DIPLOMSKI RAD

Obrada katastarskih planova ARC/INFO-m

izrađen na Zavodu za inženjersku geodeziju
Geodetskog fakulteta Sveučilišta u Zagrebu

Izradio:

Tomislav Čekolj
Police 3
Zagreb

Mentor: Miodrag Roić

Zagreb, studeni 1999.
Na početku ovog rada htio bi se zahvaliti tvrtki GISDATA i njenoj upravi što su mi omogućili izradu ove radnje te korištenje njihovog softvera i hardvera. Posebno bi se htio zahvaliti Ivici Skender i svim zaposlenicima GISDATE što su mi priskakali u pomoć uvijek kada je bilo potrebno.
Hvala profesoru Miodragu Roić na smjernicama i strpljivosti.
Hvala roditeljima što su izdržali do kraja.
SAŽETAK

U ovom radu prikazane su podjele i vrste digitalnih baza podataka ovisno o njihovom izvoru podataka, da li je digitalna baza nastala iz izvornih mjerenja, vektorskom digitalizacijom karata ili skaniranjem i obradom postojeće karte.

Digitalizacija je izvršena programskim paketom ARC/INFO, te je ovim radom opisan način rada i njegova primjena u konkretnom primjeru.

ABSTRACT

The main purpose of this work is to show a distribution and categories of digital basis of information depending on its source of information, or weather a map origin was in original measurements, vector digitalisation of charts or by scanning and processing of the existing map.

On the basis of cadastral map, which is based on the old changing of measure 1:2880 from the area of cadasters commune Granešina from 1893. It will be descended how to elaborate the digital base for necessity of land cadaster, beginning from scanning, digitalisation, atributisation. The cadastral map itself was in a poor condition with a series of accomplished modifications, so it was necessary for a digitalisation to register only the existing situation. One part of the map was during a period of time destroyed, so a supplement of information was needed. On the end, it was given an appreciation of the digital accuracy.

Digitalisation was realised by the program package of ARC/INFO, whose principal of working and the usage in the concrete example, is clearly described within this work.
Sadržaj

1. Uvod ... 6

2. Katastar .. 7
 2.1. Povijest katastra .. 7
 2.2. Vrste katastra zemljišta .. 8
 2.3. Katastar zemljišta na području Hrvatske ... 9
 2.3.1. Područje austrijskog katastra .. 10
 2.3.2. Područje mađarskog katastra .. 12
 2.3.3. Nova izmjera .. 13
 2.4. Geodetska izmjera i katastar zemljišta .. 14
 2.5. Sadržaj i svrha katastra zemljišta ... 15
 2.6. Izrada katastra zemljišta .. 16
 2.7. Katastarske teritorijalne jedinice ... 16
 2.8. Održavanje izmjere i katastra zemljišta .. 17
 2.9. Obnova izmjere i katastra zemljišta .. 17

3. Geoinformacijski sustavi ... 18
 3.1. Uporaba GIS-a ... 18
 3.2. Koristi od GIS-a ... 19

4. Digitalne baze podataka ... 20
 4.1. Izrada digitalne baze podataka .. 20
 4.2. Izrada digitalne baze iz izvornih mjerenja ... 20
 4.3. Izrada digitalne baze vektorskom digitalizacijom karta 21
 4.4. Izrada rastera iz skaniranih analognih karata ... 21
 4.5. Izrada digitalnih vektorskih podataka iz skaniranih analognih karata 21

5. ARC/INFO ... 22
 5.1. Hardverski i softverski zahtjevi ... 22
 5.2. Općenito o ARC/INFO .. 23
 5.3. ARC/INFO moduli ... 24
 5.4. ARC/INFO prostorni modeli podataka ... 26
 5.5. Opći opis strukture prostornih podataka ... 27
 5.6. Način pohrane vektorskih podataka u programu ARC/INFO-u 28
 5.7. ARC/INFO podatkovni sloj - COVERAGE ... 29
 5.8. Osnovni princip pohranе podataka u podatkovnom sloju 30
 5.9. Način pohranjivanja prostornih entiteta (COVERAGE FEATURES) 31
 5.9.1. Identifikacijski brojevi ... 31
 5.9.2. Veza između prostornih entiteta i njihovih atributa 31
 5.9.3. Točke ... 32
 5.9.4. Linije i čvorovi .. 33
 5.9.5. Podaci o linijama ... 34
 5.9.6. Podaci o čvorovima .. 34
 5.9.7. Vrste čvorova .. 35
 5.9.8. Poligoni ... 35
5.9.9. Podaci o poligonima ... 36
5.9.10. Identične točke (tikovi) .. 37
5.9.11. Podaci za vezne točke (tikove) .. 37
5.10. Priprema podataka za digitalizaciju .. 38
5.11. Skaniranje .. 39
5.12. Principi geokodiranja ... 40
5.13. Registriranje .. 40
5.14. Rektificiranje .. 43
5.15. Vektorizacija .. 46
5.16. Upostava prostornih odnosa ... 48
5.17. Dodavanje atributa .. 48
5.18. Provjera vektoriziranih podataka .. 49
5.19. Provjera topološke točnosti vektoriziranih podataka 50
5.20. Utvrđivanje pogrešaka ... 52
5.21. Ispravljanje pogrešaka ... 54
5.22. Ponovna izgradnja topologije ... 56
5.23. Provjera položajne i atributne točnosti podataka 57

6. Obrada katastarskog plana ... 60
6.1. Izvor podataka ... 60
6.2. Podatkovni sloj .. 61
6.3. Atributizacija ... 62
6.4. Obrada podataka i grafički ispis podataka 65
 6.4.1. Odstupanje teoretske površine lista od vektorizirane površine ... 65
 6.4.2. Prosječna površina čestica .. 65
 6.4.3. Prosječna površina objekata ... 66
 6.4.4. Prosječne površine kultura ... 66
 6.4.5. Prostorne analize ... 67
 6.4.6. Grafički ispisi ... 69

7. Zaključak .. 72

Literatura ... 73

Životopis ... 74
1. Uvod

Zadaća je geodezije, u najširem smislu, da izmjerom zemljišta stvara planove i karte, a u novije vrijeme izrađuje baze prostornih podataka. Kroz povijest se potreba za planovima, sadržaju i svrsi mijenjala, a prema tim potrebama razvijale su se i metode rada.

Zadaci geodetske struke obrađivali su se do prije nekoliko godina na klasičan način. Oni su iziskivali puno vremena, truda, mukotrpog računanja i crtanja podloga. Razvoj računarske tehnologije, njihovo korištenje u obradi podataka, našlo je primjenu i u digitalnoj obradi geodetskih podataka. Rezultat obrade digitalnih podataka je digitalna baza prostornih podataka. Digitalna baza dobiva se na osnovi digitalno registriranih mjerenja te njihovom obradom ili unosom i obradom već postojećih karata u prikladnim postojećim programima i posebnim hardverom. Sama pohrana digitalnih podataka vrši se na medijima koji omogućavaju znatno bržu obradu podataka, te smanjuje vrijeme pristupa, a time i troškove obrade podataka. Digitalne baze se mogu iscrtati na papiru ili foliji, ali njihova najveća prednost je u tome što su prikazane u digitalnom obliku radi njihove lakše reprodukcije i kvalitetnijeg korištenja.

Danas se tako pred geodete postavlja zadatak, da objekte na zemljinoj površini, oblik njezinog reljefa i sl. predočuju u digitalnom obliku stvarajući baze podataka, tj. geoinformatičke sustave. To su baze podataka koje su našle primjenu u sve više i više struka i pojedini poslovi bez takve informatičke podrške danas su nezamislivi. Sam geoinformatički sustav GIS, po definiciji je usmjeren na organizirano prikupljanje, pohranjivanje i analiziranje svih podataka vezanih uz prostor. GIS objedinjuje različite baze podataka i povezuje ih s pripadajućim grafičkim prikazom određenog područja. Takvom strukturom podataka moguće je vršiti istovremeno pregledavanje i grafičko preklapanje više tematskih slojeva, praćenje prostornog razmještaja, traženja prikladnih lokacija i promatranje trenda promjena. Najvažnija značajka GIS-a je mogućnost izrade prostornih modela za predviđanje razvoja pojava u promijenjenim uvjetima, što je važno u sustavima zaštite i gospodarenjem okoline. Takve podatke potrebno je neprestano obnavljati te ih načiniti što više dostupnim korisnicima.
2. Katastar

Katastar zemljišta skup je grafičkih i pisanih dokumenata u kojima se nalaze informacije o zemljišnoj čestici i nepokretnim objektima na samoj zemljišnoj čestici. Osim katastra zemljišta u današnje vrijeme imamo katastar zgrada, katastar šuma, katastar voda, katastar vodova, no svim tim katastrima zajedničko je da se temelje na podacima izmjere i katastru zemljišta.

Osnovni zadatak katastra zemljišta je evidentiranje tehničkih podataka o zemljištu. On sadrži podatke o zemljištu u pogledu njegova položaja, oblika, površine, načina iskorištavanja, proizvodne sposobnosti, katastarskog prihoda i posjednika.

2.1. Povijest katastra

Povijest praćenja podataka i promjena o zemljištu seže daleko u prošlost. Stari grčki povjesničar Herodot, kaže da je perzijski kralj Darije naredio da se utvrdi prostorna veličina posjeda i dohodak na njemu, u osvojenim zemljama Male Azije, u svrhu plaćanja poreza na prihod od zemljišta.

U starom Egiptu bilo je potrebno prikazati grafički i opisno stanje zemljišta zbog učestalih poplava rijeke Nil, koja bi prilikom svoga izljevanja svake godine uništila među posjeda. Da bi se mogla utvrditi obaveza na prihod od zemljišta, bilo je potrebno nakon poplava, na osnovu izmjerenih podataka, ustvrditi i postaviti međe.

Na području današnje Engleske već se od 1086. godine počelo uspostavljati pregled o zemljištu u posebnim knjigama. U njima je bilo upisano ime vlasnika, površina, način korištenja, popis kmetova, broj i vrsta stoke uzgajane na posjedu.

Grad Milano 1714. godine povodom uređenja prava na zemljištu uspostavlja katastar zemljišta na temelju izmjere (planovi 1:2000) i procjene vrijednosnih prihoda.

Nalogom mletačkog namjesnika Grimanija 1756. godine poduzeta je izmjera većeg dijela sjeverne Dalmacije i na temelju njih izrađeni su planovi na kojima su prikazane zemljišne čestice. Mape nazvane Grimanijevim mapama sačuvane su za 56 sela i danas se čuvaju u Državnom arhivu u Zadru.

Tijekom XVIII stoljeća bilo je niz pokušaja uspostavljanja katastra zemljišta i to u Francuskoj, Pruskoj, Bavarskoj i drugim europskim zemljama, no nijedan pokušaj nije dao

Značajniji uspjeh učinio je Napoleon 1807. godine kada je naredio da se izvrši izmjera i procjena zemljišta sa zadatkom da se izradi parcelarni katastar zemljišta koji će imati točne i pogodne planove čija je svrha osiguravanje granica vlasništva. Nažalost katastarskoj izmjeri prišlo se tek 1817. godine, a na našem području tek 1818. godine

Riječ katastar potječe, prema nekim tvrdnjama, od latinske riječi “capitastrum”, koja je u doba Rimskog Carstva bila knjiga rasporeda poreza i drugih davanja od zemlje. Drugi smatraju da riječ dolazi od grčke riječi “katastrichon” koja označuje popis poreznih obveznika. Također se smatra da je riječ katastar nastala od riječi “cadastre”, kao pojam za popisivanje nekretnina, bila uobičajena u zemljama zapadne Europe.

2.2. Vrste katastra zemljišta

Postoji više vrsta katastra zavisno o tome na koji način se informacije prikupljaju, odnosno na koji način se one prikazuju u dokumentaciji. Tako razlikujemo:

- klasični europski parcelarni katastar zemljišta
- Thorrensov katastar zemljišta
- Register Deeds

Klasični europski parcelarni katastar zemljišta uspostavlja se na temelju obavljene izmjere i klasiranja zemljišta na području određene teritorijalne jedinice, po uzoru na Napoleonov katastar zemljišta. Temeljno obilježje ovoga katastra je da na planovima prikaže oblik i položaj svake čestice zemljišta dok se u ostaloj dokumentaciji prikazuje površina, katastarska kultura, bonitet tla, te posjednika. Da bi mogli identificirati, odnosno povezati plan sa ostalim podacima o pojedinoj zemljišnoj čestici, svaka zemljišna čestica označena je svojim brojem. Ovakav model prihvatite su skoro sve europske zemlje, kasnije i mnoge izvan europske zemlje tokom XIX i XX stoljeća.

Thorrensov katastar zemljišta temelji se na načelu da je potrebno utvrditi stvarno stanje vlasništva i drugih stvarnih prava na svakom komadu zemljišta. Takav opis zemljišta proizlazi iz nacrta izrađenog na temelju izmjere jedne ili grupe čestic zemljišta koje čine
nečije vlasništvo. Pravo na zemljište upisuje se samo ako postoji pravovaljani naslov njegovog stjecanja, tj. upis se vrši na temelju službenog upisa, a ne uspostavom isprave npr. ugovor, isprava i dr. Thorrensov katastar zemljišta prvo je uveden u Australiji i Novom Zelandu, a kasnije su ga prihvatile i mnoge Afričke i Azijske zemlje, te neke europske zemlje pri izradi zemljišne knjige.

