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Modeling for control of biprocesses by fuzzy reasoning and neural networks is presented. The principle of modeling from systems point of view is reviewed. Analytical, fuzzy logic and neural network models are discussed based on perception of a process complexity, a priori knowledge about a process, and availability of information. A general structure of modeling by fuzzy logic models applied for process control is introduced. Considered are feedforward neural networks based on nonlinear autoregression with moving averages for general modeling of dynamical systems. Analyzed are the following neural network control structures: inverse control, internal model control, and feedback with parallel connection of PID and neural network model. Comparison of the fuzzy logic, neural networks and classical PID control is discussed. Presented are results of computer simulation and from industrial practice of neural network models.

Introduction: Systems approach


From systems theory point of view an industrial bioprocess is represented as a nonlinear dynamic system by which transfer of substances, energy and information is applied for production of useful products. It is a technical system which is designed, run and controlled by engineers. Such a system has a complex structure, which in its simplest form can be decomposed into a process SP and a control subsystem SC, shown on Fig.1. The system is continuously in interaction with its surroundings (environment or another technical system), and exchange of mass, energy and information occurs across the boundary which separates the system from its surroundings. 


Action of the surroundings on the system is defined by a set X of independent variables, called the set of inputs. Members of the input set X are time dependent functions, i.e. input variables x(t) ( X. The input set X can be decomposed into two subsets, a set input process variables XP (xP(t) ( XP ), and input information variables XI ( xI(t) ( XI ). The process variables xP(t) define exchange of substances and energy between surrounding and the process subsystem SP, while information xI(t) is transferred from surroundings to the control subsystem SC. The process and control subsystems are in continuous interaction by exchange of information and action of control variables. The system response to inputs is expressed by a set Y of dependent variables y(t) ( Y. Since the variables y(t) uniquely determine time evolution of a system they are named state variables.
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Fig. 1. Systems view of an industrial bioprocess.

Property of state variables:


for a given input variable  
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uniquely is defined                
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 A set of output variables is a subset of state variables, or a nonlinear transformation of the subset, which uniquely determines state of the system objective function. The set of output variables is denoted as Z, but in case of identity transformation an output function is also denoted as y. In general, a bioprocess has a high dimensional space of state variables, but can have an one dimensional output variable. 

Knowledge and system models


Mathematical model of a system is a set of mathematical relations which provide maps between the input X and output set Y.
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Fig.2. Schematic diagram of mathematical forward M and inverse M-1 models.

A very broad spectrum of mathematical relations is applied for system modeling. Models of bioprocesses are usually classified according to introduced model structures, such as structures of abiotic and biotic phases, population or biomass models, stohastic or deterministic, with spatial distribution or lumped state variables, etc. (Nielsen and Villadsen, 1994).
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Fig. 3. Graphical representation of "transparency" of mathematical models in relation to knowledge and perception of complexity of a system. 


In Fig.3. are presented classes of mathematical models based on level of knowledge and perception of systems complexity. The class of analytical models is represented as a "transparent white box" where the causative relationship between input and output variables is fully understood and is expressed from the first principles derived from physics and chemistry. Such analytical models of biological activity may include many variables, like in the case of structured metabolic models, but numerous parameters are expected to be known to a high precision. The basis of analytical models are the principles of conservation of mass, energy and momentum coupled to reaction kinetics. A typical mass balance equation has a following form:
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where y is a concentration, it is a state or an output variable, q are volumetric flow rates or rates of transfer rates from a cellular membrane, and r are reaction rates which affect the concentration of y. If the balances account for all state variable and mass and energy transfer rates, and if kinetic models are correct with precise parameters, then the analytical models are the pinnacle of engineering knowledge. They can be successfully applied for process design, scale up, monitoring, control and optimization. Development of such models is very complex, it requires expert knowledge in various scientific fields, numerous experiments have to be performed, and in general are a result of long term and expensive research projects.


