, ω′)

]
, (5)

where gk,q is the effective interaction vertex in Fig. 1, and Q = (π, π). The first term in Eq. (5) is the boson propagator
convoluted with the electron response, the second, vice versa. In the high temperature limit the first is negligible,
because the Bose occupation term dominates the Fermi factor, n(ω′) ≈ kT/ω̃ ≫ 1 − f(ω′). In the low-temperature
limit kT < ω̃, which we consider here, both terms may be equally important, with contributions coming from magnon
zero-point motion. The antiadiabatic central peak is due to the second (boson response) term in both temperature
limits, as is the lower side wing, corresponding to occupied states. The effect of the first term in the low-temperature
regime is twofold: it provides the upper wing (unoccupied states) of the pseudogap, and significantly affects the
position and spectral intensity of the peaks coming from the second term.

Each of the two terms can itself be expressed as the sum of two contributions, a ‘dispersive’ part from the propagator
poles, and a ‘diffusive’ part from the poles in the occupation factors. The diffusive terms are proportional to the
damping in the respective response functions. They are not essential for the physics discussed in the present work,
although we include them in the numerics, when we compare with experiment. The dispersive parts are responsible
for both the gap and the pseudogap, when it appears. As shown below, the pseudogap ∆PG can appear not only
in the high- (kT > ω̃), but also in the low-temperature (kT < ω̃) regime, while the true gap is always in the high-
temperature limit, since in the present model it requires ω̃ → 0 before kT → 0. The temperature is taken to be
10 meV, lower than the other parameters in the problem.

As already emphasized in previous work [36, 39], a special physical regime applies in the vicinity of the vH point,
where the electrons themselves are slow, in fact static at the vH point itself. Then a frequency ‘window’ appears,
of the order of the band-edge ω̃, in which a weakly damped peak survives. This creates an ‘antiadiabatic’ central
peak in the middle of the pseudogap, as long as the paramagnon band-edge is finite. For a thorough example of
the usual adiabatic regime from the side of broken translational symmetry, see Ref. [40], while Ref. [36] describes
the antiadiabatic regime without translational symmetry breaking. Both of these study charge density waves. In
the high-Tc context, Ref. [39] discusses the high-temperature antiadiabatic case, while Ref. [18] is concerned with
shadow-band signatures, which we can also reproduce, but in a different parameter regime than here. The latter two
references [18, 39] take the translational symmetry to be unbroken, like the present work.

The appearance of the antiadiabatic central peak is first illustrated in the renormalized spectral density Ã(ω) of
Fig. 2 for a particularly simple parametrization. We put t′ = 0 and µ = εvH , so that the unperturbed system has
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FIG. 2: Thick lines: antiadiabatic central peak in the renormalized electron spectral density Ã(ω) at the vH singularity
k = (π, 0) with µ = εvH , for a particularly simple parametrization. Thin lines: k = (π/2, π/2). The circles have the same
abscissas in all three panels.

a square nested Fermi surface touching the vH singularity. The product g2
k,qAk is taken as constant, independent

of the position on the Fermi surface. The band-edge ω̃ = 0.03 eV> kT = 0.01 eV≈ γ = 0.015 eV is set to the
low-temperature regime, as in the rest of the article, while the remaining parameters are irrelevant for the discussion.
The thin line in the left panel gives the spectral strength at k = (π/2, π/2), simply split into two peaks. They have
quasiparticle signatures, as shown in the right two panels: Re Σ has a negative slope at the peak positions, and |ImΣ|
is small.

The thick lines show the situation at k = (π, 0), the vH point, for the same parametrization. The maxima in the
side wings, also denoted by full circles, are evidently incoherent: the corresponding Re Σ has a positive slope, and
|ImΣ| is large. Clearly a central peak has survived at the vH point, protected by the antiadiabatic mechanism. To see
this, note that when the boson response is peaked around q ≈ 0 in Eq. (5), the main contribution to Σ at k ≈ (π, 0),
the vH point, comes from electrons at k − Q ≈ (0,−π), the other vH point, where they are slow.