Register Deeds počiva na načelu upisa isprave (ugovora, oporuke i dr.), na temelju koje je došlo do stjecanja, odnosno do promjene u nekom stvarnom pravu na zemljištu. Sastoji se od grafičkog i pisanog dijela dokumentacije. Grafički dio čine karte u kojima su prikazane zemljišne jedinice prema posebnom sustavu. Pisan dio dokumentacije čini posebna jedinstvena knjiga u koju se unose podaci o lokaciji i površini nekretnine, o vrsti pravnog posla i teretima. Od europskog katastra Register Deeds se razlikuje po tome što pisani dio dokumenta ne sadrži toliko količinu podataka te ima sasvim drukčiju strukturu zemljišnih jedinica u prirodi. Ovaj oblik katastara prihvaćen je u Americi i Kanadi.

Također katastar zemljišta možemo podijeliti i po svrsi, odnosno u koju svrhu ga koristimo, tako imamo podjelu na:

- **fiskalni katastar** zemljišta osnovan prvenstveno radi pravilnog razreza poreza i drugih obaveza koji su dužni snositi posjednici zemljišta,
- **pravni katastar** zemljišta kojem je temeljna zadaća pružiti zakonski dokaz o stvarnim pravima na određenim nekretninama,
- **tehnički katastar** zemljišta sadrži više tehničkih podataka o zemljištu i objektima izgrađenim na tome zemljištu,
- **polivalentni katastar** zemljišta u kojem se iskazuje više podataka o zemljištu i objektima na njemu npr. tehničkih, gospodarskih, fiskalnih, pravnih i dr. te se može iskoristiti u različite svrhe (Roić 1995).

2.3. Katastar zemljišta na području Hrvatske

Pošto su pojedini dijelovi Hrvatske tijekom povijesti bili u sastavu različitih država, tako je i proces uspostave katastara zemljišta odvijao u različito vrijeme i u različitim
uvjetima. Ako zanemarimo prvobitan neuspjeli pokušaj uspostavljanja Jozefinskog katastra, osnivanje katastra u Hrvatskoj koja je bila u sastavu Austro-Ugarske monarhije, započelo je nakon proglašenja Carskog patenta od 23. prosinca 1817. godine, kojom je određeno da se pokrene katastarska izmjera i klasiranje zemljišta radi izrade katastarskog operata. Taj posao na našem području trajao je od 1818. do 1884. godine. Prilikom te izmjere primijenjena je grafička metoda mjerenja (geodetski stol) pa tako se taj način izmjere naziva i grafička izmjera.

Nakon drugog svjetskog rata nadopunjena je stara izmjera. Tom prilikom primijenjena je numerička metoda izmjere, polarna i ortogonalna, a u novije vrijeme i fotogrametrijska metoda. Kako je katastarska izmjera vršena u različitim vremenskim razdobljima, prostor Hrvatske možemo podijeliti s obzirom na postojeće katastarske planove na: 1. područje austrijskog katastra
2. područje mađarskog katastra
3. jedinstveno područje nove izmjere.

Slika 2.1: Stari projekcijski sustavi na području Hrvatske

2.3.1. Područje austrijskog katastra

Izmjera je započela na našem području 1818. a završila 1839. godine. Samoj izmjери prethodilo je osnivanje posebne komisije koja je trebala istražiti mogućnost
izvršenja detaljne izmjere i osnivanje katastara zemljišta. Nakon što su prikupljena iskustva u drugim europskim zemljama, posebno Francuskoj i Bavarskoj, komisija je predložila da se izmjera osloni na trigonometrijsku mrežu kao temelj izmjere. Trigonometrijska mreža bila je I II III i IV reda, s time da su točke I II i III reda određene numerički dok su točke IV reda određene grafički. Trigonometrijska mreža I reda je trokutna mreža koja polazi od Beča i prelazi Koruškom, Štajerskom, preko sjeverne Hrvatske i Dalmacije. Mreža je spojena preko Kranjske s tadašnjom francusko-talijanskom mrežom na području Venecije. Dužina stranica mreže I reda iznosila je od 15 do 30 km. Mreža je oslonjena na četiri baze od kojih niti jedna nije na našem području.

Trigonometrijska mreža IV reda određena je grafički na sekcijama mjerila 1:14400, a zatim prenijeta na listove mjerila 1:2880 za detaljno snimanje. Najveći nedostatak ovih mreža je što je izvršena vrlo loša stabilizacija točaka višeg i nižeg reda.

Područje Hrvatske preslikano je bilo u dva od sedam postojećih koordinatnih sustava na području tadašnje Austrije i to:

1. Sustav s ishodištem u tornju Sv. Stjepana u Beču, preslikano je područje Dalmacije. Geografske koordinate su:
 \[\varphi = 48^\circ 12’ 31’’54 \quad \lambda = 34^\circ 02’ 27’’32\]

2. Sustav s ishodištem u trigonometrijskoj točki Krim kod Ljubljane, preslikano je područje Istre. Geografske koordinate su:
 \[\varphi = 48^\circ 12’ 31’’54 \quad \lambda = 34^\circ 02’ 27’’32\]

Os x koordinatnog sustava je meridijan kroz ishodište s pozitivnim smjerom prema jugu. Os y je pravac, okomit na sliku meridijana s pozitivnim smjerom prema zapadu. Područje preslikavanja podijeljeno je paralelama s osi x u kolone, a paralelno s osi y u zone.

Širina i visina zona i kolona, tj. dimenzija osnovnog triangulacijskog lista ili kvadratne milje, je 4000 hvati (1 hv = 1.896484 m). Kolone su označene rimskim brojevima istočno i zapadno od osi x, a zone arapskim brojevima počevši od najsjevernije zone. Svaki se temeljni triangulacijski list dijeli na 20 sekcija (listova mjerila 1:2880) veličine 1000 x 800 hvati s površinom lista od 500 katastarskih jutara.
Jedinica za dužinu u toj izmjeri bila je 1 hvat. Prvotno mjerilo plana $1^\circ=40^\circ$ tj. jedan palac na planu jednak je 40 hvati u prirodi. Budući da je 1 hvat = 6 stopa, a 1 stopa = 12 palaca, tako je 1 hvat = 72 palca. Mjerilo tih planova jednak je $1:40 \times 72 = 1:2880$.

Jedinica za površinu je 1 četvorni hvat $1\text{chv} = 3.596652 \text{m}^2$. Veća jedinica je jutro odnosno ral, koji ima 1600 čhv.

Godine 1873. na projekcijskim područjima Austrije prelazi se na metarski sustav, te je sukladno tome izvršena nova podjela na zone i kolone.

2.3.2. Područje mađarskog katastra

U projekcijskim sustavima mađarskog katastra izrađeni su planovi za onaj dio Hrvatske koji je prije 1918. godine bio pod upravom Ugarskog dijela Austro-Ugarske monarhije, Hrvatska bez Istre i Dalmacije. Cijeli teritorij bio je podijeljen u dva koordinatna sustava. I to:
1. Kloštar-Ivanički sustav s ishodištem u tornju franjevačke crkve u Kloštar-Ivaniću. Geografske koordinate su:
\[\varphi = 45^\circ 44' 21''25 \quad \lambda = 34^\circ 05' 09''16 \]

2. Budimpeštanski sustav s ishodištem u trigonometrijskoj točki Gelértegu u Budimpešti. Geografske koordinate su:
\[\varphi = 47^\circ 29' 09''64 \quad \lambda = 36^\circ 42' 53''57 \]

Mađarska izmjera je izvršena na isti način kao i austrijska, pa je i podjela na triangulacijske i detaljne listove identična kao i kod austrijskog sustava prije nego se prešlo na metarski sustav mjera. Izmjera za ovo područje izvršena je između 1847. i 1877. godine. Ugarska nije prihvatila konvenciju o prelazu sa stare mjere na dekatski sistem mjera, te se tako i danas u Hrvatskoj u dijelu katastarske i zemljišno knjižne dokumentacije podaci o površinama iskazuju u četvornim hvatima i jurtima.

Slika 2.3: Sustavi mađarskog katastra

2.3.3. Nova izmjera

1929. godine za područje cijele bivše Jugoslavije uvedena je jedinstvena projekcija, Gauss-Krügerova projekcija meridijanskih zona. Ta projekcija dobivena je postavljanjem triju poprečno postavljena cilindra uzduž petnaestog, osamnaestog i dvadesetprvog meridijana. Područje Hrvatske preslikava se u dva koordinatna sustava, koji se označavaju...
kao peta i šesta zona, počevši s računanjem od Greenwickog početnog meridijana. U svakom koordinatnom sustavu os x predstavlja dodirni meridijan s pozitivnim smjerom prema sjeveru.

Svakih 22.5 km paralele s osi x dijele područje svakog sustava na kolone, koje su označene velikim slovima počevši od zapada.

Paralelno s osi y na udaljenosti od 15 km dijeli se područje na redove. Redovi su označeni arapskim brojevima počevši od najjužnijeg reda, koji zahvaća teritorij Hrvatske. Tako je dobiven temeljni triangulacijski list dimenzija 22.5 x 15.0 km, a dijeli se na detaljne listove u ovisnosti od mjerila u kome je pojedina izmjera kartirana.

Da ne bi imali negativnu koordinatu osi y, osi x se dodaje vrijednost 500 000 m. Sve vrijednosti manje od 500 000 nalaze se zapadno od osi x, a veće vrijednosti istočno od osi x. Pred ordinatu na znamenku miliona postavljamo oznaku zone, tako da os x u petoj zoni ima ordinatu 5 500 000 m, a u šestoj zoni 6 500 000 m.

Slika 2.4: Sustav nove izmjere

2.4. Geodetska izmjera i katastar zemljišta
Izmjerom se utvrđuju podaci, mjerni i opisni, o zemljištu određenog sadržaja i oblika, radi korištenja tih podataka za izradu planova i karata, koje se koriste za potrebe katastra zemljišta, prostornog planiranja i uređenja prostora, istraživačke radove i dr. (Roić 1995).

Izmjera se izvodi na jedinstven način i sadrži:
1. postavljanje i održavanje mreže stalnih geodetskih točaka
2. detaljno snimanje terena
3. izradu planova i karata

Geodetska izmjera zemljišta u svrhu izradbe katastra zemljišta, njihovo održavanje i obnova izvode se na način propisan zakonom. Kod detaljnog snimanja terena za potrebu izrade katastra zemljišta, snimanjem se utvrđuje položaj katastarske čestice, način iskorištavanja i njihovi posjednici.

Dokumentaciju izmjere i katastra zemljišta čuvaju i održavaju tijela državne uprave nadležni za katastarsko-geodetske poslove. Ona obuhvaća: originale podataka prikupljene detaljnom izmjerom, klasiranje i bonitiranje zemljišta, kao i planove, karte, popise i pregledi izrađene na temelju prikupljenih podataka. Uvid u dokumentaciju je slobodan, osim ako za pojedine podatke nije ograničen posebnom uredbom.

2.5. Sadržaj i svrha katastra zemljišta

Katastar zemljišta sadrži podatke o zemljištu u pogledu njegova položaja, oblika, površine, načina iskorištavanja, proizvodne sposobnosti, katastarskog prihoda i posjednika. Svi ti podaci se utvrđuju u odnosu na katastarsku česticu zemljišta.

Katastarska čestica je dio zemljišta koji se iskorištava na isti način i pripada istom posjedniku. Svaka katastarska čestica označena je brojem katastarske čestice i nazivom katastarske općine u kojoj se nalazi. Položaj i oblik svake katastarske čestice i objekata koji se na njoj nalaze prikazani su na planovima i to sve katastarske čestice jedne katastarske općine prikazane su skupno u međusobnom odnosu.

Planovi i odgovarajući popisi, pregledi s podacima o katastarskoj čestici na području jedne katastarske općine čine katastarski operat te katastarske općine. Katastarski operat čini cjelokupna dokumentacija sastavljena od katastarskih i topografsko-katastarskih
planova, te odgovarajućih knjigovodstvenih dijelova i kao takav daje potpune podatke o zemljištu. Oni su temelj za ZIS, zemljišni informacijski sustav.

Svrha katastara je višestruka. Katastarski podaci koriste se za razne tehničke, upravne, ekonomske i statističke svrhe, za izradu zemljišnih knjiga. Institucije katastra zemljišta i zemljišna knjiga, dopunjavaju jedna drugu i jedna bez druge ne mogu u potpunosti postići svoju svrhu.

2.6. Izrada katastra zemljišta

Izrada katastara zemljišta obuhvaća:

1. utvrđivanje katastarskih teritorijalnih jedinica,
2. katastarsku izmjenu,
3. katastarsko klasiranje i bonitiranje zemljišta,
4. izlaganje na javni uvid podataka izmjere i katastarskog klasiranja zemljišta,
5. izradu katastarskog operata.

2.7. Katastarske teritorijalne jedinice

Katastarski kotar je teritorijalna jedinica za katastarsko klasiranje zemljišta. Područje katastarskog kotara čine teritorijalno povezane katastarske općine koje imaju približno iste prirodne i gospodarske uvijete za poljoprivrednu proizvodnju.
2.8. Održavanje izmjere i katastra zemljišta

Dokumentacija izmjere i katastra zemljišta mora se, u pogledu sadržaja, trajno održavati i skladu sa stanjem na terenu. Održavanje izmjere i katastra zemljišta obuhvaća:

1. praćenje i utvrđivanje promjena nastalih na zemljištu
2. provođenje utvrđenih promjena u kartama, planovima i ostalim dijelovima katastarskog operata.

