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Abstract: The reduced state space model of interleaved
helical transformer winding enable to study the reflections
of the traveling waves on the terminals and the crossover
irregularities. The analytical eigenvalue-eigenvector analysis
of the two-dimensional blocks of the transition matrix gives
oscillating modes, their periods and damping.
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I.  INTRODUCTION

Interleaving the turns of the transformer winding,
proposed by the English Electric Co., is one of the
constructive measures used to suppress atmospheric over-
voltages due to free oscillations excited by the difference
between the initial exponential and the final steady-state
linear voltage distribution [1]. Interleaved winding
construction, consisting of a coil wound from two
parallel, crossed over, conductors increases the effective
series capacitances between turns, making   the initial
voltage distributions closer to the linear.  The effective
increase of the serial capacitances is estimated [1] to be
proportional to the second power of the number of turns
in the winding. No method for computing the transients
has been suggested.

The numeric computation of the voltage transients in
the interleaved winding [2] is based on the multi-
conductor transmission-line theory in the frequency
domain.. The numerical results are confirmed with the
experiments on a real interleaved winding. Both methods
show oscillatory behavior of the transients The
oscillations are imputed to some unexplained resonant
conditions.

Simplified multi-conductor transmission-line model for
the helical interleaved transformer winding in the time
domain [3] approaches the origin of the oscillations. The
crossing of the conductors is taken as a discrete
irregularity that produces reflections of the traveling
waves. The quasi-stationary multi-component states take
place between reflections of the waves on the winding
terminals and conductor crossing. The model describes
the reduced state in terms of the surge voltage and the
previous winding state through a low order system of the
ordinary linear equations. The agreement with the full
model is achieved for the first few steps only.

This work promotes the reduced state space model up
to the eigenvalue analysis which brings to the light the
primary  properties of the associated dynamics, all in pure
analytical form. Since effectively increased serial
capacitances results in substantial raise of the charging
surge currents it was assumed the resistances have
essential influence on the dumping of the free
oscillations.

The results are obtained in three phases.

The first phase creates the initial system of linear
equations which consider the resistances to be lumped
and supplemented to the terminal resistances. The total
number of eight equations follows from the laws for the
multiconductor traveling current and voltage waves of
transversal electromagnetic field (TEM) according to the
reduced model with the constant current waves inside the
winding.

The next, most demanding phase, brings the initial
system of linear equations to the standard discrete time
state space form[4]:

[x(t+1) = [A][x(t) + [B][v (1)

[y(t) = [C][x(t) + [D][v (2)

where [x is the column vector of the state variables, [v is
the column vector of the inputs (surge voltage) and [y is
the column vector of the outputs. The efforts were aimed
to find the state space of minimal dimension with state
variables grouped into weakly coupled clusters. It has
been found that only weak coupling exists between the
two-dimensional even and two-dimensional odd parity
state variables in the four-dimensional state space for the
model with symmetrical resistances. With the weak
coupling ignored the transition matrix [A] becomes
block-diagonal.

In the final phase the analytical eigenvalue-eigenvector
analysis of the two-dimensional blocks of the transition
matrix [A] is performed giving oscillating modes, their
periods and damping. The coupling between odd-even
modes due to eventual skew-symmetric component of
resistances can be analyzed according to the perturbation
theory [5].

II.  MULTI-CONDUCTOR TRANSMISSION LINE
MODEL OF THE INTERLEAVED HELICAL

WINDING

Interleaved helical winding having even number N of
turns is constructed by winding N/2 turns of the two
parallel conductors A and B and connecting the end of
the last turn of the conductor A to the beginning of the
first turn of the conductor B. By cutting the winding
cylinder along the generator opposite to the terminals the
winding can be developed in the plane as a multi-
conductor transmission line shown in Fig. 1a). With a
minor modification, shown in Fig 1.b), the crossover
irregularity is separated from the terminal irregularity
giving a more favorable, similar to the one in Ref. [4],
multi-conductor transmission line representation of
interleaved N+1 turns helical winding. The
electromagnetic transients are represented by line
currents  ni(x,t) and voltages ne(x,t) to the grounded



screen as functions of longitudinal coordinate  x   and
time  t. Subscript "n" is at the same time the discrete
transversal coordinate n = 0,1....N . .  Longitudinal
coordinate "x" is continuous in the interval [0,w ) where

w is the length of each turn. The interleaving crossover is
positioned at x = h = w/2. The coordinate x = h-0 is
designated as g.
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Figure. 1 Initial a) and modified b) multi-conductor transmission line model of the interleaved helical winding