Thus the central peak consists of vH electrons which do not scatter because they barely move, so for them even
the slowest available paramagnons are averaged out; this is the antiadiabatic regime. It is clear that it violates the
Fermi liquid paradigm, since |ImΣ| 6= 0 at the Fermi level despite Re Σ = 0. This is because electrons interact with
dissipative bosons. When the boson damping γ is zero, |ImΣ(ω)| ≡ 0 for |ω| < ω̃ at the vH point itself; this was
checked analytically [39]. It is further important to note that the antiadiabatic peak does not necessarily appear at
the Fermi level, since it has its own k-dispersion. In the zone, Re Σ and |Im Σ| for the antiadiabatic peak behave
similarly as for a quasiparticle, including the reduced but finite quasiparticle weight. We shall see that the peak can
reveal its antiadiabatic origin nevertheless, by disappearing with changing k when the electrons involved acquire a
significant velocity.

Let us fix our usage of the term ‘pseudogap’ now. We do not call the thin line in the left panel of Fig. 2 a
pseudogap, in spite of the valley between the two peaks, corresponding to a large |ImΣ|. However, the peaks
themselves are ‘coherent,’ as discussed above. We reserve the term ‘pseudogap’ for manifestly incoherent side wings,
like the side wings of the thick line, irrespective of the nature or presence of a central peak in the middle. Notably,
other parametrizations can give three coherent peaks at the vH point, the two side ones like at the nodal point, and
an antiadiabatic one in the middle; in that case there is no pseudogap at all, in our language.

III. MODEL REGIMES

At fixed low temperature, the ratio of the paramagnon ‘band-edge’ ω̃ to the damping γ becomes the principal
physical parameter of the self-energy (5). We shall show below that this number is relevant to account for the
principal features of the ARPES measurements in BSCCO and YBCO [41] along the (π, 0)–(π, π) line, which we
shall call X–M, in accord with the crystallographic notation for YBCO. We take ω̃ to be 40 meV, in accord with
experiment, which puts our calculation in the low-temperature limit, kT < ω̃. This means that the electrons are
only perturbed by paramagnon zero-point motion. We argue below it is this ‘quantum’ pseudogap which is actually
observed in optimally doped BSCCO. The use of the term pseudogap to refer to the destruction of the Fermi liquid
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behavior by magnetic quantum fluctuations is already well established in studies of the antiferromagnetic quantum
critical point [42].

The parameters in expression (5) are treated semiphenomenologically, i.e. we shall use them primarily to adjust
the experimentally observed outcomes, but with regard to physically reasonable values. Let us give a standard
parametrization now, used throughout the article. The renormalized parameters of the Ud = ∞ Emery model in the
hole picture are: copper-oxygen hopping t = 0.3 eV, oxygen-oxygen hopping t′ = −1 eV, and effective copper-oxygen
energy splitting ∆pf = 3.6 eV. The Fermi energy is in the electron antibonding band (1) of the three-band model [22].
The temperature is kT = 0.01 eV, as already mentioned.

The paramagnon parameters are the band-edge ω̃ = 0.04 eV, damping γ = 0.015 eV, cutoff ω0 = 0.15 eV, and
correlation length ξ = c/ω̃ ∼3 lattice spacings. The coupling constant is g2

k,qAk ≡ F = 0.077 eV. Its wave-vector

dependence is neglected, because we concentrate on k ≈ (π, 0) and q ≈ 0. To get a feeling for it, we note that the
total range of Σ around the Fermi surface is ∼0.1 eV for this parametrization, which is roughly an order below the
width of the non-interacting antibonding band (1). Hence 100×F/1 eV may conveniently be imagined as ‘percent’ of
the non-interacting electronic scale. The chemical potential is µ = 0.025 eV from the vH point. (Larger µ means less
holes.) Individual parameter values are quoted elsewhere in the paper only to denote deviations from the set given
here.

The generic form of the pseudogapped spectral function with a central peak is shown in Fig. 3. As long as we are in
the vicinity of the vH point, some of the spectral strength of the slow electrons survives in the middle of the pseudogap,
itself of width 2∆PG, near the Fermi energy. The persistence of a central peak in the single-loop approximation was
noted earlier [17, 36, 39]. There appears an intrinsic ‘leading edge’ scale, the small distance from the central peak
to the Fermi energy. When the chemical potential is shifted toward underdoping, this distance increases. The high
background observed in ARPES does not appear here. It was obtained in both ARPES [43] and Raman [44] contexts
by taking into account the high-frequency slave-boson fluctuations in the charge channel in the so-called non-crossing
approximation, a different starting point from the mean-field slave-boson one, on which this article is based. The
upper and lower wings at ∆PG > ω̃ may be understood in the semiclassical language as a consequence of the electronic
scattering on the nearly static, but still not completely ordered AF-like potential induced by the paramagnons. This
interpretation implies essentially incoherent side wings, with a large ImΣ and ReΣ with a positive slope. (In fact
a different structure can also appear, with coherent side peaks, as mentioned in the discussion of Fig. 2.) In the
parametrizations used here to compare with experiment, the side wings are in fact incoherent, while the physical
regime is at low temperature.