Snimanje promjena mora se izvršiti istom točnošću kojom je izvršena prvotna izmjera. Osim prethodno navedenih poslova, poslovi održavanja izmjere i katastra zemljišta obuhvaćaju i:

1. obnavljanje uništenih ili oštećenih oznaka mreže stalnih geodetskih točaka
2. otklanjanje utvrđenih nedostataka u svim dijelovima katastarskog operata
3. umožavanje dotrajalih ili oštećenih planova, karata i ostalog dijela katastarskog operata.

O promjenama oblika, površine i načina iskorištavanja zemljišta koje je proveo u katastru zemljišta, tijelo uprave nadležno za katastarsko-geodetske poslove je dužno obavijestiti nadležan sud. Pored redovnog održavanja isto tijelo je dužno, najmanje svake desete godine, a u gradu svake pete godine, izvršiti usporedbu podataka izmjere i stvarnog stanja na terenu, te promjene provesti u katastarskom operatu.

2.9. Obnova izmjere i katastra zemljišta

Obnova izmjere i katastra zemljišta poduzima se kada između stanja u katastarskom operatu i stanja u naravi dođe do velikih razlika koje se ne mogu otkloniti redovnim održavanjem. Obnova u pravilu obuhvaća ponovnu izmjjeru i izradu katastra zemljišta, a iznimno, samo obnovu katastarskog klasiranja i bonitiranja zemljišta.

Odluku za obnovu izmjere i katastra zemljišta donosi Državna geodetska uprava, a sredstva osigurava država.
3. Geoinformacijski sustavi

3.1. Uporaba GIS-a

Tvrtkama koje se bave projektiranjem, izgradnjom, upravljanjem i održavanjem komunalnih infrastrukturnih sustava, GIS-alati omogućavaju automatizaciju poslova kao što su: planiranje, marketing, projektiranje, izgradnja, dokumentacija i održavanje.

Možemo reći da se sve one aktivnosti koje u klasičnim sustavima koriste karte, ili kartama srodne prikaze, mogu unaprijediti i ubrzati uporabom GIS-a. Tu svakako spada planiranje, zatim projektiranje mreže i objekata na mreži, izrada i vođenje dokumentacije te izgradnja i održavanje. GIS donosi ubrzanje u izrade karata i, što je još više izraženo, ubrza, pojednostavljuje i pojednostavljuje ažuriranje karata. Pored toga, GIS omogućava pohranu daleko veće količine informacija nego što bi stalo na kartu. Štoviše, te informacije nisu samo statičke, kao na karti, već i dinamičke, tj. mogu izražavati promjene u vremenu, ili promjene u prostoru i vremenu, poput vizualizacije pozicije vozila u pokretu, integracijom GPS sustava u GIS. GIS je fleksibilniji od karata i po podržanom formatu informacija. Pored svih formata komunikacije klasičnih karata s korisnikom (kartografski znakovi, nazivi i tekstualni opisi), GIS uvodi i multimedijske podatke poput fotografije, zvuka, videa, animacije, CAD-a i sl. Sve one organizacije koje su u svrhu projektiranja i drugih aktivnosti koristile CAD osjetile su potrebu za funkcijama GIS-a kao što su baratanje podacima o topologiji, integracija s relacijskim bazama podataka i vođenje jedinstvene neredundantne, ažurne i konzistentne baze prostornih podataka; GIS im pruža dobrou mogućnost prostornog pregleda te upravljanja raspoloživim CAD crtežima.

Nadalje, od GIS-a koristi mogu osjetiti i oni dijelovi organizacije koji u svom radnom procesu nisu tradicionalno koristili prostorni prikaz u obliku karte. Primjer takvog korisnika su odjeli marketinga koji sada imaju na raspolaganju sve prostorne podatke u kući, a i one dobavljače izvana za analizu prostorne distribucije postojećih i potencijalnih zahtjeva. Jedna od najraširenijih primjena GIS-a u marketingu je uporaba granica popisnih okruga zajedno s podacima iz popisa stanovništva. Starosni sastav, prihodi po domaćinstvu, obrazovna struktura i bračni status samo su neke od kategorija iz kojih se analizom dobivaju informacije koje pomažu pri donošenju odluka o tome, gdje u prostoru investirati u proširenje mreže ili gdje sagraditi optužbni centar i sl.
3.2. Koristi od GIS-a

Koristi od GIS-a dijele se na mjerljive i nemjerljive. Mjerljive koristi su one kod kojih se mogu uspoređivati cijene ispunjenja neke standardne zadaće (npr. iscrtavanje radne skice za prilog radnom nalogu kod intervencija na mreži) na stari način i pomoću GIS-a. Cilj je dobiti korist izraženu u novcu uštedenom zahvaljujući novoj tehnologiji. Za to se zahtijeva da se radni procesi mogu mjeriti i izraziti u prosječnom vremenu po čovjeku za ispunjenje zadaće. Mnoge tvrtke već imaju izmjerene ove vrijednosti ili ih mogu s dovoljnom točnošću procijeniti.

Nemjerljive koristi javljaju se kod pojave novih mogućnosti koje ranije nisu postojale (npr. automatsko povezivanje s podacima u bazi u ERC-u) ili kod procesa koje nije moguće izmjeriti (tipično za intelektualno zahtjevne zadaće kao što je projektiranje). Ove koristi obično se procjenjuju približno i to tako da se uzimaju najkonzervativnije procjene.

Jedna velika korist koja ne spada niti u jednu od prethodne dvije kategorije odnosi se na sveukupni učinak uspješnog GIS-a u jednoj tvrtci. Naime, uvodenjem GIS tehnologije počinje se ubrzavati protok informacija u tvrtci, što rezultira kako boljim poslovnim odlukama i rezultatima, tako i općim pozitivnim raspoloženjem zaposlenih u odnosu na posao koji rade, a na koncu i klijenata tvrtke, jer je razina usluga dignuta na višu razinu. Ova se korist obično ne izražava u novčanom iznosu.
4. Digitalne baze podataka

4.1. Izrada digitalne baze podataka

Digitalne baze dijele se prema vrsti grafičkih podataka na vektorske i rasterske. Digitalne baze su izrađene obradom digitalnih podataka koje je potrebno na neki način unijeti u računalo. Ne grafički podaci se unose tastaturom računala, dok se grafički podaci unose posebnim uređajima digitalizatorima, rasterskim ili vektorskim. ARC/INFO podržava rad s digitalizatorom, ali prvenstveno se podaci digitaliziraju “ekranskom” vektorizacijom rasterskog podatka. Geodetska mjerenja neposredno registrirana u digitalnom obliku daju najkvalitetniji podatak o prostoru i formiranju digitalne baze, ali je to i najskuplji način.

Digitalne baze izrađuju se sljedećim metoda:
1. izrada digitalne baze iz izvornih mjerenja
2. izrada digitalne baze vektorskom digitalizacijom analognih karata
3. izrada rasterskog podatka iz skaniranih analognih karta
4. izrada vektorskih podataka iz skaniranih analognih karta

Digitalna baza može poslužiti i kao osnova za izradu analogne karte.

4.2. Izrada digitalne baze iz izvornih mjerenja

4.3. **Izrada digitalne baze vektorskom digitalizacijom karta**

Digitalna baza izrađena vektorskim digitalizatorom rezultat su obrade datoteke koordinata dobivene digitalizacijom. Vektorskim digitalizatorom dobivaju se datoteke koordinata ili vektorski crtež. Daljnjom obradom vektorskog crteža ili koordinata nastaju digitalne baze. Ovaj način nije prikladan za opsežnu digitalizaciju, već za dopunu postojećih karata i slične potrebe.

4.4. **Izrada rastera iz skaniranih analognih karata**

Digitalne karte izrađuju se površinskom transformacijom rasterskih datoteka nastalih skaniranjem karata. Kartu je potrebno skanirati i transformirati. Karta se skanira u potrebnoj rezoluciji, tako da se postigne zadovoljavajući omjer između funkcionalnosti i cijene koštanja skaniranja. Transformacijom slikovnog prikaza karte uklanjamo pogrešku deformacije (rastega i usuha) te tako dobijemo kartu u željenom koordinatom sustavu.

Podatak rasterske karte je x i y koordinata i podatak o boji, što je za digitalnu bazu nedostatno te je sadržaj redovito potrebno vektorizirati. Raster možemo koristiti kao kontekst za postojeće vektorske ili rasterske podatke ili za vektorizaciju njenog cijelog sadržaja ili njenih dijelova npr. prometnice.

4.5. **Izrada digitalnih vektoskih podataka iz skaniranih analognih karata**

Vektorizacija skaniranih analognih karata je najčešći način digitalne obrade podataka u svrhu izrade vektorskih digitalnih podataka. To je u današnje vrijeme najčešći način izrade digitalnih baza za potrebe katastara. Način izrade je opisan u ovom radu.

Baza podataka se izrađuju ekranskom vektorizacijom objekata po vrstama. Skanirane karte su prethodno geokodirane odnosno transformirane u koordinatni sustav digitalne rasterske karte, tako da je ekranski vektorizirani detalj u tome sustavu. Topološki sadržaj karte se u ARC/INFO raslojavaju u podatkovne slojeve. U svaki se zasebni sloj vektoriziraju npr. granice čestica, objekti, i sl. Tako raslojen sadržaj je prikladan za daljnju obradu podataka te korištenje u GIS-u.
5. ARC/INFO

5.1. Hardverski i softverski zahtjevi

U računarskoj obradi geodetskih podataka vrlo je važno imati jaku i brzu hardversku podršku, posebice kod obrade rasterskih podataka. To su obično velike datoteke koje je kod same vektorizacije potrebno neprestano učitavati zbog različitih povećanja, odnosno prikaza pojedinog dijela rastera. Da bi se dobila zadovoljavajuća brzina obrade i digitalizacije, a samim time i ekonomičnosti izrade nekog zadatka potrebno je imati brzu računala. U tablici 5.1 prikazana je hardverska i softverska infrastruktura za ponuđena GIS programska rješenja:

<table>
<thead>
<tr>
<th>Hardverska platforma</th>
<th>Server minimalna konfiguracija</th>
<th>Server preporučena konfiguracija</th>
<th>Radna stanica minimalna konfiguracija</th>
<th>Radna stanica preporučena konfiguracija</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intel Pentium 266 MHz</td>
<td>Intel Pentium 300 MHz</td>
<td>Intel Pentium 233 MHz</td>
<td>Intel Pentium 266 MHz</td>
<td></td>
</tr>
<tr>
<td>Windows NT 4.0</td>
<td>Windows NT 4.0</td>
<td>Windows NT 4.0</td>
<td>Windows NT 4.0</td>
<td></td>
</tr>
<tr>
<td>Memorijski prostor</td>
<td>0 128 MB</td>
<td>256 MB</td>
<td>64 MB</td>
<td>128 MB</td>
</tr>
<tr>
<td>Diskovni prostor</td>
<td>2 x 4 GB</td>
<td>4 x 4 GB</td>
<td>4 GB</td>
<td>2 x 4 GB</td>
</tr>
<tr>
<td>Grafika</td>
<td></td>
<td>monitor 19”, SVGA kartica 4 MB VRAM</td>
<td>monitor 21”, Open GL kartica 8 MB VRAM</td>
<td></td>
</tr>
<tr>
<td>RDBMS</td>
<td>ORACLE Workgroup Server 8.0.3</td>
<td>ORACLE Workgroup Server 8.0.3</td>
<td>/</td>
<td>/</td>
</tr>
</tbody>
</table>

Tablica 5.1: Hardverske i softverske konfiguracije

Vrlo je važno imati monitor što veće kvalitete razlučivosti zbog prepoznatljivosti pojedinog detalja na karti. Osim toga poželjno je imati i što veću dijagonalu samog monitora, jer u protivnom, potrebno je prilikom vektorizacije ulaziti u velika povećanja
rastera čime se usporava rad, a samim time smanjuje se ekonomičnost računarske obrade podataka.

Konfiguracija radne stanice HP Apollo 900 series 700 za izradu ovog diplomskog rada bila je manje više zadovoljavajuća. Svojevremeno, kada je početkom 90-tih ušla u upotrebu bila je vrlo močan stroj u odnosu na tadašnje standarde. No danas, za obradu većih skaniranih rasterskih karata potrebna je puno jača hardverska podrška. Osim toga povoljno bi bilo da se obrade geodetskih podataka izvršavaju na PC platformama, da bi zadovoljili kompatibilnost između izvršioca i korisnika usluga. To je važno zbog toga što danas sve više i više korisnika usluga geodetskih podataka koristi PC platforme zbog njihove jeftinoće i dostupnosti.

5.2. Općenito o ARC/INFO

Programski paket ARC/INFO predstavlja GIS programski sustav koji može podržavati izgradnju i funkcioniranje prostornog informacijskog sustava samostalno, ali i biti funkcionalni element u sklopu šireg sustava GIS-a i šireg informacijskog sustava. Obuhvaća potporu za formiranje baze prostornih podataka, konverziju tih podataka u digitalni oblik i procesiranje digitalnih podataka, punjenje u bazu, redovito održavanje podataka, zatim prostornu analizu i prostorno modeliranje, digitalnu kartografiju i izradu aplikacija. ARC/INFO posjeduje autonomni sustav za pohranu i korištenje prostornih podataka, što uz razvijeni opsežni model podataka omogućava korisniku da sagradi, održava i eksploatira GIS samostalno u ovom okruženju. Pored spomenutog, ARC/INFO omogućava integraciju GIS-a kao danas nezaobilaznog dijela velikog broja informacijskih sustava s drugim naprednim informacijskim i geoinformacijskim tehnologijama kao što su RDBMS, GPS, Remote Sensing (daljinska istraživanja), Image Processing, Softcopy Photogrammetry (digitalna fotogrametrija), CAD, SCADA, Internet i druge.
Pored podsustava INFO za upravljanje atributnim podacima, mnogi korisnici GIS-a žele iskoristiti postojeći ili nabaviti novi sustav za upravljanje relacijskim bazama podataka (RDBMS) radi mogućnosti koje pruža jedan takav programski paket kao što je npr. ORACLE, INFORMIX, SQL Server ili INGRES. Za povezivanje s relacijskim bazama ARC/INFO koristi sučelje pod nazivom DBI (Database Intergrator) kojim korisnik transparentno dostupa do atributnih podataka.