However, in engineering practice, such demands are rarely met. Engineering tasks are goal oriented and often are not defined on basis of full knowledge of a process. Usually modeling tasks are defined in parallel with experimental research when human experience and intuition is combined with scientific knowledge for process modeling. Very often in a process description linguistic variables are introduced. Linguistic variables are less accurate than quantitative and uncertainties are expressed through fuzzy logic models. Linguistic variables enable human communication and are better suited for description of a real complex system. For example, many models in biochemistry and molecular biology are given in terms of linguistic variables. Linguistic variables and fuzzy logic models can formalize experience of human operators gained in industrial plants. Introduced uncertainties enable modeling of complex systems when only partial knowledge is available. Fuzzy logic models are viewed as "gray box" models, Fig. 3., where causality between input and output is to a certain degree uncertain and incorporates human experience and intuition.


On the other hand, due to huge advancement of computer technology and automation, laboratory experiments and process plants are equipped with on-line measurements of many physical, chemical and biological variables providing large amount of data which reflect the most important functional dependencies among variables. Rules of causality are "buried" in data and need to be extracted by models. Class of neural network models are proposed which are based on mathematical description of biological neural systems. Such models are highly flexible and can adapt through a process of training to preselected large sets of input and output patterns. Due to flexibility of neural networks they have a potential to capture the causality laws between input and output variables. They are training is purely on set of data and do not require expert knowledge like in the case of fuzzy logic models. Neural network models may accurately mimic dynamic behavior of a complex system, but they do not provide explanation of their action, i.e. they are untransparent and are considered as "black box" models, Fig. 3. Formal knowledge present in neural network models is minimal, i.e. the neural models do not provide explanatory answers. Their main potential is in structural flexibility, adaptability and provide very fast responses compared to model based on differential equations making them as an ideal tool in adaptive process control.

Fuzzy logic models


In fuzzy logic models input and output spaces are covered or approximated with discourses of fuzzy sets labeled as linguistic variables (Baughman and Liu  ,1995;  Cox ,1994). For example, if Ai ( X is an i-th fuzzy set it is defined as an ordered pair:
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where x(t) is a scalar value of an input variable at time t, and (A is called a membership function which is a measure of  degree of membership of x(t) to Ai expressed as a scalar value between 0 and 1. Typical membership functions have a form of a bellshaped or Gaussian, triangular, square, truncated ramp and other forms ( Fig. 4). Input output relationships are modeled by fuzzy inference system, FIS. It is based on fuzzy logic reasoning which is a superset of classical Boolean logic rules for crisp sets. Elementary logic operations with fuzzy sets are:

a) fuzzy intersection or conjunction ( Boolean AND )
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T-norm (triangular) operator must satisfy boundary (crisp) conditions:

                                                 
[image: image9.wmf]a

a

T

a

T

T

=

=

=

)

,

1

(

)

1

,

(

,

0

)

0

,

0

(

                                 (5)

monotonicity condition:


[image: image10.wmf](

)

(

)

d

b

and

c

a

if

d

c

T

b

a

T

£

£

£

,

,

                          (6)

commutativity condition:
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associativity condition:
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A typical choice of T-norm operator is a minimum function corresponding to Boolean AND, i.e.:
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Likewise fuzzy intersection, the fuzzy union is specified in general by a binary mapping S: 
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satisfying the boundary conditions:
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monotonicity:


[image: image16.wmf](

)

(

)

d

b

and

c

a

if

d

c

S

b

a

S

£

£

£

,

,

                          (12)

commutativity:
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associativity:
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and standard choice for S-norm is maximum function which corresponds to Boolean OR:
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Fuzzy NOT is commonly defined as:
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Modeling of input/output relations is represented by Fuzzy Inference System (FIS) given by set of IF-THEN rules acting upon fuzzy sets. A simple example of a fuzzy inference is:

                                                  if   x   is   A    then y is   B                                      (17)

where x are scalar values of input and output variables, A and B are linguistic variables represented by fuzzy sets. In (17) mapping from scalar to fuzzy set is named a process of fuzzification, and the opposite mapping from a fuzzy set to scalar is referred as defuzzification (Fig. 5.).