The pseudogap in the high-temperature limit looks quite similar, as shown by the broken line in Fig. 3. In particular
the energy scale of the side wings is easily adjusted to be the same. The qualitative behavior is however different, and
since the distinction is important for the phenomenology, we discuss it now.

In Fig. 4, we show the calculated low-temperature (left panel) and high-temperature (middle and right panels) peaks
dispersing along the X–M line. We first take the band-edge rather high, ω̃ = 0.06 eV, to emphasize the antiadiabatic
peak, which picks up most of the spectral strength. Then the only difference between the left and middle panels is
the temperature, and we note that the antiadiabatic peak is much less dispersive in the low-temperature case, and
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FIG. 4: Spectral functions along the X–M line, from the vH point (top curves) to kx = π/a, ky = 0.4π/a (bottom). Left panel:
ω̃ = 0.06 eV. Middle: high-temperature limit (kT = 0.1 eV, F = 0.026 eV) with ω̃ = 0.06 eV. Right: same high temperature,
ω̃ = 0.02 eV. (For high temperature, F must be made smaller, to compensate for the Bose occupation number giving an overall
factor of kT .)

loses strength before crossing the Fermi level. The low-temperature regime is influenced by both terms in Eq. (5)
equally, with a competition between the Bose and Fermi contributions. In the high-temperature limit the second
(boson response) term takes over, with a different dynamics, due to the fact that when kT ≫ ω̃ > γ, n(ω̃) in Eq. (5)
becomes ≈ kT/ω̃, introducing an additional dispersive factor in the denominator. Note, however, that the intensities

are given without the Fermi occupation factor — we show the renormalized spectral density Ã(ω), not f(ω−µ)Ã(ω).
This means in particular that the loss of intensity in the left panel is not due to the Fermi surface crossing, in fact
we shall see (Fig. 8 in the experimental section) that it occurs just as well when the antiadiabatic peak stays away
from the Fermi surface.

It is possible to keep the antiadiabatic peak below the Fermi energy in the high-temperature regime as well, by
lowering the band-edge ω̃. This is shown in the right panel. Notice that lowering the band-edge in the high temperature
regime goes toward the opening of a true gap, so the antiadiabatic signal is much smaller, relative to the side wings.
Otherwise, the dispersion is qualitatively similar to the left panel, especially so when we realize that lowering the
band-edge flattens the dispersion in the low-temperature kT < ω̃ case as well (as visible in Fig. 8), similarly pushing
the signal away from the Fermi energy. The important qualitative difference in the behavior of spectral strengths is
however the following: in the left panel of Fig. 4, we notice that the side signal disappears before the antiadiabatic
one; in the right panel, they disappear together. In fact, the generic behavior in the high-temperature kT > ω̃ limit is
rather that the antiadiabatic peak disappears sooner. We shall see in the next section that experimental evidence in
the superconducting state exhibits the low-temperature behavior, providing one piece of evidence that the measured
response is in the low-temperature quantum regime.