Korak dalje u integraciji ARC/INFO-a s relacijskim bazama podataka predstavlja SDE, sustav za upravljanje bazom prostornih podataka. Prostorni i atributni podaci pohranjeni u RDBMS-u koje poslužuje SDE server integrirani su u ARC/INFO okoliš, pa je time svakom korisniku omogućeno korištenje podijeljenih podataka, kvalitetnija analiza, kompilacija složenih informacija i donošenje kvalitetnijih odluka.

5.3. ARC/INFO moduli

ARC/INFO funkcionira kao više podsustava – modula, tako da pored osnovnog modula za određene grupe funkcija korisnik pokreće odgovarajući podsustav.

ARC je osnovni modul za uređenje same fizičke strukture podataka te osnovne operacije pristupa, strukturiranja i analize nad podatkovnim slojevima tako uređenih georelacijskih baza.

ARCEDIT je korisniku prilagođen, grafički orijentiran interaktivni alat za unos, promjene i uređenje geokodiranih podatkovnih slojeva te pripadnih relacija i atributa.

ARCPLOT, napredni interaktivni alat za finalni kartografski grafički prikaz (na zaslonu računala) i/ili ispis (na pisaču odnosno crtaču) prostorno orijentiranih modela podataka te nad njima provedenih prostornih i atributnih analiza.

INFO i TABLES, unos, obrada i (tablčna) analiza pridruženih INFO baza podataka. ARC, ARCEDIT, ARCPLOT, TABLES i INFO su ujedno moduli koji čine osnovnu konfiguraciju programskog paketa ARC/INFO. Pored njih u osnovnoj konfiguraciji još su sljedeći podsustav:

AML (Arc Macro Language), programski proceduralni makro jezik, obogaćen vrlo opsežnom bibliotekom odgovarajućih komandi i funkcija (kreiranje i upravljanje izbornicima, priprema 'obrazaca' za unos i izmjene podataka, pozivi sistemskih funkcija i
međuprosesne komunikacije, itd.), namijenjen prilagodbi i oblikovanju gotovih ARC/INFO korisničkih aplikacija.

ARCTOOLS, skup različitih objektno orijentiranih korisničkih alata, s prijateljskim izbornikom sučeljem, prilagodljiv i dostupan u izvornom AML kodu.

Map Librarian, alat za objedinjavanje i upravljanje višestrukim logički povezanim slojevima ARC/INFO georeferenciranih podataka.

DBI (Database Integrator), programski produkt koji omogućava ARC/INFO modulima povezivanje s eksternim RDBMS (Relational Database Management System) bazama podataka: unos i izmjene, SQL upite te relacijsko povezivanje s ARC/INFO slojevima, podržavajući najrasprostranjenije SQL baze kao što su SQL SERVER, ORACLE, INGRES, INFORMIX, SYBASE, RDB, DB/2 i druge.

Od dodatnih modula spomenimo još sljedeće:

ARCSCAN kombinirani alat za prihvat, čišćenje i pripremu (editiranje) rasterskih podataka (bitmapa) te njihovu rastersko-vektorsku pretvorbu i unos u ARC/INFO slojevno strukturiranu bazu vektorskih podataka (coverages).

ARCSTORM (Arc Storage Manager) služi za održavanje i upravljanje velikim i složenim ARC/INFO bazama podataka, u višekorisničkom klijent-server okruženju, dopuštajući povezivanje dijelova baze fizički smještenih na različitim umreženim poslužiocima, pod raznim operativnim sustavima.

GRID modul koji služi za rad s čelijski organiziranim (engl., cell-based) strukturama ARC/INFO podatkovnih slojeva, u svrhu rasterskog modeliranja i integrirane rastersko-vektorske analize.

TIN (Triangulated Irregular Network), služi za modeliranje ploha na osnovu nepravilnih mreža točaka poznatih visina, na osnovu slojnika (izohipsi) ili iz digitalnog modela terena (DEM) te generiranje trodimenzionalnih prikaza.

COGO (Coordinate Geometry), modul prvenstveno namijenjen za prihvat, obradu i uređivanje podataka geodetskih mjerenja te njihov unos i povezivanje s ostalim ARC/INFO podatkovnim strukturama.

NETWORK modul koji služi za adresno geokodiranje, mrežno planiranje i modeliranje, s implementiranim mnoštvom standardnih, ali i posebno prilagođenih naprednih topoloških i numeričkih algoritama iz teorije grafova i (orijentiranih) mreža (Institute 1994).
5.4. **ARC/INFO prostorni modeli podataka**

Svojedobno, ARC/INFO je prvi upotrijebio georelacijski model podataka: prostornim podacima, entitetima (engl., feature), putem odgovarajućih relacija (jedan-na-jedan ili više-na-jedan) pridruženi su dodatni opisni (numerički ili tekstualni) podaci, njihovi takozvani atributi. Ti atributi fizički mogu biti pohranjeni u odvojenim tablicama (datotekama), a korištenjem DBI alata, čak i u eksternim relacijskim bazama podataka. Atributima se također mogu smatrati i multimedijske informacije (video, zvuk, fotografija) vezane uz prostorne objekte.

Iako, kao što je već navedeno, ARC/INFO podržava i rasterski (čelijski) GRID format, za zapis prostornih podataka u praksi se najčešće rabi vektorski format. U tom smislu, ARC/INFO poznaje tri osnovne kategorije prostornih entiteta: točke, dužine i poligoni. Ovisno o kontekstu, točke možemo promatrati kao točke u prostoru (engl., point) ili kao čvorove u mreži (engl., nod). Zbog specifičnih kartografskih potreba, podržana je i četvrta kategorija objekata, tekstualne anotacije.

Svaka točka zadana je svojim koordinatama u odgovarajućem referentnom koordinatnom sustavu; (orijentirana) dužina (engl., arc ili line) zadana je svojom polaznom i završnom točkom (ustvari, njihovim jedinstvenim identifikatorima), a poligon je zadan konzistentnim popisom stranica (dužina) koje čine njegov pozitivno orijentiran rub. Kombinacijom osnovnih tipova entiteta dobivaju se i dodatne strukture podataka: regije (engl., region) - više logički povezanih (topološki razbacanih) poligona; putovi ili rute (engl., route) - konzistentno povezivane susjedne dužine te sekcije (engl., section) - manji, sastavni dijelovi ruta.

ARC/INFO podatkovni sloj (engl., coverage) je logički povezan skup istovršnih prostornih entiteta i njima pridruženih opisnih podataka. Pohranjen je kao direktorij te sadrži datoteke koje opisuju položaj i svojstva entiteta. Svakom sloju pridružena je osnovna atributna tablica pod generičkim nazivom Feature Attribute Table (FAT), za svaki entitet prostornog modela po jedan redak u tablici. Pri nazivlju datoteka, poštuje se slijedeća notacija, izvedena iz odgovarajućih engleskih kratica:
<table>
<thead>
<tr>
<th>Kategorija</th>
<th>Tip</th>
<th>Kratica (ekstenzija)</th>
</tr>
</thead>
<tbody>
<tr>
<td>točka</td>
<td>točka</td>
<td>PAT</td>
</tr>
<tr>
<td>točka</td>
<td>čvor</td>
<td>NAT</td>
</tr>
<tr>
<td>dužina</td>
<td>dužina</td>
<td>AAT</td>
</tr>
<tr>
<td>poligon</td>
<td>poligon</td>
<td>PAT</td>
</tr>
<tr>
<td>anotacija</td>
<td>tekst</td>
<td>TAT</td>
</tr>
<tr>
<td></td>
<td>ruta</td>
<td>RAT</td>
</tr>
</tbody>
</table>

Tablica 5.2: Jedinstveni identifikatori entiteta i njihove ekstenzije

Atributna tablica sadrži jedinstvene identifikatore entiteta, neke osnovne podatke (npr. površinu i opseg poligona, duljina dužine, koordinate točke) te topološke podatke, tj. podatke o međusobnom prostornom odnosu navedenih entiteta (dužina - susjedni poligon, dužina - početni čvor i slično). Jedna kolona ostaje korisniku da sam zada svoj vlastiti identifikator. Korisnik također može dodati i po volji mnogo kolona s atributima i/ili vezama na druge atributne 'look-up' tablice (LUT).

ARC/INFO GRID je struktura koja modelira pojave u stvarnom svijetu pomoću rasterskog tipa podataka, s proširenjem na georelacijski model. Tako je za svaku čeliju moguće definirati niz atributa slično organiziranih u Value Attribute Table (VAT) tablice.

5.5. Opći opis strukture prostornih podataka

Prostorni podaci su organizirani u prostorne slojeve (layers) i listove (tiles). Prostorni sloj (layer) je skup organiziranih podataka koji čini tematski logičku i prostorno povezanu cjelinu. Tako npr. hidrografija, prometnice, naselja čine zasebne prostorne slojeve.

Listovi (tiles), su osnove organizacione jedinice prostornog sloja. Kriterij za ograničavanje jednom lista mogu biti različiti, npr. državne ili županijske granice ili, što je najčešće slučaj, okvir jednom lista karte.

Presjekom prostornog sloja (layer) i lista (tile) nastaje podatkovni sloj (coverage).

Podatkovni sloj (coverage) je osnovni obik zapisa vektorskih podataka u ARC/INFO-u. Taj sloj pohranjuje podatke kao primarne, a to su linije, točke i poligoni, i
sekundarne, a to su tekstovi, vezne točke (tikovi) i podaci o prostornom obuhvatu (bnd). Svi vektorski podaci, imaju i pripadajuće tabele u kojima su pohranjeni atributni podaci o svakoj liniji, točki ili poligonu. Struktura podataka u podatkovnom sloju (coverage) je ista kao u prostornom sloju (layer), tj. tematska.

Slika 5.1: Struktura prostornih podataka u ARC/INFO-u

5.6. **Način pohrane vektorskih podataka u programu ARC/INFO-u**

U osnovi ARC/INFO prostorne podatke pohranjuje kao linije, točke ili poligone. Oni se, međutim sastoje od niza elemenata koji osiguravaju pohranu atributnih podataka i provjeru točnosti unosa podataka. Prilikom procesa digitalizacije, bitno je poznавати neke termine i njihova značenja, pa je stoga priložena tablica 5.3 s kratkim pojašnjajima.
IZVORNI TERMIN	PRIJEVOD	OPIS
ARC | LINIJA | U ARC/INFO linija predstavlja neki linijski entitet, ili granicu poligona. Definirana je s dva čvora i točkama između njih
NODE | ČVOR | Početak ili kraj linije. U mnogim slučajevima je isti čvor kraj jedne linije i početak druge, te se može smatrati i presjecištem linija
VERTEX | LOMNA TOČKA | Lomna točka linije
DANGLING NODE | VISEĆI ČVOR | Kraj linije na koji se ne nadovezuje druga linija
PSEUDE NODE | PSEUDO ČVOR | Čvor kojim počinje i završava ista linija, ili čini spoj samo dviju linija
LABEL POINT | LABELA - OZNAČNA TOČKA | Točka uz koju se vežu atributi za poligone
USER-ID | KORISNIČKI IDENTIFIKATOR | Identifikacijski broj koji program automatski dodjeljuje svakom entitetu unutar podatkovnog sloja, a korisnik ga može modificirati
TIC | VEZNA TOČKA (TIK) | Točka s poznatim koordinatama u oba sustava koja omogućava računanje transformacijskih parametara
RMS ERROR | SREDNJA KVADRATNA POGREŠKA | Izračunata razlika između zadanih i transformiranih koordinata identičnih točaka.

Tablica 5.3: Osnovi termini za digitalizaciju podataka pomoću programa ARC/INFO

5.7. **ARC/INFO podatkovni sloj - COVERAGE**

Podatkovni sloj je osnovni način pohranje vektorskih podataka u ARC/INFO-u. Podatkovni sloj možemo shvatiti kao zemljovid, raščlanjen na geografske objekte i pohranjen u računalu, jer jednako kao i zemljovid sadrži podatke o prostornim odnosima objekata. Iz toga proizlazi da podatkovni sloj sadrži prosto podatke koji opisuju položaj, oblik i međusobni odnos geografskih elemenata, kao i atributne podatke o svakom elementu prikaza.
5.8. Osnovni princip pohrane podataka u podatkovnom sloju

ARC/INFO podatkovni sloj organiziran je kao direktorij u kojemu se nalazi više datoteka s pohranjenim podacima o točkama, linijama, poligonima, čvorovima, prostornom obuhvatu podatkovnog sloja i niz drugih.

Osnovni elementi od kojih se sastoji podatkovni sloj su linije, točke i poligoni, a svi ostali elementi kao što su čvorovi, rute i dr. proizlaze iz međusobnog odnosa triju osnovnih elemenata.