Fig. 4. Examples of fuzzy set membership functions. 

The implication between IF and THEN, i.e. action of antecedent on consequent, is performed by truncation of  output fuzzy set. The output value, or decision, is produced after execution of all IF-THEN rules in Fuzzy Inference System. The deffuzification to a single scalar output is achieved by the process of aggregation of indivi-


Fig. 5. Process of mapping scalar between input and output sets by 

Fuzzy Inference System.

dual truncated output fuzzy sets. Aggregation is the process by which the output fuzzy sets which represent the outputs of each IF-THEN rule in Fuzzy Inference System are combined into a single output fuzzy set. The input to aggregation process is a list of output fuzzy sets truncated by the corresponding antedescent. Various aggregation processes are proposed, such as: max operator, probabilistic OR, summation and others. The result of the aggregation is the lingustic variable output represented by a fuzzy set with an aggregated membership function 
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Example: Fuzzy logic control of flow rate

For example, consider a fuzzy logic model of control of a flow rate ( position of a valve piston) based on input values of temperature T and pH depicted on Fig. 6.



Fig. 6. Block diagram of  flow rate control based on fuzzy logic model of input T(t) and pH(t) and output Q(t). 


Fig. 7. Schematic representation of modeling steps of the fuzzy logic inference system for control of flow rate Q based on temperature and pH .

The input space X=(T,pH) is covered with the six following linguistic variables: low, good and high corresponding to temperature and pH. The output space Y=(valve position) is approximated with three linguistic variables: open, half closed, closed. The modeling steps in fuzzy logic inference are depicted in Fig. 7. The input data are measured values (scalars) of process temperature T(t) and pH(t). The first step is fuzzification of input data by calculation membership degrees in the fuzzy sets representing the input linguistic variables.



Fig. 8. Membership functions of the input space X and direction of information flow.


  IF   T   is   low    AND  pH    is low      OR      good     THEN valve is half open

  IF   T  is    low    AND  pH    is low      THEN valve is open

  IF   T  is    high   AND  pH    is high    THEN valve is closed
  IF   T   is   high   AND  pH    is low     THEN valve half open

  IF   T   is   good  AND  pH    is good   THEN valve half open

Fig. 9. List of the fuzzy rules for control of valve position.

Each value of membership degree from the input space X is transferred to the fuzzy logic inference FIS modeled by a list of fuzzy rules given in Fig. 9. Each fuzzy logic rule is executed, regardless of order, producing new fuzzy sets defined by the linguistic variables depicted in Fig. 10. Membership functions of the output set (closed, half closed and open) are the consequents modified (truncated) by each fuzzy rule of the antedescents.



Fig. 10. Membership function of the fuzzy sets in the output space.

Values of the membership degree from the fuzzy rules are transferred into the aggregation process, Fig. 7. At each instant of time t membership functions of the output space are modified by the fuzzy inference system and are aggregated into a single membership function corresponding to the fuzzy logic variable valve, Fig. 11.


Fig. 11. Schematic presentation of aggregation of fuzzy consequents from fuzzy inference system FIS into a single fuzzy output. 

At each instant the fuzzy output variable valve is mapped into a scalar (crisp variable) by application of defuzzification process, such as given in Eq. 18.

Neural networks

Artificial neural networks (ANN) are mathematical models derived from ideas from biological neural systems. ANN can be viewed as a connection system, which produces desired output upon stimulation by an input. Various networks have been studied and the most popular are: multilayer perceptrons (MLP), Kohonen maps, Hopfield networks (Rumelhart and McClelland, 1989; Ydstie 1990; Psichogios and Ungar,1991; Baughman, 1995). ANN are able to store massive amount of data and association rules for input-output mapping. Their application covers all fields of engineering and science. 