The second piece of evidence is the effect of the magnon perturbation on the Fermi surface. Fig. 5 shows that this
effect is qualitatively different for the high- and low-temperature pseudogaps. In the high-temperature (semiclassical)
regime kT > ω̃ (left panel), the tendency is to change the shape of the Fermi surface so as to follow the zone diagonal in
the vicinity of the ‘hot spots’ [42], i.e. the points of intersection of the Fermi surface with the diagonal. Geometrically,
this means that the angle of the Fermi surface with the zone diagonal decreases. In the low-temperature (quantum)
regime kT < ω̃, shown in the right panel, the result is precisely the opposite, the intersection angle increases, and there
is even a tendency to turn the effective Fermi surface upwards, resulting in a ‘flared’ shape. While our parametrization
was chosen for a best fit to energy distribution curves (see below), and we do not expect detailed agreement with the
Fermi surface shape, this qualitative difference is of foremost physical importance. It shows, in effect, that ‘hot spot’
scenarios, for example Ref. [47], correspond to the high-temperature regime of Eq. (5). They depend on the similarity
between ‘strong’ and ‘singular’ scattering at the nesting wave vector, but this similarity is qualitatively correct only
when kT > ω̃, which is not the observed case. The tendency of the Fermi surface to follow the zone diagonal for
kT > ω̃ is of course a precursor to the diagonal becoming the new zone boundary, when the paramagnons condense.
As already stressed above, this can only happen in the present model when ω̃/kT → 0. While the upturn of the Fermi
surface has never been clearly observed — there is only one experiment [46], the small points Fig. 5, which seems to
show such a tendency — the bending to follow the zone diagonal can be excluded with certainty. The Fermi surface
of optimally doped BSCCO in the vicinity of the vH points is at least a straight line parallel to the Γ–X line. In
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FIG. 5: Thin lines: zeroth-order Ud = ∞ Fermi surfaces. Points connected with thick lines: Fermi surfaces from maxima
in momentum distribution curves at ω = µ. Dashed lines: zone diagonals. Left: high-temperature pseudogap, kT = 0.1 eV
and F = 0.026 eV. Right: low-temperature pseudogap. In this figure, µ = 0.015 eV throughout. Points: experimental Fermi
crossings, large: Ref. [45], small: Ref. [46]. (The value of F in the high-temperature case is adjusted to give a practically
identical EDC profile at the vH point as in the low-temperature case, in particular the same pseudogap scale.)
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FIG. 6: Comparison with experiment on BSCCO (jagged line [10]), left: T=103 K, right: T=46 K. Calculation (smooth curves),
left: overdamped magnons (γ = 0.06 eV), right: underdamped magnons (parameters in the text). The scale kTc ∼ 100 K is
approximately given by the double thin cross, which marks the difference in position between the measured and fitted narrow
peaks.

other words, the observed Fermi surface differs with respect to the zeroth order U = ∞ shape (thin line in Fig. 5)
in the way suggested by the right-hand panel in the figure, increasing the angle with the zone diagonal, rather than
decreasing it as in the left panel. Thus, both the evolution of ARPES spectra in the Brillouin zone and correction to
the shape of the Fermi surface in BSCCO seem to point in the same direction, that the observed pseudogap is due to
zero-point motion of the magnons.

This discussion can be followed in the form of Eq. 5. In the semiclassical regime kT > ω̃, the first term is negligible
with respect to the divergence of the boson occupation number in the second term, which is a precursor to the true
gap. In the low-temperature regime, the two terms are of the same order. They contribute even at zero temperature,
because the paramagnon zero-point motion can excite electrons within ω̃/2 ≈ 20 meV of the Fermi energy, and since
the vH singularity is roughly within this range, that means a lot of them. Thus we can violate the conventional Fermi
liquid picture simply by putting in dissipative paramagnons and letting kT/ω̃ → 0, keeping ω̃ at its observed value,
as discussed on the simple example of Fig. 2. It would of course be interesting to understand why the paramagnon
resonance should appear when the system goes superconducting. We hope to shed more light on this question when
we consider the on-site repulsion explicitly, as mentioned in Sect. II.
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FIG. 8: Left to right: a) experimental EDC‘s along the X–M line, from ky = 0 (top) to ky = 0.365π (bottom), multiplied by
a Fermi function at 100 K and offset for clarity [12]. b) Calculated intensities for the same situation. c) the same for the line
parallel to X–M at kx = 0.9π. d) experiment for the line parallel to X–M at kx = 0.64π. EDC‘s corresponding to the Fermi
surface crossing from the maximum in the momentum distribution curve are given by a thicker line. The measurement and
parameters are the same as in Fig. 7.

IV. COMPARISON WITH EXPERIMENTAL SPECTRA

In Fig. 6, we show the comparison with experiment, used to establish the parametrization. The jagged lines are
measured ARPES intensities [10] of optimally doped BSCCO, integrated along the (0, 0)–(π, 0) line, in the normal
(T=103 K, left) and superconducting state (T=46 K, right). The smooth lines are both calculated at the (π, 0) point
with the parameters in the text, the only difference being the paramagnon damping: left, overdamped (γ = 0.06 eV),
right, underdamped (γ = 0.015 eV). The difference, marked by crosses, in the positions of the leading peaks in the
right panel is ∼100 K, the superconducting scale. The vertical scales of the two experimental and the two theoretical
curves are the same, while the relative scale of theory vs. experiment is arbitrary. The single (overdamped) peak in
the left panel and the side peak in the right panel correspond to a positive slope of ReΣ and large ImΣ, i.e. are both
incoherent. Only the narrow (leading-edge) peak in the right panel is coherent, with negative slope of ReΣ and small
ImΣ.