Uz linije često su vezani čvorovi ili rute, dok uz poligone uvijek su vezane labele koje sadrže atributne podatke o poligonima i dr. Tip prostornog entiteta koji će se nalaziti u podatkovnom sloju, ovisiće o tipu podataka koje sloj sadrži. Gotovo u pravilu, način pohranе u podatkovnom sloju sukladan je načinu prikaza podataka na zemljovidu. To znači, da će objekti koji su na zemljovidu prikazani površinskim signaturama u podatkovnom sloju biti pohranjeni kao poligoni, linijski objekti kao linije, te objekti prikazani točkastim signaturama kao točke. Može se reći da u ARC/INFO-u točka predstavlja diskretni objekt, čija je površina premala da bi se obuhvatila poligonom, ili uopšte nema površine, već se uz nju veže neki atribut, kao npr. vrh planine ili sl. Liniju čini niz koordinata koje spojene predstavljaju konturu nekog objekta, koji je preuzetak da bi se prikazao poligonom ili uopšte nema svoju širinu što je slučaj s izohipsama. Poligonom se prikazuju objekti koji čine potpuno zatvorenu površinu.

Slika 5.2: Osnovi elementi podatkovnog sloja
5.9. Način pohranjivanja prostornih entiteta (COVERAGE FEATURES)

5.9.1. Identifikacijski brojevi

Svi geografski objekti pohranjeni u podatkovnom sloju imaju svoja dva jedinstvena broja pomoću kojeg se ostvaruje veza između objekta i njegovih atributa. ARC/INFO automatski generira interni i korisnički identifikacijski broj za svaki element podatkovnog sloja. Interni identifikacijski broj važan je kod izgradnje topologije. Jedinstven je za svaki element podatkovnog sloja, ali se unošenjem promjena u podatkovni sloj, može promijeniti. Bitno je naglasiti da korisnik teoretski može promjeniti interni identifikacijski broj, ali to nije uobičajeno niti preporučljivo činiti. Podaci o internom identifikacijskom broju postoje u atributnoj tabeli kao posebno definirano polje koje se obilježava na sljedeći način:

<cover># - s time da umjesto <cover> dolazi ime podatkovnog sloja npr. parcele#.

Korisnički identifikacijski broj se također generira automatski. Jedinstven je za svaki objekt u podatkovnom sloju, ali korisnik ga po želji može mijenjati u skladu sa svojim potrebama. Korisnički identifikacijski broj često se koristi za uspostavu relacija među različitim prostornim entitetima. Jednako kao i interni identifikacijski broj, podaci o korisničkom identifikacijskom broju, pohranjuju se u zasebnom polju u atributnoj tabeli obilježenom s:

<cover>-ID - odnosno na primjeru parcele-ID.

5.9.2. Veza između prostornih entiteta i njihovih atributa

Veza između prostornih i atributnih podataka u ARC/INFO podatkovnom sloju ima nekoliko obilježja koje je vrijedno napomenuti.
-ARC/INFO vezu između prostornih entiteta i njihovih atributa uspostavlja isključivo preko internog identifikacijskog broja.
-Svakom prostornom entitetu unutar podatkovnog sloja pridružen je samo jedan red u atributnoj tabeli.
-Interni korisnički broj se fizički nalazi na dva mjesta u direktoriju koji čini podatkovni sloj, u datoteci u kojoj su pohranjeni podaci o lokaciji objekata (npr. X,Y parovi koordinata) i u pripadajućem redu u atributnoj tabeli. Vezu između ta dva zapisa ARC/INFO ostvaruje automatski.

Slika 5.3: Prikaz međusobnog odnosa grafičkih i atributnih elemenata podatkovnog sloja

5.9.3. Točke

Već je napomenuto da su točakma u podatkovnom sloju pohranjeni podaci o objektima koji se na zemljovidu uobičajeno prikazuju točkastim signaturama.

Podaci o točkama pohranjuju se u dvije specifične datoteke. To je tzv. LAB datoteka u kojoj se nalaze X i Y koordinate svake točke i interni identifikacijski broj. Druga datoteka je tzv. PAT (Point Atribute Table), odnosno atributna tabela za točke. Svaki red atributne tabele povezan je s jednom točkom. Svaka atributna tabela sadrži najmanje četiri polja, koje ARC/INFO automatski generira kod izgradnje topologije, a ostale dodaje korisnik tijekom rada. Osnovna polja u atributnoj tabeli za točke su:

AREA - polje u kojem su pohranjeni podaci o površini, što je u atributnoj tabeli za točke uvijek 0.
PERIMETER - polje u kojem su pohranjeni podaci o promjeru poligona, što je za točke ponovno 0

<cover># - interni identifikacijski broj
<cover>-ID - korisnički identifikacijski broj

Struktura atributne tabele za točke i za poligone (obje se nazivaju PAT) je jednaka, i zbog toga u jednom podatkovnom sloju mogu postojati podaci samo za točke ili samo za poligone, ali ne za oba entiteta istovremeno.

5.9.4. Linije i čvorovi

Linija u ARC/INFO-u ima dvostruku ulogu. S jedne strane predstavlja linijski entitet (slika 5.4a), ali istovremeno može biti i granica poligona (slika 5.4b). U terminologiji ARC/INFO-a linija se naziva luk (ARC). Linijski entitet može činiti jedan ili više arc-ova. Čvorovi označavaju kraj linije i presjecište dviju linija. Nadalje, čvorovi mogu biti u funkciji točke koja razdvaja segmente linije različitih atributa (slika 5.4c).

![Slika 5.4: Prikaz različitih funkcija linija i čvorova](image)

Liniju ARC/INFO pohranjuje kao kontinuirani zapis parova X i Y koordinata koji se nazivaju lomne točke (vertex). Ako je čvor početak linije, tada ARC/INFO taj čvor naziva FROM-NODE i smatra ga čvorom od kojeg linija počinje, a krajnji čvor naziva TO-NODE odnosno čvor do kojeg se pruža linija.

![Slika 5.5: Prikaz početnog i završnog čvora, te lomnih točaka](image)
5.9.5. Podaci o linijama

Podaci o linijama u direktoriju podatkovnog sloja pohranjuju se u dvije datoteke (ARC, AAT). ARC datoteka podatke za svaku liniju pohranjuje u jedan red. U redu se nalaze podaci o korisničkom identifikacijskom broju, podaci o položaju i obliku linije, koji je definiran nizom X i Y koordinata, broju početnog i završnog čvora i broju poligona koji se nalaze s lijeve i s desne strane linije. Ukoliko podatkovni sloj nema izgrađenu poligonsku topologiju, broj poligona bilježi se kao 0.

Atributni podaci za linije pohranjuju se u linijsku atributnu tabelu AAT (Arc Attribute Table). Atributna tabela sadrži po jedan red za svaku liniju u podatkovnom sloju. Veza između linije i njezinog atributa ostvaruje se preko internog identifikacijskog broja. Izgradnjom linijske topologije, ARC/INFO automatski stvara osnovne atribute koji se nalaze u atributnoj tabeli. Sve ostale atribute korisnik definira sam. Osnovni atributi, odnosno polja, u linijskoj atributnoj tabeli su:

- FNODE# - interni identifikacijski broj čvora kojim počinje linija
- TNODE# - interni identifikacijski broj čvora kojim završava linija
- LPOLY# - interni identifikacijski broj poligona s lijeve strane linije
- RPOLY# - interni identifikacijski broj poligona s desne strane linije
- LENGTH# - dužina linije u jedinicama podatkovnog sloja
- <cover># - interni identifikacijski broj linije
- <cover>-ID - korisnički identifikacijski broj linije

Sve ostale atribute dodaje korisnik, ali tek nakon što se izgradi osnovna topologija.

Broj početnog čvora (FNODE) i završnog čvora (TNODE) služi za identifikaciju povezanih linija, odnosno ukazuje na linije koje dijele čvor. Brojevi lijevog i desnog poligona (LPOLY, RPOLY) ukazuju na susjednost poligona, odnosno pokazuju koji poligoni imaju zajedničku liniju.

5.9.6. Podaci o čvorovima

Podaci o čvorovima zapravo su sastavni dio podataka o linijama i sadržani su u poljima linijske atributne tabele (FNODE, TNODE). Koordinata čvora pohranjena je kao podatak o dijelu linije. Interni identifikacijski broj čvora, automatski se pohranjuje u ARC

5.9.7. Vrste čvorova

U ARC/INFO-u postoje tri vrste čvorova. To su tzv. DANGLING NODES ili viseći čvorovi, PSEUDO NODES ili pseudo ili lažni čvorovi i normalni čvorovi. Viseći i pseudo čvorovi vrlo često su indikator topoloških grešaka koje nastaju zbog pogrešne digitalizacije vektorskih podataka.

Viseći čvor prikazuje se malim kvadratićem i ukazuje na linju koja nije spojena niti s jednom drugom linijom. Takva se linija naziva DANGLING ARC ili viseća linija. Međutim, viseći čvor nije uvijek rezultat pogreške u digitaliziranju. Mnogi prostorni podaci mogu biti predstavljeni visećim čvorom, npr. izdanci vodova i sl.

Pseudo čvor prikazuje se rombom i ukazuje na to da linja počinje i završava u istom čvoru, ili da je čvor spoj samo dviju linija. Normalni čvorovi ukazuju na spoj tri ili više linija.

5.9.8. Poligoni

Poligoni se u podatkovnom sloju koriste za prikaz površina povezanih nekim atributom. Podaci o političko-administrativnim jedinicama, česticama i sl. uvijek se pohranjuju kao poligoni. ARC/INFO definira poligon serijom linija koje omeđuju neku površinu i labelom unutar poligona.
Za svaki poligon automatski se generira interni i korisnički identifikacijski broj koji se vežu uz labelu. Drugim riječima, poligon bez labele ne sadrži atibute.

5.9.9. Podaci o poligonima

Podaci o poligonima pohranjeni su u nekoliko datoteka unutar direktorija podatkovnog sloja. Poligon Arc List (PAL) datoteka, sadrži podatke o svim linjama i čvorovima koji tvore granicu poligona. Datoteka je strukturirana na taj način da se u njoj nalazi lista linija koje sastavljaju poligon. Po jedan red u atributnoj tabeli vezan je uz jedan poligon, s time da je prvi red atributne tabele uvijek rezerviran za univerzalni ili vanjski poligon.

CNT datoteka (Centroid) datoteka pohranjuje broj labele za svaki poligon.

PAT datoteka (Poligon Attribute Table) zapravo, poligonska atributna tabela, u čijem se svakom redu nalaze atributni podaci za po jedan poligon, povezani internim identifikacijskim brojem. Izgradnjom poligonske topologije ARC/INFO stvara četiri osnovna polja poligonske atributne tabele, i to su:

AREA - površina poligona izražena u jedinicama podatkovnog sloja
PERIMETER - promjer poligona izražen u jedinicama podatkovnog sloja
<cover># - interni identifikacijski broj za poligon
<cover>-ID - korisnički identifikacijski broj za poligon.
5.9.10. Identične točke (tikovi)

Tikovi ili identične točke su točke u podatkovnom sloju koje su koordinate poznate i služe za transformaciju podataka u željeni koordinatni sustav. Isto tako su vrlo važni jer omogućavaju spajanje susjednih podatkovnih slojeva kao i okomito preklapanje slojeva. Tikovi se kod digitalizacije najčešće preuzimaju s zemljovida pa su to obično stalne geodetske točke, ili presjecišta koordinatne mreže, ili pak neki markantni objekti u prostoru. Vrlo je važno da svi podatkovni slojevi u jednoj bazi podataka imaju iste tikove, što je shematski prikazano slikom 5.8.

Slika 5.8: Prikaz veznih točaka na više podatkovnih slojeva

5.9.11. Podaci za vezne točke (tikove)

Podaci za tikove pohranjuju se u tzv. TIC datoteci. Ona sadrži sljedeće zapise:
IDTIC - korisnički identifikacijski broj za svaki tik
XTIC - X koordinata svakog tika izražena u jedinicama podatkovnog sloja
YTIC - Y koordinata svakog tika izražena u jedinicama podatkovnog sloja
5.10. Priprema podataka za digitalizaciju

Prije početka digitalizacije treba obaviti analizu raspoloživih podataka i utvrditi sljedeće:

- nalaze li se na izvorniku svi očekivani podaci;
- da li su željeni podaci prikazani na način koji odgovara budućoj vektorizaciji, odnosno, da li su prikazani odgovarajućim linijskim, točkastim ili površinskim signaturama;
- da li su linije kontinuirane i pravilno spojene, a poligoni zatvoreni;
- provjeriti da li je generalizacija u granicama tolerancije;
- provjeriti da li je list zemljovida zaista u navedenom mjerilu ili je došlo do usaha papira;
- provjeriti aktualnost izvornika, odnosno nastojati pribaviti najsvježije raspoložive podatke;
- da li je dokument u izvornom obliku ili je izveden iz nekih drugih izvornika;
- raspolagamo li s podacima za cijelo područje obuhvata projekta;
- ukoliko imamo više listova treba provjeriti da li se oni poklapaju na rubovima;
- utvrditi da li postoji dovoljan broj kontrolnih točaka;
- utvrditi da li je poznata projekcija i elipsoid;
- utvrditi poklapa li se izvornik s izvornicima za ostale podatkovne slojeve;
- postoje li već podaci u digitalnom obliku i da li su zadovoljavajuće; kakvoće;
- utvrditi optimalni način digitalizacije podataka (Lovrić S. 1995);

Najčešći izvornik za digitalizaciju je zemljovid. Papirnatotisci zemljovid zbog karakteristika samog materijala, nisu najbolji izvornici za digitalizaciju. Optimalno bi bilo raspolagati reprodukcijskim originalima na foliji koja je daleko manje podložna usuhu nego što je to papir.
5.11. Skaniranje

Za unos podataka skaniranjem potrebna je odgovarajuća strojna i programska oprema.