Mathematical model of a neurone is depicted in Fig. 12. Each neurone is a nonlinear static processing unit with several inputs and a single output.



Fig. 12. Schematic representation of a neurone with a sigmoid activation function.


Input signals are modified by multiplication with a corresponding constant Wi,j and a threshold constant is added to produce a total input signal which is than nonlinearly activated or deactivated by the activation function. Various nonlinear activation functions are used, such as Heaviside (flip-flop) function, hyperbolic tangens, and “sigmoid” function given by:
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The output signal from each neurone is calculated from the net input by:
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The MPL neral networks have been in particular of interest to control engineers for their use in adaptive nonlinear control when process models are not available. They are structured as several layers, or planes, each carrying neurones, shown on Fig. 13. Signals are passed from the first input layer across hidden layers to the output layer. Progression of signals can be unidirectional from input to output (feedforward MLP ) as shown in Fig. 13, or can have recurrent lines.



Fig. 13. Schematic diagram of a feedforward multilayer perceptron. Input signals are depicted as Xi and output are Yi. 


The MLP ANN is trained by a set of input-output data. Outputs from ANN are compared to measured output values or targets, and deviation is expressed as a total sum of squared errors (proportional to variance) given by:
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Training of a network is a process of neurone adaptation to minimize the total error E. Selection of ANN structure, i.e. selection of number of hidden layers and number of neurone on hidden layers, is performed experimentally when a series training process for a class of networks are tested. Network models are usually validated by a set of new or “unseen” patterns and by a thorough statistical evaluation of residual errors for the set of trained and untrained patterns. Efficient minimization of E is based on gradient in the space of network parameters (W, ( ). Change of parameters is calculated in the negative direction of the gradient (steepest descent method):
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Minimization can be batch wise or a “a posteriori”, when all patterns are included in minimization after completion of experiments, or an on-line method is applied when parameters are adapted after each new pattern is available. Gradients are readily calculated by the back propagation method when the derivatives calculated in direction opposite to signal propagation.  First are calculated derivatives for neurone on the output layer followed by derivatives on the next adjacent inner layer. The derivatives for the output layer and  p-th pattern are:
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where h are the signals from the hidden layer. Derivatives at the hidden layer are obtained by:
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In Eq. (23) and (24) is applied notation by which a scalar function of a vector yields a vector. 


For on-line (pattern by pattern) adaptation, a simple steepest descent with adjustable momentum is applied.


When all patterns are simultaneously included in training conjugate gradients ( Marquardt –Levenberg or Ribiera-Pollack) having second order convergence are very efficient minimization procedures.


  Neural networks are nonlinear time invariant models which can approximate dynamical systems only in their discrete form. Various nonlinear schemes can be applied but they all have to account for memory of dynamical systems. For example, Shaw et. al. 1997, apply discrete dynamical model of neurone on a hidden layer. Each dynamic neurone has a linear second order filter with adjustable poles and zeros followed by a nonlinear sigmoid activation. In most works dynamics is accounted by provision of memory buffers coupled to neural networks. In buffers are stored past input-output patterns. Number of stored past patterns depends on dimension of system state space, i.e. memory length of a input-output representation of a corresponding dynamical system and sampling frequency. Such models have various forms of nonlinear autoregressions such as Norgaard, 1997:
NNARX: Regressor vector:
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Predictor:
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NNOE:  Regressor vector:
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Predictor:
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NNARMAX1: Regressor vector:
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The predicted error is:
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Predictor:
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NNARMAX2:  Regressor:
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Predictor:
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NNSSIF: Regressor:
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Predictor:
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NNIOL: Predictor:
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Control structures


Neural networks are perceived as an ideal modeling tool for process control. Computer supported automation of measurement systems provide huge amount of data (patterns) which are readily applicable for training of ANN. Flexibility of network structures enables their use for many tasks in process control, such as: on-line monitoring, process fault detection, estimation of unmeasured states and parameters, process regulation, adaptive control, and optimization. Especially attractive feature


Fig. 14. Inverse neural network control.

of neural networks is their ability to adapt to inverse training of system outputs to inputs (Y ( X). By inverse training are obtained process inverse models NN-1 which when fed with input information XI =Yrefernce of desired output variables, give needed input process variables XP, see Fig. 14. A simple control structure with inverse trained neural network is presented in Fig. 14. This is an open control structure which does not account for compensation of process disturbances or modeling errors. It can be applied in case when a neural network model NN-1 is very accurate and process perturbations, either by their internal instability or due to environment, are negligible.