Having fixed all parameters at the (π, 0) point in Fig. 6, we now compare model predictions of evolution in the
BZ with a different set of experimental data [12], first in Fig. 7. The strong non-dispersive structure observed at
the Fermi level corresponds to the antiadiabatic peak in the calculation. The lower wing of the pseudogap is shifted
away from the position of the original three-band dispersion, reproducing the experimental high-energy ‘hump’ scale
of ∼100 meV. The ridge at ∼100 meV binding roughly follows the original dispersion, broken and shifted by the
paramagnon interaction. The antiadiabatic peak is interpolated between it and the upper wing (not visible because
of the Fermi factor). Notably, the same behavior has been reported along the X–M line in YBCO [41].

In Fig. 8, we show the detailed energy distribution curves (EDC‘s) corresponding to Fig. 7. All the qualitative
experimental features are correctly reproduced: both the major and minor energy scales, and the downturn (in energy)
of the antiadiabatic peak as one moves further away from the Fermi crossing. Such an approaching-then-receding of



the narrow peak with respect to the Fermi level has been noticed in experiment [12], and becomes more pronounced
with underdoping.

The reference position of the central peak at (π, 0) is at the Fermi energy, as observed in our simple example in
Fig. 2. As soon as the chemical potential is shifted, or one looks at other points in the BZ, the peak moves away from
the Fermi energy, producing a ‘leading-edge’ energy scale of the order of the chemical potential, affected of course
by its own dispersion. It is unrelated either to the primary AF scale, which determines the width of the pseudogap
by the ‘high-energy’ side lobes, or the superconducting scale, which does not appear in the calculation at all. Of
course, as the coupling constant decreases, or band-edge ω̃ increases, the peak begins to turn back into an ordinary
(weak-coupling) quasiparticle.

In the right two panels of Fig. 8, we show what happens as one moves towards the Γ point in cuts parallel to the
X–M line. We note a significant redistribution of spectral strength, such that the side peak is much stronger at ky = 0,
the Γ–X line itself, but quickly loses strength as one moves perpendicularly away from it in the ky direction, parallel
to the X–M line. Finally at ky = 0.35π/a, only the antiadiabatic peak survives. Experimentally, much the same
behavior has been observed, with the proviso that it seems to evolve more slowly in the Γ direction, so the qualitative
features we calculate around kx = 0.9π here are observed around kx = 0.64π in experiment [12]. Again, the wide
peak has its own approaching-then-receding sequence, similar to the one observed both in optimally doped [12] and
underdoped samples [48]. The fact that the calculated qualitative features continue to match closely the experimental
situation as one moves away from the X–M line into the zone interior, while the quantitative evolution proceeds at a
different pace, is possibly due to neglecting the k-dependence of the product g2

k,qAk in the calculation.

The principal outcome of the comparison with experiment is that the experimental situation [12] in the supercon-
ducting state corresponds to the model regime of low temperature and low damping kT ≈ γ < ω̃. This allows us to
claim that the pseudogapped regime in fact extends to optimal doping. Furthermore, the fact that our underdamped
curves are calculated in the normal state means that the main qualitative effect of superconductivity on the ARPES
signal is due to the reduction of magnon damping in the superconducting state.

V. SUMMARY

The present work associates the observed spectra around the vH point with the concept of an antiadiabatic central
peak. It appears in the middle of a pseudogap, representing that part of the spectral strength which is not suppressed
by the usual adiabatic mechanism of the opening of a pseudogap. The underlying main AF scale ∆PG is allways that
of the side wings in Fig. 3, which is observed in ARPES as a ‘high-energy’ feature, or ‘hump.’ In this way we are
able to claim that the leading-edge scale, connected with the narrow peak, is not due to any independent physical
phenomenon. The position of the antiadiabatic peak is sensitive to the chemical potential, which naturally accounts in
our scheme for the increase of the ‘leading edge’ pseudogap with underdoping. We can easily recover the conventional
Fermi liquid by raising the paramagnon band-edge or lowering the coupling constant. At some point the ‘hump’ scale
goes to zero, and one recovers the usual weakly perturbed quasiparticle. This is consistent with the observation that
the ∆PG ∼ T* scale disappears at overdoping, rather than merging with the superconducting scale [49, 50].