1) Skaner minimalnog formata A1 (59.4 X 84.1 cm)
2) program za skaniranje koji omogućava bar djelomičnu obradu slike već kod skaniranja (razlučljivost, i dr.)

Tijekom priprema treba ustanoviti potrebnu kvalitetu skaniranih podloga s obzirom na mjerilo i s obzirom na to odrediti parametre skaniranja. Ti su parametri:

- Razlučljivost, rezolucija (dpi) - stupanj razlučivanja slike na elementarne jedinice tj. točke kao osnovne jedinice slike na zaslou. Standardna jedinica mjere jest dpi (dots per inch), odnosno broj točaka po inču. Skaneri omogućavaju razlučljivost od 25 do 800 dpi i više dpi, no za navedenu svrhu nije potrebna razlučljivost veća od 600 dpi. Odabir razlučljivosti ovisi o kvaliteti originala, i svrzi skaniranja. S obzirom da je jedan od razloga stvaranja rasterske baze podataka mogućnost vektorizacije u kasnijoj fazi projekta, treba voditi računa o tome da kvaliteta linija na skaniranoj karti bude dostatna za buduću rastersko-vektorsku konverziju primjenom odgovarajućeg programa.

- Treshold - vrijednost u spektru 256 nijansi sive boje iznad koje će skaner automatski vrijednost piksela prevesti u bijelu boju, odnosno ispod koje će vrijednosti piksela biti automatski prevedena u crnu boju. Ta vrijednost varira u ovisnosti o kvaliteti originala te se shodno tome i podešava. Na taj način, već kod skaniranja vršimo selekciju potrebnog sadržaja u konačnom dokumentu.

- Speckle - kod skaniranja dokumenata vrlo često se pojavljuju manje crne mrlje na dijelovima koji bi trebali biti bijeli. Do toga dolazi zbog raznih oštećenja originala, sitnih zrnaca prašine ili drugih nečistoća. S druge strane, dokumenti, a posebice karte često sadrže neke elemente crteža koji su iscrptani isprekidanim linijama, ili označeni točkastim signaturama, ili blagim rasterom, a nisu potrebni na konačnom dokumentu. Opcijom speckle reguliramo veličinu piksela, ili grupe piksela koji će već kod skaniranja biti automatski izbačeni iz konačne slike.

Samo skaniranje nije dovoljno da bi skanirani dokument postao i referentni prostorni sloj. Prilikom prevodenja karte iz analognog u digitalni oblik, treba osigurati da ona i u digitalnom obliku zadrži svoja osnovna svojstva, a to su: prostorna određenost,
mjerilo, geometrijska i značenjska točnost i sadržajna cjelovitost. U izvjesnoj mjeri, to možemo osigurati kvalitetnim skaniranjem, ali nakon skaniranja treba provesti postupke registriranja i geokodiranja, odnosno uspostavu veze između koordinatnog sustava skanirane slike i analognog izvornika.

5.12. Principi geokodiranja

Geokodiranje ili georeferenciranje skanirane slike je proces uspostavljanja veze između koordinatnog sustava skanirane slike (redova i kolona) i koordinata informacijskog sustava. S obzirom da je bit geografskog informacijskog sustava, promatranje i analiziranje prostornih slojeva u realnim koordinatama, geokodiranje je nezaobilazan postupak u uspostavi GIS-a. Geokodiranje se obavlja u dvije etape:

a) registriranje ‘register’ - postupak kojim se uspostavlja veza između koordinata skanirane analognih karte i koordinata izvornika, te se izračunava šest parametara afine transformacije koji određuju iznos rotacije, translacije i promjene mjerila.

b) rektificiranje ‘rectify’ - postupak kojim se kreira nova datoteka, na kojoj je na temelju izračunatih parametara, obavljena afina transformacija, te je nova rasterska datoteka u potpunosti prilagođena sustavu koordinata informacijskog sustava, i može se pregledavati usporedno s bilo kojim vektorskim prostornim slojem u istom koordinatnom sustavu.

Geokodiranje se za sada obavlja pomoću ARC/INFO programskog paketa, a u pripremi je i zaseban program za geokodiranje na osobnom računalu.

5.13. Registriranje

Registriranje se obavlja pomoću komande REGISTER. Njezina sintaksa je slijedeća:

Arc: Register (image) (cover) (cover_color) (band|composite) (red_band) (blue_band) (green_band) (ARC|POINT|TIC|ALL)

Argumenti:

image: ime rasterske datoteke koju želimo registrirati

cover: ime vektorskog podatkovnog sloja koji služi za identifikaciju točaka
cover_color: boja kojom će biti iscrten vektorski podatkovni sloj

band composite: određuje metodu prikazivanja rasterske slike ukoliko je ona višebojna. Kod monokromatskih slike ova se opcija zanemaruje.

red_band: cijeli broj koji označava kanal koji treba biti prikazan crvenom bojom (ukoliko se ne specificira posebno, računalo uzima broj 1)

blue_band: cijeli broj koji označava kanal koji treba biti prikazan plavom bojom (ukoliko se ne specificira posebno, računalo uzima broj 2)

green_band: cijeli broj koji označava kanal koji treba biti prikazan crvenom bojom (ukoliko se ne specificira posebno, računalo uzima broj 3)

ARC POINT TIC ALL određuje koji dio vektorskog podatkovnog sloja (linije, točke, tikovi, ili sve zajedno) će se iscrteni koristeći interaktivnu metodu

Iz sintakse je vidljivo da su raspoloživa dva načina registriranja slike:

a) Usporedbom slike na zaslonu s kartom

Pronalaze se identične točke na skaniranoj podlozi i na karti, najčešće rubovi koordinatne mreže ili drugi istaknuti i stalni objekti, markiraju se pokazivačem na skaniranoj podlozi i pomoću izbornika, eksplicitno upisuju koordinate očitane sa karte. Za uspješno geokodiranje neophodne su tri točke, međutim poželjan je veći broj točaka, jer osigurava veću točnost.

b) Interaktivnom metodom

Identifikacijom točaka na skaniranoj podlozi s već postojećim vektorskim sadržajem. Identifikacija se obavlja na zaslonu, naizmjeničnim odabirom točke na skaniranoj podlozi i iste točke na vektorskom podatkovnom sloju. Isto kao u prethodnom načinu, za geokodiranje dovoljne su tri točke, ali poželjno je unijeti više točaka koje će osigurati veću točnost.

Izvršenjem registriranja program automatski kreira dodatnu datoteku, tzv. "world" datoteku u ASCII formatu gdje su zapisani parametri transformacije. Ona dobiva naziv isti kao i izvorna datoteka, s time što se sufiks mijenja u .rcw Tako npr. granešina.tif dobiva datoteku granešina.rcw.

Datoteka granešina.rcw ima sljedeći oblik:
uz objašnjenje da se svaka vrijednost odnosi na po jedan parametar afine transformacije:

<table>
<thead>
<tr>
<th>VRIJEDNOST</th>
<th>PARAMETAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.24819763827684</td>
<td>A</td>
</tr>
<tr>
<td>0.000000000000000</td>
<td>D</td>
</tr>
<tr>
<td>0.000000000000000</td>
<td>B</td>
</tr>
<tr>
<td>0.24819763827684</td>
<td>E</td>
</tr>
<tr>
<td>205.11458575916456</td>
<td>C</td>
</tr>
<tr>
<td>1665.23505885734720</td>
<td>F</td>
</tr>
</tbody>
</table>

Na osnovu zadanih točaka i dodijeljenih koordinata računa parametre afine transformacije; formula afine transformacije glasi:

\[x' = Ax + By + C \]
\[y' = Dx + Ey + F \]

Gdje su parametri:
- \(x' \) = izračunata \(x \) koordinata piksela na karti
- \(y' \) = izračunata \(y \) koordinata piksela na karti
- \(x \) = broj kolone za računati piksel na skaniranoj karti
- \(y \) = broj reda za računati piksel na skaniranoj karti
- \(A \) = \(x \)-faktor; veličina piksela u jedinicama karte u smjeru \(x \)
- \(B, D \) = rotacija
- \(E \) = negativni broj \(y \)-faktora; veličina piksela u jedinicama karte u smjeru \(y \) (\(y \) faktor je negativan jer su ishodište koordinatnog sustava slike i geografskog koordinatnog sustava različiti. Ishodište koordinatnog sustava slike je u gornjem lijevom uglu, a geografskog
koordinatnog sustava u donjem lijevom uglu. Vrijednosti redova na skaniranoj slici rastu od ishodišta prema dolje, a vrijednosti y-a na karti rastu od ishodišta prema gore.

\[C, F = \text{faktori translačije}, x,y \text{ koordinate sredine gornjeg lijevog piksela.} \]

Slika 5.9: Grafički prikaz parametara afine transformacije u slučaju kada prilikom transformacije iz koordinatnog sustava slike u koordinatni sustav karte ne dolazi do rotacije

Prilikom registriranja dolazi do izvjesne pogreške. To je tzv. RMS (root mean square) odnosno, srednje kvadratne pogreške, koja se računa kao razlika između pozicija koje su određene za pomak pojedinih kontrolnih točaka i pozicija na koju su se kontrolne točke zaista pomakle.

Uzroci pogreške leže u nedovoljno točnom digitaliziranju kontrolnih točaka, zbog nedovoljne točnosti referentnog vektorskog podatkovnog sloja, usaha, rasuha, pogreške skaniranja itd. Idealna vrijednost srednje pogreške je 0, ali to je gotovo nemoguće ostvariti, pa se toleriraju vrijednosti koje su uobičajene na kartama odgovarajućeg mjerila.

Registriranjem se skanirana slika raster uspostavlja u koordinatni sustav analogne karte. Međutim, ukoliko redovi i kolone skanirane slike nisu paralelni s X,Y osima koordinatnog sustava karte, transformacija u realne koordinate zahtijeva rotaciju skanirane slike. Rotacija se obavlja postupkom rektificiranja.

5.14. Rektificiranje

Rektificiranje se pomoću programskog proizvoda ARC/INFO provodi komandom RECTIFY. Navedena komanda kreira novu sliku primjenjenom afine transformacije na
temelju parametara iz "world" datoteke. Nakon transformacije, novonastala rasterska slika, zbog rotacije, može biti veća od ulazne.

Slika 5.10: Primjer promjene mjerila zbog rotacije prilikom rektificiranja

Sintaksa komande glasi:

Arc: Rectify `<in_image> <out_image> (nearest | bilinear | cubic) (DEFAULT | COLORMAP | NONE) (clip_cover | BOX) (xmin)(ymin)(xmax)(ymax)

Argumenti:

in_image ime skanirane slike koju treba transformirati (izvršiti translaciju i rotaciju, a po potrebi i promjenu veličine)

out_image ime slike koja će biti rezultat transformacije

nearest, bilinear, cubic metoda interpolacije koja se koristi kod izračunavanja vrijednosti piksela izlazne slike

NEAREST - metoda interpolacije najbližih vrijednosti. Odabirom te metode program računa vrijednost izlaznog piksela uzimajući vrijednost najbližeg ulaznog piksela

BILINEAR - metodom bilinearne interpolacije vrijednost izlaznog pisla računa se interpolirajući vrijednosti po četiri najbliža ulazna piksela

CUBIC - metodom kubične konvolucije vrijednost izlaznog piksela računa se po istom sustavu kao kod bilinearne interpolacije, ali se interpolacijom vrijednosti šesnaest najbližih piksela ulazne slike računa vrijednost izlaznog piksela.

DEFAULT COLORMAP NONE - ovaj argument se tiče dokumenata i slika skaniranih u boji. Naime, višebojne slike pohranjuju i zapis tzv. kolormapu u kojoj je za svaki piksel zapisana vrijednost piksela i pripadajuća RGB kombinacija (kombinacija crvene, zelene i
plave boje) kojom će biti prikazan. Upotrebom opcije COLORMAP, kolormapa ulazne slike kopirat će se u izlaznu sliku.

clip_cover BOX xmin ymin xmax ymax - argument koji omogućava da ulaznu sliku prilikom rektifikacije izrežemo i na taj način dobijmo izlaznu sliku koja se odnosi samo na područje koje nas interesira. To se vrlo često primjenjuje kod skaniranih karata kojima se na taj način izrezuje okvir karte po koordinatnoj mreži ili rubu slike. Izrezivanje slike može se napraviti preklapanjem s već postojećim vektorskim podatkovnim slojem, ili definiranjem Xmin Ymin i Xmin Ymax koordinata u koordinatnom sustavu izlazne karte.

Registriranjem se dobiva skanirana podloga u željenom koordinatnom sustavu, a rektificiranjem se omogućava njezino prikazivanje paralelno s vektorskim podatkovnim slojevima u istom koordinatnom sustavu (Institute 1994).

Arc: register granešina

granešina je ime skaniranog lista

Nakon što pronađemo tri ili više identičnih točaka, treba odabrati opciju REGISTER na izborniku. Tada program računa srednju pogrešku (RMS error), rotaciju
(Rotation) i promjenu mjerila (Scale), i izlistava pogrešku za svaki par kontrolnih točaka.