Fig. 15. Inverse neural network control coupled with a PID feedback loop.


Fig. 16. Internal model control structure with coupled inverse and direct neural 

network models. 


Stability of the inverse neural network control can be greatly improved by coupling of the open direct control with a classical PID controller in a feedback loop as depicted in Fig. 15. The role of inverse neural network accounts for adaptation to process nonlinearities and provide fast changes of process input variables which drive system output to desired state. The PID loop provides compensation to process and environment disturbances, but also compensates for errors in the inverse neural network model. PID parameters are fixed and determined (tuned) by Ziegler-Nichols method around a working point or working transient profile. Action of PID is slow compared to the inverse neural network response, but has the advantage of being asymptotically stable and the negative feedback enables compensation of unmeasured process disturbances, depicted as n in Fig. 15. 


The problem of control in presence of unmeasured process disturbances can be resolved by the Internal Model Control (IMC) structure, Economou, Morari, Palsson 1986, presented in Fig. 16. For this control two neural networks need to be derived. The inverse neural network NN-1 acts as the driving controller, but also a second forward neural network model NN is applied in parallel connection to a process, which serves as a predictor of the process output. The forward NN model is trained as a minimum output variance model and therefore gives one step prediction of the output with rejected random noise (pure model response). It is applied in parallel to the process and a difference between noise free prediction and the measured process output is determined, Fig. 16. The difference is estimation of the total process disturbances, either generated in the process due to its internal instability n3, or as influence of environment n2, and also errors due to inaccuracies of the inverse neural network model n1. The estimate is the negative feedback signal which is superimposed to the input information signal which drives the inverse NN-1 controller. The IMC control has the property of minimal closed loop stability (Morari, 1986), i.e. when the process is open loop stable then the control signal is bounded and the closed loop IMC is also stable.

Example: Neural network control of a chemostat


Considered is a simple case of neural network control of a chemostat defined by the mass balances for biomass, limiting substrate, and product:
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Fig. 17. Chemostat as a single input single output SISO system.

The chemostat defined by Eq. (37-39) is treated as single input single output SISO system. Dilution rate is manipulative input variable while substrate concentration is the controlled output variable. The balance equations are simulated on a computer and data are sampled at constant intervals of 0,1 min. Training set of dilution and substrate concentration data (patterns) is obtained by perturbation of a constant dilution rate by a pseudo random sequences. A collection of 1000 samples is applied, of which 500 is used for training and the other 500 for model validation. 


From data are derived forward NN and inverse NN-1 neural network models with the following structures:
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The models Eq. (40-41) are derived with noise free and simulated measurement noise with a uniform distribution. Applied is batch wise training with a conjugate gradient minimization procedure. The neural models are validated by the test of randomness of residual error between neural network model responses and measured data. Simplicity of the assumed chemostat model and computer simulation resulted in “almost ideal” neural networks. The models are than applied in a control loop for nonlinear and adaptive control of substrate concentration, Fig.18-20.


Fig. 18. Responses of concentration of substrate chemostat to a sine perturbation of reference concentration obtained with direct inverse control. Reference signal is plotted as a solid curve and response is dotted. Frequency of perturbations are A: 0,0125 min-1; B: 0,025 min-1; C: 0,2 min-1; D: 0,1 min-1. 


Fig. 19. Responses of substrate (s), dilution rate (D), product (p), and biomass (x) under direct inverse neural network control. Reference signal is a series of square impulses of substrate. The chemostat responses are dotted lines and the reference is a solid line. 