Except discrete irregularities at x = 0,w and x = h, the
transients  ni (x,t)  and  ne (x,t)  are supposed to satisfy the
vector telegraphist's equations for homogenous lossless
lines. The method of characteristics gives the solutions as
the superposition of forward and backward traveling
waves. In the TEM approximation these waves propagate
undistorted between irregularities with the universal
constant propagation velocity v and the surge impedance
[Z] according to.

 [i = [if + [ib; [e = [ef + [eb

[ef = [Z] [if ,  [eb = -[Z] [ib

In the per unit system the surge impedance matrix [Zh] is
advantageously approximated [1,3] with

nZhn = ζ |n-m|

where ζ is the magnetic and the electric coupling constant
being equal  for the TEM waves.

Boundary conditions for the waves at the nodes
influenced with the winding irregularities produce large
scale system of linear equations. Since wave reflections
occur only in the narrow boundary layers effectively only
the small scale systems of equations have to be solved. In
addition the penetrating currents reach quasi-stationary
state that is quantitatively considered in the next section.

III.  QUASI-STATIONARY INPUT –OUTPUT

The main result of this section is the matrix equation
(7) for quasi-stationary outputs consisting of the four
traveling electric currents waves penetrating into the
depth of the winding in terms of the inputs consisting of
the surge voltage ES, the ground voltage EG = 0 and the
four electric currents waves coming from the depth of the

winding. The development of the equation (7) is
supported by the drawing in Figure 2 which introduces
the variables in the surge terminal side of the winding in
Figure 1b. The variables of the ground terminal side are
introduced according the symmetry with the variables of
the surge terminal side. The currents IAGf and IBGf are
input waves in the A and B conductor to the ground
terminal G while the currents iAGb and iBGb are the
outputs. The crossover current iAB supplies two outputs

iBSf = iAB – IBSb;       iAGb = iAB – IAGf (3)

The equation (7) uses odd-even components of the
inputs and outputs as follows:

Is  = (IAGf + IBSb)/2;    Ia = (IAGf - IBSb)/2; (4a)

IABs = (IBGf + IASb)/2; IABa  = (IBGf - IASb)/2 (4b)

is  = (iASf+iBGb)/2;      ia = (iASf - iBGb)/2

iABs = (iBSf + iAGb)/2;    iABa = (iBSf-iAGb)/2 

Note that, due to (3), the output iABa is equal to the odd
input Ia:

iABa = (IAGf-IBSb)/2 = Ia (5)

i.e. the first equation in the (7) system.

The inverse transformation

iASf = is + ia;   iBGb = is - ia

iBSf  = iABs + iABa;   iAGb = iABs - iABa

IAGf  = Is + Ia:  IBSb  = Is - Ia

IBGf = IABs + IABa; IASb = IABs - IABa

 returns to the terminal variables.



 There is a physical interpretation of the introduced
currents having parity symmetry. For instance the odd
component ia is a half of the net output current wave
charging the winding while the even component is is the
current output wave traversing the winding.

The equation (7) uses even and odd components of the
resistances:

ρs = (rS + rG)/2, ρd = (rS – rG)/2

Also, there are two constants μ  and ν  derived from the
magnetic coupling ζ. The constant

μ = 2 ζ /(1-ζ2)

is used in

μ / ζ= 2 + μ ζ = 2 /(1-ζ2)

or in the equation

μ ζ2 + 2 ζ - μ = 0

for the constant ζ. For μ = 2 this is the equation for the
golden ratio (√5 – 1)/2 while generally

ζ = (ν-1)/ μ

where ν is the other auxiliary constant

21 µν +=

The constants satisfy identities:

ν  = 1+μ ζ; ν  - 1= μ ζ; ν  + 1= 2 + μ ζ = μ / ζ (6)

1/ζ - ζ = (1-ζ2) / ζ = 2/ μ

(1+ζ2) / ζ = 1/ζ + ζ = 1/ζ - ζ + 2ζ = 2/μ + 2ζ = 2/μ(1+
μζ) = 2 ν/μ

(1+ζ2) /(1-ζ2) = (1+ζ2) / ζ * ζ/(1-ζ2) =  ν

The remaining three equations of the (7) system
originate from given input terminal voltages ES in the
node SA in the Figure 2, EG in the grounding node and
the equality of  the voltages over the crossover conductor
at the node SB in the Figure 2 and analogous node GA at
the grounding side of the winding. The original equations
include the reflected current waves iw0S and ighS in the
boundary layer at the surge terminal side of the winding
and the analogous reflected current waves iw0G and ighG at
the grounding side of the winding. The voltage continuity
at nodes BS and AS in the Figure 2 give the two
equations for the additional unknowns iw0S and ighS :

-2 iw0S - ζ(iASf - 2ighS - IASb) = 0

-2 ighS - ζ(iBSf – 2 iw0S – IBSb) = 0

with solutions

4iw0S = - μ iASf - μζ iBSf  + μ IASb + μζ IBSb

4ighS =  - μζ iASf - μ iBSf + μζ IASb + μ IBSb

Figure. 2 Input-Output variables at the surge terminal side of the winding

 The analogous development at the ground G terminal in
the nodes AG and BG gives the equations

2 iw0G - ζ(2 ighG -  iBGb + IBGf) = 0;

2 ighG - ζ(2 iw0G  – iAGb + IAGf) = 0

with the solutions
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4iw0G =  -μ iBGb - μζ iAGb  + μ IBGf + μζ IAGf

4ighG =   -μ ζ iBGb - μ iAGb + μ ζ IBGf + μ IAGf

Now the derivation of the remaining three input-output
equations in the (7) system is almost straightforward. The
last equation, the even counterpart to the odd one,
developed in (5) comes from the equality of the voltages
over the crossover conductor expressed as

 (ESB - EGA)/2 =0

where the voltages ESB and EGA at the crossover
conductor end are given by

ESB =(iBSf – 2iw0S - IBSb) + μ (iASf-IASb)/2 + μ*ζ(iBSf -
IBSb)/2 = iBSf – 4iw0S - IBSb

- EGA = (iAGb -2iw0G - IAGf) + μ (iBGb-IBGf)/2 + μ*ζ(iAGb –
IAGf)/2 = iAGb -4iw0G - IAGf

 giving

(1 + μζ)iABs + μ is = (1 + μζ)Is + μ IABs

which, according the first identity in (6), is the last
equation in (7)

ν iABs + μ is = ν Is + μ IABs

The two companion equations in the middle of the (7)
system are obtained by symmetry decomposition of the
voltages at the surge node SA and the ground node GB.

rS(iASf + IASb) + (iASf – 2 ighS - IASb) + μ (iBSf  - IBSb)/2 + μζ
(iASf - IASb)/2 = ESA = ES

rG(iBGb + IBGf) = (2 ighG –iBGb + IBGf) + μ (IAGf - iAGb)/2 +
μζ (IBGf – iBGb)/2

Substitutions and proper arrangement gives

(ν + rS) iASf  + μ iBSf  = (ν - rS) IASb + μ IBSb+ ES

 (ν + rG) iBGb  + μ iAGb  = (ν - rG) IBGf + μ IAGf

The half difference and the half sum of the previous
equations are just the two middle companion equations of
the system (7)
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are the left and right matrix coeficient of the equation (7).