Slika 5.12: Izvještaj o srednjoj kvadratnoj pogrešci kod identifikacije kontrolnih točaka koja komanda REGISTER daje prije nego što se kreira definitivna "world" datoteka

Srednja pogreška ne smije biti veća od standardno dozvoljenih pogrešaka s obzirom na mjerilo karte. Ukoliko se pokaže da je srednja pogreška veća od dozvoljene, program nudi mogućnost brisanja pojedinih kontrolnih točaka, i ponavljanje postupka. Drugim riječima, kao što se može vidjeti na slici, prilikom kontrole srednje kvadratne pogreške, treba kontrolirati i odstupanje za svaku kontrolnu točku posebno. Na taj način će se ustanoviti koji par točaka ima najveće odstupanje, obrisati ga i uspostaviti novi par kontrolnih točaka. Taj postupak treba ponavljati sve dok se ne postigne zadovoljavajuća točnost.

5.15. Vektorizacija

Sam početak vektorizacije odnosi se potpuno jednako kao i kod ručne digitalizacije na kreiranje podatkovnog sloja koji će sadržati vezne točke (tikove) za sve buduće podatkovne slojeve. Postupak je jednak i radi se na komandnoj liniji ARCEDIT-a. S komandne linije ARC/INFO-a starta se ArcTools.

Arc: arctools
Na izborniku koji se tada pojavljuje pokazivačem treba odabrati opciju Edit tools. Time se zapravo starta ARCEdit, ali ne na komandnoj liniji, već s nizom izbornika. Da bi digitalizirali novi podaci, potrebno je otvoriti podatkovni sloj koji sadrži vezne točke. To se radi odabirom opcije FILE na osnovnom izborniku, i opcije COVERAGE: OPEN, na padajućem izborniku. Nakon što odaberemo ime podatkovnog sloja u koji želimo digitalizirati, program traži da se odaberu alati za uređivanje linija, točaka, poligona, veznih točaka ili anotacija. Nakon odabira pojavljuje se izbornik za uređivanje odabranog entiteta. Slikom 7.5 prikazan je izbornik za uređivanje linija i čvorova.

Nakon pojave izbornika, pokazivačem treba odabrati polje s nazivom TRACE-ENV čime biramo rastersku podlogu koju želimo vektorizirati. Nakon toga isertava se rasterska podloga i podešavaju se parametri za vektorizaciju budućih linija, točaka ili drugog. Čitav je niz alata kojima se regulira kvaliteta unosa podataka i pretvorbe podataka iz rasterskog u vektorski oblik.
5.16. Uspostava prostornih odnosa

Uspostavom prostornih odnosa u ARC/INFO-u se podrazumijeva stvaranje odnosa između linija, poligona, točaka. Uspostavom prostornih odnosa svakoj liniji je određena spoj, duljina i smjer. Poligonu je određena površina i prostorni odnosi poligona. Na toj osnovi ARC/INFO izgrađuje atributne tabele. Uspostava prostornih odnosa izvršava se primjenom komandi BUILD i CLEAN s ARC/INFO komandne linije:

Arc: clean granešina
Arc: build granešina

Obje komande grade atributne tabele za linije i poligone, a BUILD i za točke. Prilikom izgradnje topologije program pronašao moguće gore navedene pogreške koje se kasnije prikazuju i ispravljaju u modulu ARCEDIT.

5.17. Dodavanje atributa

Atribute dodajemo pomoću alata ArcTools-a. Na glavnom izboriku za uređivanje linija i čvorova treba odabrati polje TABLE EDITOR čime se aktivira izvornik za uređivanje atributne tabele (Slika 5.14).
Same atribute unosimo odabirom polja EDIT čime se aktivira izbornik za uređivanje atributa (Slika 5.15). Prethodno se pokazivačem mora odabrati jedna linija od koje počinje uređivanje atributa.

Unos podataka treba potvrditi komandom SAVE.

5.18. Provjera vektoriziranih podataka

Provjera vektoriziranih podataka izuzetno je važan segment u postupku izgradnje baze podataka. Pri kontroli treba provjeriti nekoliko stvari:

- da li su vektorizirani svi podaci koji su trebali biti vektorizirani;
- postoji li višak podatka u smislu da su vektorizirane nepotrebne točke, linije i sl., ili su neki elementi vektorizirani dva puta;
- da li se svi vektorizirani sadržaji nalaze na pravom mjestu;
- da li su pridijeljeni atributni podaci točni;
- da li su podaci topološki točni.
Provjera podataka može se obaviti izradom probnog ispisa i usporedbom s izvornikom, ili preklapanjem i usporedbom izvornika i vektoriziranih sadržaja na zaslonu.

5.19. Provjera topološke točnosti vektoriziranih podataka

Tipične pogreške do kojih dolazi kod digitalizacije su:

1. Poligon nema labelu - pogreška se označava zvjezdicom

![Slika 5.16: Poligon nema labelu](image)

2. Poligon ima dvije labele

![Slika 5.17: Primjer poligona s dvije labele i visećim čvorom](image)
3. Spoj linija je neispravan u smislu da je jedna linija preduga (overshoot) ili prekratka (undershoot) pa nastaje tzv. viseci cvor (dangling node).

Slika 5.18: Primjer prekratke linije (undershoot)

Slika 5.19: Primjer preduge linije (overshoot)
4. Poligon nije zatvoren pa se ponovo pojavljuju viseći čvorovi

5. Labele unutar poligona imaju neispravan korisnički identifikacijski broj

Utvrdivanje i provjera pogrešaka odvija se u nekoliko koraka:

a) izgradnja topologije
b) utvrđivanje pogrešaka
c) ispravljanje pogrešaka
d) ponovna izgradnja topologije

5.20. Utvrđivanje pogrešaka

Topološke pogreške najlakše je identificirani iscrtavanjem na zaslonu u modulu ARCDIT u kojem se odvija i kasnije ispravljanje pogrešaka. Alati ArcTools-a raspolažu nizom izbornika kojima se brzo i lako iscrtavaju sve topološke pogreške (slike 5.24, 5.25).
Slika 5.21: Izbornik kojim definiramo sadržaj koji želimo iscrtati na zaslonu

Slika 5.21 prikazuje izbornik kojim se definira sadržaj koji će se iscrtati na zaslonu, što je najjednostavniji način za identifikaciju topoloških pogrešaka. Iz izbornika je vidljivo da se može odabrati opcija za iscrtavanje linija, čvorova, veznih točaka i dr. Isto tako moguće je odabrati simbol za iscrtavanje pojedinih elemenata crteža što je prikazano izbornikom na slici 5.22.

Slika 5.22: Izbornik za odabir načina iscrtavanja visećih, pseudo i ostalih čvorova

Uz sliku 5.22 napominjemo da se viseći čvorovi uvijek prikazuju kvadratičem, a pseudo čvorovi malim rombićem različitih boja.
5.21. Ispravljanje pogrešaka

Nakon što se utvrde pogreške i iscrtavanjem na zaslonu pripreme za ispravljanje, nastavlja se rad u ARCEEDIT-u na njihovom uklanjanju. Uzrok najvećeg dijela topoloških pogrešaka leži u neispravnom vektoriziranju linija pa je logično da se i najveći broj ispravaka obavlja na linijama. Izbornik za uređivanje linija i čvorova prikazan je slikom 7.5. Slika 5.24 je isječak tog izbornika koji se odnosi na automatsko ispravljanje dijela pogrešaka kao što su prekratka linija (undershoot), preduga linija (overshoot), stvaranje topološki ispravnog presjecišta linija i spajanje linija.

Slika 5.23: Prikaz jednog poligonskog podatkovnog sloja na kojemu su iscrtane labele viseći i pseudo čvorovi

Slika 5.24: Alati za automatsko ispravljanje topoloških pogrešaka
Osim alata prikazanih slikom 5.24, na raspolaganju je još niz alata za uređivanje linija i čvorova slika 5.25.

Slika 5.25: Dodatni alati za uređivanje linija

Pogreške kao što su višak ili manjak labela, mogu se ispravljati alatima prikazanim slikom 5.26.

Slika 5.26: Alati za uređivanje labela

Poligoni se najlakše i najbrže mogu uređivati alatima prikazanim slikom 5.27.
Sve promjene nastele prilikom uređivanja podatkovnih slojeva treba potvrditi komandom SAVE kako bi ostale zapisane u bazi podataka.

5.22. Ponovna izgradnja topologije

Postupak ponovne izgradnje topologije identičan je postupku opisanom u odjeljku 7.7, a obavlja se primjenom komande CLEAN ili BUILD. Tu se zapravo radi samo o obnovi topologije, odnosno prostorne atributne tabele, nakon unesenih ispravaka, odnosno uklonjenih pogrešaka.
5.23. Provjera položajne i atributne točnosti podataka

Provjera atributne točnosti može se izvršiti na nekoliko načina, ručno, poluautomatski i automatski.

Ručna kontrola se obavlja izradom probnog ispisa ili interaktivnim pregledavanjem na zaslonu. Kod izrade probnog ispisa preporučljivo je pripremiti ispis svakog sloja zasebno, po mogućnosti u realnoj veličini. Pod realnom veličinom smatramo ekranski ispis u mjerilu 1:1 s obzirom na izvornik, analognu kartu. Uputno je također ispis pripremiti tako da svaki element crteža bude iscrtan shodno atributu kojeg bi trebao imati u bazi. Isto tako, treba izraditi tumač simbola. Detaljnim pregledavanjem ispisa i izvornika može se utvrditi koji elementi manjkaju, ili su iscrteni pogrešnom signaturom, što je znak da atributizacija nije ispravna. Metoda koja se često koristi, je iscrtanje na crtaču na prozirnu podlogu i usporedba preklapanjem s izvornikom.

Poluautomatska kontrola se temelji na preklapanju i usporedbi vektorskog podatkovnog sloja i izvornika na zaslonu. Slikom 5.25 prikazano je preklapanje saknirane podloge i vektoriziranog sadržaja zbog kontrole položajne i atributne točnosti.
Slika 5.28: Izbornik za odabir elemenata na temelju njihovih atributa
Kontrola atributne točnosti olakšana je mogućnošću odabira i iscrtanja elemenata na temelju njihovih atributa. Na izborniku za odabiranje prema atributu (slika 5.28) izabere se onaj atribut koji želimo provjeriti. Tada se iscrtavaju samo oni elementi crteža koji sadrže odabrani atribut, i to simbolom koji je također odabran za prikaz. Isto tako je moguće iscrtati sve elemente podatkovnog sloja, ali različitim simbolima, a ovisno o atributu.

Automatskom kontrolom podataka podrazumijevaju se složenije analize atributnih tablica naredbama *statistics* i *frequency* i drugim alatima.
6. Obrada katastarskog plana

6.1. Izvor podataka

Kao osnova za izradu baze podataka poslužio je katastarski plan stare izmjere mjerila 1:2880 područja katastarske općine Granešina iz 1893. godine. Katastarski plan je dimenzija 1000 x 800 hvati površine 500 katastarskih jutara. Plan jografičke izmjere i spada pod područje Mađarskog katastra, pod Kloštar-Ivanički koordinatni sustav. Sam položaj, odnosno nomenklatura, ne može se na temelju samog plana odrediti jer plan ima samo lokalnu oznaku 8. Katastarski plan je loše kvalitete sa nizom izvršenih izmjena i promjena tijekom vremena. Novonastalo stanje uneseno je crvenom bojom. Plan je izdan 1895. godine. Sam original plana koji je u jako lošem stanju kopiran je u boji na papir A0 formata. Kod samog izvornika nedostajao je dio plana, koji je kroz vrijeme bio oštećen te je dopunjen na osnovu podataka pronađenih u državnom arhivu, a novonastale promjene su potražene u gruntovnoj knjizi. Plan i fotokopiju dijela koji je nedostajao skaniran je razlučivosti 300dpi i u 16 bitnoj boji. Kasnije zbog brzine obrade takve rasterske karte broj boja je smanjen na 256 boja zbog veličine same datoteke. Pošto je plan skaniran, dobije se slikovni podatak u tif formatu koji je potrebno geokodirati, odnosno svakom pikslu dodijeliti stvarnu koordinatu. To je izvršeno pomoću naredbe register. Pošto je plan izrađen u staroj izmjeri dimenzija 1000 x 800 hvati moguće je geokodirati plan s lokalnim koordinatama, metričkim ili hvatnim te u ARC/INFO-u naredbom transform planu dodijeliti Gauss-Kruger-ove koordinate uz pomoć koeficijenata transformacije. Druga mogućnost je plan geokodirati na temelju identičnih točaka na plani i bazi podataka istog područja, ako je posjedujemo. Pošto o planu ne postoje nikakvi točniji položajni opis, plan je geokodiran u lokalnim metričkim koordinatama, s time da je lijevi donji ugao u koordinatama x=0; y=0, a desni gornji x=1896.484; y=1517.187.

Plan je geokodiran uz pomoć naredbe register. Prilikom dodavanja linkova bio je problem kojoj točki koordinatne mreže dodijeliti odgovarajući link, jer su neke točke ili bile oštećene ili ih je bilo teško definirati točnost položaja. Kako je plan izmjere 1:2880 nema mrežu unutar lista te je vjerojatnije da će položajna pogreška biti veća u samom centru lista nego na rubovima. Sama registracija lista je izvršena nekoliko puta, na način da
se doda više linkova na više točaka ili samo četirima rubnim točkama. Uzeta je u obzir najbolja registracija točaka koja je imala najmanju RMS pogrešku. U ovom slučaju je RMS pogreška iznosila do 2.1 metara. Takva RMS pogreška nastala je iz razloga što je sam list mijenjao svoj oblik zbog utjecaja vremena, vlage, odnosno došlo je do usuha i rastega samog lista plana.