Fig. 20. Responses of substrate under direct inverse neural network control (…..) and internal model control (- - - -). Reference signal is a solid line ( ___ ).


Fig. 20.Comparison of direct inverse neural network control and internal model neural network control with 7,5% relative standard noise in substrate measurement. The reference substrate concentration signal is the thick line (     ), the response with the direct inverse neural network control is depicted as a thin line (     ), and by the internal model control as a dotted line (       ).


Fig. 21. Results of modeling ethanol partial pressure obtained from three consecutive fedbatch runs in an industrial 40 m3 deep jet bioreactor. Each run spans a period of 13 h. In the data are included measurements obtained lag phases. Input patterns are the following signals: feeds rates of molasses Qm(k), phosphor source QP(k), nitrogen source QN(k), dissolved oxygen concentration DO2(k), liquid volume V(k), pH(k), and ethanol partial pressure cE(k). The time scale is minutes ( Ž. Kurtanjek, 1998 ).
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Fig. 22. Results of modeling ethanol partial pressure obtained from a fedbatch run in an industrial 40 m3 deep jet bioreactor. The data are unseen by the neural network and are applied for model verification. In the data is included the lag phase. Input patterns are the following signals: feeds rates of molasses Qm(k), phosphor source QP(k), nitrogen source QN(k), dissolved oxygen concentration DO2(k), liquid volume V(k), pH(k), and ethanol partial pressure cE(k). The time scale is minutes (Ž. Kurtanjek, 1998 ).
Conclusions


Application of artificial intelligence (AI) modeling techniques have attracted considerable interest of biochemical engineers for their potential use in process control and optimization. The classical analytical model based on first principles of physics and chemistry is the pinnacle of engineering knowledge, but new processes in biotechnology are complex, and development of new analytical models is very demanding and time consuming. 


On the other hand, due to huge development of computer technology, software and automation vast amounts of process information (data but not necessarily knowledge) have become available for modeling. When modeling is relatively narrowly focused, for example input-output models for process regulation, successful models can be developed by AI techniques which encompass human expert experience, common sense expressed by fuzzy logic methodology, and flexible regression models like neural networks. Development of AI based models is relatively simple and by use of advanced software it has become very fast. Level of introduced knowledge in AI models is variable, for example expert systems may include many years of the best experts for specific processes, fuzzy logic models can be a combination of expert knowledge about process and common sense about process control, while neural networks can be development for very complex processes with minimal available knowledge. Range of applicability of AI models is very broad and surpasses analytical methodology. They can readily be used for pattern classification, on-line process identification, parameter estimation, fault detection, process regulation, adaptive control, process design, and optimization. 


Coupling of AI models with new generation of instrumentation and robots has an outstanding potential. Analysis of biosensor responses and non specific process analysators, computer vision, and manipulation of robots are highly improved by AI models.


Usefulness of AI models depends on results of their validation. Such models must be thoroughly tested by statistical analysis with new data, which have not been applied in their development.


The best success in future applications may be expected by integration of analytical knowledge, AI modeling techniques and human expert judgment.

List of symbols

A
fuzzy set in input space

ANN
artificial neural network

B
fuzzy set in output space

c
concentration

C
polynomial of a shift operator

D
dilution rate

E
sum of quadratic errors

k
sampling index

Ks
saturation constant

n
noise ( stochastic signal) or sample index

NN
neural network

NN-1
inverse neural network

q
shift operator

Q
volumetric flow rate

r
reaction rate

S
S-norm intersection

SC
control subsystem

SP
process subsystem

t
time
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target vector

T
T-norm conjunction

u
input variable

V
volume

W
neuron parameter

x
input variable

y
state (output) variable

Yab
yield factor

z
output variable

(
error or difference

(
gain factor

(
regression vector 

(2
variance

(
membership function

(M
maximum biomass growth rate

(
neural network parameters (neuron threshold)
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