IV.  STATE SPACE EQUATIONS FOR ρd = 0

The quasi-stationary input-output (7) lasts until output
current waves from one side of the winding become
inputs to the other side. This discrete time dynamics can
be specified as

IAGf(s+1) = iASf(s), IBGf(s+1) = iBSf(s)

IASb(s+1) = iAGb(s), IBSb(s+1) = iBGb(s)

where s means the time step index. One step for the parity
symmetric components of (7) consists of the substitution

I ABa(s+1) = iABa(s), I a(s+1) = ia(s)

I s(s+1) = is(s), I ABs(s+1) = iABs(s)

Let v(s) = ES and

[x(s) = [I(s) = [I ABa, I a, I s, I ABs]’(s)

Then

 [x(s+1) = [I(s+1) = [i(s) = [iABa, ia,  is, iABs]’ (s)

and  the system (7) can be converted to the state space
equation (1). In particular for ρd = 0 the odd and even
components are decoupled into two blocks.

The first block describing the odd parity dynamics
becomes
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The most noteworthy properties of the (8) dynamics
are characteristic (proper) values (eigenvalues, latent
roots) of the state transition matrix [Aa] defined as the
roots of the characteristic equation
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and asterisk * denotes complex conjugation. That means
the odd parity currents are oscillatory with frequency φa
and damping ratio Λa ≈ 1-ρs/ν. Dynamics details are
obtained with the matrix [Aa] characteristic vectors and
their amplitudes in the next section.

The second block, describing the even components
dynamics, becomes
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The λ3 characteristic value is responsible for the uniform
current output wave traversing the winding, dumped as
traversing the impedance with the R/L = 1-λ3 ratio. The
other λ4 proper values give alternating traversing
transient with the larger influence of the resistances to the
damping. Details are presented in the next section.

Since the output variables of the state space model (2)
do not comprise dynamic characteristics they will not be
considered here

V:  MODAL ANALYSIS OF THE REDUCED
DYNAMICS

This section presents the proper vectors (dynamic
modes) for the characteristic values of the transition
matrix related with the reduction of the transition matrix
to the diagonal form by similarity transformation. This
task benefits a lot from the odd component of resistances
ρd being set to zero so that  the transition matrix is
advantageously partitioned into uncoupled 2×2 blocks.

The similarity transformation of the first block [Aa] to
the diagonal form is related to the search of proper
vectors [ψ which satisfy

[Aa] [ψ = λ [ψ

Proper vectors exist when the parameter λ is a proper
value i.e. the root of the characteristic equation. The two
proper vectors for the roots λa and λa

* are presented as the
columns of the matrix
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The inverse of the transformation matrix [Ψa] is
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The similarity transformation that reduces [Aa] to
diagonal form is the consequence of the representation of
the state vector in the proper vectors (columns of [Ψa])
basis:
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The uncoupled dynamics of the modal amplitudes
comes from (9) substituting (12), left multiplying with
[Ψa]-1 and applying (11):
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The second term gives the excitation of the modal
amplitudes by the surge voltage ES. The modal
amplitudes are complex since modal vectors in (10) are
complex. The modal synthesis (12) gives back the real
state space variables. Actually the two modes are
inseparable in (9) but when iterated it is advantageous to
use the modal analysis for the explicit potential of the
transition matrix:
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to the diagonal form is analogous to the transformation of
the first block. The columns of the transformation matrix
[Ψb] are proper vectors of the transition matrix [As] or the
null vectors of
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the (8) transforms to the modal state space equations
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VI.  CONCLUSION

. Although the fast transients significantly modify
quasi-stationary states in the later steps, the reduced
model still gives the valid dynamical component which

could be responsible for experimentally and numerically
established surge transient oscillations [2] in interleaved
windings. The transparency of the results comes out from
the several key suppositions.  The first one is the
interleaved connection of the winding shown in the
Figure. 1. The initial connection a) results in a favorable
multi-conductor transmission line model of the
interleaved helical winding. The modified one b) is still
more advantageous without the loss of quality. The TEM
supposition and exponential approximation of the mutual
inductances are essential for getting the small (four) rank
quasi-stationary states system. The additional advantage
comes from odd-even symmetry decomposition capable
to incorporate the effects of the resistances. The transition
matrices of symmetric components are not only of the
low (second) order but also have properties that makes
easy to find the proper values and proper vectors
(modes).

The obtained results should be compared with
analogous results for the much simpler case of non-
interleaved windings.
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