Točnost digitalizacije točke određena je tako da se na planu odabere 18 točaka, te se 12 puta svakoj točki očita koordinata. Radi jednostavnosti postupaka izrađen je pomoćni podatkovni sloj s topolijjim točaka. Svakoj kontrolnoj točki u podatkovnom sloju pokazivačem se dodjeli točka koja ima svoje koordinate. Te koordinate se konverrteraju u tekst datoteku radi lakše daljnje obrade podataka. Izjednačenjem direktnih mjerenja dobivena srednja pogreška je 0.238 milimetara, tj. 0.685 metara u mjerilu podloge. Srednja pogreška digitalizacije o visi o povećanju određenog dijela slike tj. većim povećanjem rasterskog podatka povećava se i točnost same digitalizacije, ali se istodobno smanjuje i ekonomičnost izrade zbog gubitka u vremenu očitanja rastera. Zavisno koja nam je točnost izrade digitalne karte potrebna voditi ćemo brigu o veličini potrebnog povećanja u rasterski podatak.

Nakon što je program izvršio naredbu register, odnosno nakon što je program dodijelio koeficijente za afinity transformaciju, rasterska slika se naredbom rectify rotira, ispravlja se pogreška usuha i rastega. Rasterska slika se rastavlja na određene kvadrate i na temelju afine transformacije transformira. Time karta dobiva svoju položajnu određenost, odnosno georeferentnost.

6.2. Podatkovni sloj

Nakon pripreme rasterskog podatka pristupa se vektorizaciji. Glavni sadržaj katastarskog plana su čestice, na temelju plana moguće je očitati njihove površine, podatke o česticama odnosno kulture, bonitet, a iz posjedovnog lista podatke o posjedniku itd. Sadržaj katastarskog lista Granešina vrlo je oskudan, pošto nema podatka o zemljištu, s plana se moglo jedino očitati ime čestice te kod pojedinih čestic kulturu čestice. Na pojedinim česticama su ucrtani tlocrti kuća i pomoćnih objekata koji se nisu mogli međusobno razlikovati. S obzirom na takav sadržaj katastarskog plana izrađena su dva podatkovna sloja, podatkovni sloj parcele, u kojemu ćemo vektorirati čestice, i
podatkovni sloj kuće, u kojem su vektorizirani tlocrti kuća. Ta dva sloja mogu se obrađivati zasebno, ili zajedno preklapanjem. Time su dobivene zasebne površine čestica i zasebne površine kuća. U suprotnom površina čestica bila bi krnja za površinu kuće te bi se te dvije površine morale zasebno zbrajati.

Kad su oba sloja vektorizirana u linijskim slojevima konvertiramo ih u poligon podatkovni sloj narebom build. Uspostavom poligonske topologije pdatkovog sloja moguće je poligone u ovom slučaju čestice atributizirati.

Prilikom digitalizacije pojedinim se česticama nije mogla točno odrediti granica, npr. na mjestu prelaza ceste preko potoka granica nije definirana, već je grafički prikazan most. Da bi se čestica zatvorila, kao granica je uzeta sredina mosta.

Digitalizacija je izvršena samo za novonastalo stanje na planu koje je ucrtano crvenim linijama.

6.3. Atributizacija

Nakon uspostave poligonske topologije pristupa se atributizaciji poligona. Svakom poligonu, čestici, dodjeljuje se broj čestice, kultura, posjednik, bonitet itd. S obzirom da je izvršena digitalizacija plana 1:2880 za koji ne posjeđujemo podatke o česticama, svakom poligonu je dodano ime tj. broj čestice, površinu, kulturu, i naznaku da li je pojedina čestica rubna ili ne, odnosno da li ima zatvorenu površinu ili ne. Svi ovi podaci očitani su s plana tako da čestica koja nije imala oznaku kulture vrijednost je ostala nula. Za česticu na kojoj je ucrtan objekt dan je atribut dvorišta osim ako na planu nije drugačije definirano.

Sama numeracija čestica izvršena je jednako kao što je na planu, starim načinom numeracije, gdje se broj sastoji od numeričkog i karakter znaka npr. 2567/1-b.
Prilikom atributizacije u nekoliko slučajeva broj čestice nije bio čitak te se na osnovu susjednih čestica odredio broj čestice. Tri čestice uopće nisu imale broja, dok su dvije čestice imale na istoj čestici dva broja. Nekoliko čestica nisu bile kontinuirane, odnosno, ukoliko je put presjekao oranicu na dvije čestice, obje čestice zadržale su isti broj čestice povezane znakom pripadnosti “Z”.

Nakon što je izrađena atributizacija čestica trebalo je dodijeliti objektima na česticama broj čestice kojim pripadaju pošto su u drugom podatkovnom sloju. Preklapanje podatkovnih slojeva *kuće i parcele* izvršeno je naredbom *identity*. Kao produkt oba sloja dobiva se treći sloj *unija* u kojoj se atributne tablice oba sloja spajaju. Konačno se na osnovu atributa objekti iz sloja *unija* izdvoje u zaseban sloj *kuće*. Također se svakom objektu u sloju *kuće* mogao dodijeliti kućni broj, vrsta objekta tj. svaki podatak koji je u GIS-u neophodan i zanimljiv. U prilogu dan je ispis atributa za podatkovni sloj *kuće i parcele*.

![Slika 6.1: Atributna tablica sloj parcele](image-url)
Slika 6.2: Atributna tablica sloj unija

Slika 6.3: Atributna tablica sloj kuce
6.4. **Obrada podataka i grafički ispis podataka**

Kao produkt izvršene digitalizacije katastarskog plana dobivena je baza podataka koja se sastoji iz atributnog i grafičkog dijela. Kao takva ona može služiti za niz interpretacija zavisno o struci koja će koristiti takove podatke. Na temelju digitalne baze podataka katastarske općine Graņesīna dano je nekoliko primjera interpretacije podataka.

Na listu KO Granešīna vektorizirano je 1391 čestica koje su u daljnoj obradi numerirane. Prosječna površina čestice je 2047 m². Na temelju očitanih podatka s plana nađeno je 7 tipova kulture od kojih šume zauzimaju 47.54% površine. Na česticama koje su imale objekte, dan je atribut dvorište. Na planu je ukupno nađeno 311 objekata prosječne površine 53 m². Digitalni katastarski plan je za 0.12% većih dimenzija od analognog katastarskog plana, što znači da je analogni plan tijekom vremena promijenio dimenzije. Manji dio te pogreške se odnosi na pogrešku digitalizacije.

6.4.1. **Odstupanje teoretske površine lista od vektorizirane površine**

<table>
<thead>
<tr>
<th>Teoretska površina lista</th>
<th>2877321.3 m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vektorizirana površina baze</td>
<td>2880655.9 m²</td>
</tr>
<tr>
<td>Odstupanje površina</td>
<td>-3334.4 m²</td>
</tr>
</tbody>
</table>

Tablica 6.1: Razlika teoretske površine lista i vektorizirane površine

Razlika koja je nastala (0.12%) sadrži u sebi sve promjene dimenzije lista katastarskoga plana i pogrešku digitalizacije koja je u odnosu na promjenu dimenzija plana znatno manja.

6.4.2. **Prosječna površina čestica**

Na temelju atributne tablice sloja *parcele* selektirane su sve čestice koje imaju zatvorenu površinu. Naredbom *statistic* određujemo koji su nam statistički podaci o podatkovnom sloju *parcele* potrebni. U tablici 6.2 dana je prosječna površina čestice.
Tablica 6.1: Prosječna površina čestica

<table>
<thead>
<tr>
<th>Površina čestica (cijelih)</th>
<th>2450408 m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broj čestica</td>
<td>1197</td>
</tr>
<tr>
<td>Srednja površina čestica</td>
<td>2047 m²</td>
</tr>
<tr>
<td>Minimalna površina</td>
<td>13 m²</td>
</tr>
<tr>
<td>Maksimalna površina</td>
<td>35889 m²</td>
</tr>
</tbody>
</table>

6.4.3. Prosječna površina objekata

Prosječna površina objekata se računa jednak kao i u prethodnom primjeru.

<table>
<thead>
<tr>
<th>Suma površina objekata (tlocrta)</th>
<th>16342 m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broj objekata</td>
<td>311</td>
</tr>
<tr>
<td>Srednja površina objekata (tlocrta)</td>
<td>53 m²</td>
</tr>
<tr>
<td>Minimalna površina</td>
<td>12 m²</td>
</tr>
<tr>
<td>Maksimalna površina</td>
<td>540 m²</td>
</tr>
</tbody>
</table>

Tablica 6.3: Prosječna površina objekata

6.4.4. Prosječne površine kultura

<table>
<thead>
<tr>
<th>Kultura</th>
<th>Broj čestica</th>
<th>Suma površina</th>
<th>Min površina</th>
<th>Max površina</th>
<th>Srednja površina</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dvorište</td>
<td>130</td>
<td>106305</td>
<td>100</td>
<td>10054</td>
<td>623</td>
</tr>
<tr>
<td>Livada</td>
<td>56</td>
<td>80539</td>
<td>100</td>
<td>9104</td>
<td>1311</td>
</tr>
<tr>
<td>Necevato</td>
<td>541</td>
<td>889357</td>
<td>21</td>
<td>15711</td>
<td>1637</td>
</tr>
<tr>
<td>Šuma</td>
<td>261</td>
<td>115138</td>
<td>18</td>
<td>3889</td>
<td>4411</td>
</tr>
<tr>
<td>Pašnjak</td>
<td>83</td>
<td>81366</td>
<td>22</td>
<td>4617</td>
<td>366</td>
</tr>
<tr>
<td>Put</td>
<td>38</td>
<td>58106</td>
<td>13</td>
<td>10548</td>
<td>1430</td>
</tr>
<tr>
<td>Vinograd</td>
<td>2</td>
<td>9633</td>
<td>4403</td>
<td>5236</td>
<td>4315</td>
</tr>
<tr>
<td>Vodenik</td>
<td>6</td>
<td>13055</td>
<td>217</td>
<td>10499</td>
<td>2306</td>
</tr>
<tr>
<td>Vrt</td>
<td>77</td>
<td>63034</td>
<td>163</td>
<td>5305</td>
<td>819</td>
</tr>
</tbody>
</table>

Tablica 6.4: Prosječne površine kultura

Napomena: površine su izračunate samo za zatvorene površine čestica.
Osim numeričkih tabličnih prikaza analize možemo prikazati i grafički.
6.4.5. Prostorne analize

Na temelju takove digitalne baze podataka ARC/INFO-m možemo raditi niz prostornih analiza na osnovu određenih ulaznih parametara. Zavisno da li tražimo lokaciju za otpad, zabavni park, analiziramo štete nastale prirodnim nepogodama, zadaju se različiti parametri potrebni za analizu. Ovdje ja dan primjer vodenog toka koji prolazi dijelom općine Granešina. Svake godine za vrijeme obilnih padalina postoji mogućnost da se potok izlije iz svoga korita. Za slučaj takve nepogode potrebno je analizirati koje su čestice najugroženije ako znamo da:

1. zona rizika u promjeru 5 metara od vodenog toka
2. zona rizika u promjeru 13 metara od vodenog toka
3. zona rizika u promjeru 20 metara od vodenog toka

Na temelju takvih pretpostavki formiramo ulazne podatke te njihovom analizom, preklapanjem, očitujemo sve poplavljene čestice, njihove posjednike; te se računaju procjene šteta. Napomena: ovaj slučaj dan je kao jednostavan primjer. Da bi izradili u stvarnosti takvu analizu potrebna bi nam bila treća dimenzija.

Na slici 6.2 grafički su prikazane moguće poplavne zone.
6.4.6. Grafički ispisi

Već smo prije naveli da takovu bazu podataka možemo ponovo prikazati u analognom obliku karti. Zavisno u koju svrhu koristimo kartu, tako će izgledati sadržaj karte. U katastru osim preglednih katastarskih planova može se na zahtjev korisnika izdati i detaljne skice čestice, nekog područja itd.

Slika 6.3 prikazan je dio katastarskog plana Granešine u mjerilu 1:2880. Na slikama 6.4 i 6.5 dani su primjeri katastarskog plana Granešine u proizvoljnom mjerilu i detaljne skice čestice 1539/2 s pripadnim objektima u mjerilu 1:500.
7. Заклjučak

U ovom radu je prikazana obrada podataka programskim paketom ARC/INFO-m i digitalizacija katastarskog plana KO Granešina. Plan je prošao kroz sve faze od skaniranja, geokodiranja, vektorizacije, artibutizacije te kontrole kvalitete, do završne faze korištenja i analize novo izrađene digitalne baze podataka. Prilikom digitalizacije, ARC/INFO se prikazao kao pogodan programski paket za obradu digitalnih prostornih podataka.

Podaci su vektorizirani u lokalnom koordinatnom sustavu (sustav lista), a za potpuno rješenje zadatka potrebno je bilo odrediti povoljan broj identičnih točaka za transformaciju u državni koordinatni sustav što bi nadmašilo zahtjeve ovog diplomskog rada.

Obradu katastarskog plana KO Granešina možemo shvatiti kao model modernizacije katastra prelaskom na digitalnu obradu. Razlozi prelaska na digitalnu obradu su višestruki, počevši od brzog i lakog pristupa podacima, automatizacije obrade, ispisa i ažuriranja, do arhiviranja starog stanja i neslučeno mnogo novih mogućnosti koje ćemo iskoristiti zavisno od vlastite pronicljivosti i osposobljenosti.
Literatura

Životopis