The pseudogap with an antiadiabatic peak was found in this work to have two physical regimes, low- and high-
temperature, relative to the paramagnon band-edge. The regime of low temperature corresponds to experiment in
optimally doped BSCCO. In the model, it gives rise to a dispersion for the antiadiabatic peak which is qualitatively
different from the bare Ud = ∞ one, amounting to a non-dispersive ‘feature’ at a few tens of meV binding energy.
The low-temperature regime kT < ω̃ is pseudogapped, because a true gap appears when ω̃ → 0 before kT → 0,
i.e. it is always in the high-temperature regime. As long as ω̃ is held fixed, a pseudogap-like situation will occur for
kT < ω̃, without developing into a true gap even for the lowest temperatures. However, it may be a true pseudogap,
in the sense that the side wings are incoherent, and this is the case in the parametrization used here to compare with
experiment. Lowering the band-edge in the low-temperature regime makes the central peak disappear just like in the
high-temperature case, thus naturally accounting for the underdoped situation.

We took much trouble with Figs. 4 and 5 to choose the low-temperature regime, although the magnon mode at
41 meV is obviously much higher than the temperature. The reason is that our calculation is so simple and generic
that it fairly represents the perturbation by any bosonic mode which does not have a slow component. There are a
number of observed low-energy fluctuations, such as stripes, which we do not take into account here. At present, we
cannot completely exclude a possible role of slow (spin) fluctuations in the electron response measured by ARPES.
These can be modelled to some extent by a ‘central peak’ in the boson response, distinct from the dispersive branches
studied here, and easily introduced in our calculation by a slightly more general parametrization [36] of Imχ. However,
since the observed spectral strength redistribution and Fermi surface shape both correspond to our low-temperature
regime, we can ascribe the main features of the ARPES response to the dispersive paramagnons. In this way the other
low-energy phenomena are relegated to a secodary role, possibly having to do with the shape and spectral composition



of the side wings. Even if the pseudogap were not due to paramagnons, still the conclusion would remain that the
characteristic energy scale of the relevant boson is higher than the temperature, hence the pseudogap need not of
itself imply any additional ground-state phenomena. As things stand, we see no reason to depart essentially from the
natural interpretation in terms of AF paramagnons.

The neglected quantum fluctuations in the charge channel are also expected to affect the width and shape of the
high-energy hump observed in ARPES, which appears sharper and narrower in our calculation than in experiment.
Apart from that, the EDC‘s obtained along the X–M line have a striking resemblance to experiment in their main
features. Both the high-energy scale of ∼100 meV, and the leading-edge scale of 20–30 meV are correctly reproduced.
The main intensity pattern, where the peak loses strength further away from the vH point, without ever crossing the
Fermi energy, is reproduced as well. The intensity shifts between the central peak and side wings are also obtained.
Finally, the observed slight variation in the narrow peak position, which approaches the Fermi energy and then recedes
from it, is also found in the calculation. Thus we believe that we have understood the physical origin of the narrow
lowest-energy signal along the X–M line to be quite general: the electrons giving rise to this signal are slower than
the perturbing paramagnons, and so escape the adiabatic suppression which opens the pseudogap. We can easily
recover the actual experimental situation for T ≫ Tc, simply by overdamping the paramagnons, which washes out
the antiadiabatic peak. This scenario is naturally consistent with the fact that a precursor of the narrow peak is
sometimes observed above Tc. Based on the above discussion, we claim that the pseudogap in optimally doped
BSCCO is in fact fully developed, of the order of 1000 K, and is only masked by the antiadiabatic peak. In this
way we can view the superconducting correlations as a third scale, an order of magnitude lower than the pseudogap
‘hump’ scale, and two orders of magnitude below the on-site repulsion, here taken into account through the overall
band renormalization. Their interplay with the antiadiabatic leading-edge scale found here, which is of the same order
of ∼10 meV, should be of interest. It remains to be seen whether the physical regime found here to be relevant for
the low-energy cuprate phenomenology can be consistently obtained from a microscopic strong-coupling approach in
the presence of an oxygen-oxygen overlap, as outlined in Section II.

To conclude, we described the main low-energy signal along the X–M line in optimally doped BSCCO to be due to an
antiadiabatic central peak. The pseudogap in the same material is an order of magnitude above the superconducting
scale, and persists below Tc. The small separation between the antiadiabatic peak and the Fermi level appears
naturally in the calculation, even in the absence of explicit superconductivity. It is primarily determined by the value
of the chemical potential, in a way consistent with its observed variation with doping.
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