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Abstract

A set of m positive integers is called a Diophantine m-tuple if the
product of any two of them is one less than a perfect square. It is
known that there does not exist a Diophantine sextuple and that there
are only finitely many Diophantine quintuples. On the other hand,
there are infinitely many Diophantine m-tuples for m = 2, 3 and 4.

In this paper, we derive asymptotic extimates for the number of
Diophantine pairs, triples and quadruples with elements less than given
positive integer N.

1 Introduction

A set of m positive integers is called a Diophantine m-tuple if the product of
its any two distinct elements increased by 1 is a perfect square. Diophantus
himself found four positive rationals 1/16, 33/16, 17/4, 105/16 with the
above property, while the first Diophantine quadruple, the set {1, 3, 8,120},
was found by Fermat (see [5, 6]). In 1969, Baker and Davenport [2] proved
that the Fermat’s set cannot be extended to a Diophantine quintuple. In
1998, Dujella and Pethé [9] proved that even the Diophantine pair {1,3}
cannot be extended to a Diophantine quintuple.

A 7folklore” conjecture is that there does not exist a Diophantine quin-
tuple. Recently, we proved in [8], improving the results from [7], that there
does not exist a Diophantine sextuple and there are only finitely many, ef-
fectively computable, Diophantine quintuples.

The analogous problem for higher powers was considered by Bugeaud
and Dujella in [3]. They proved that if £ > 3 an a given integer and a set
D of positive integers has the property that ab + 1 is a perfect k-th power
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for all a,b € D, a # b, then |D| < 7. Moreover, |D| < 3 for k > 177. In
[4, 10], estimates for the size of a set D C {1,2,..., N} with the property
that ab + 1 is a perfect power for all a,b € D, a # b, were given.

In this paper, we are interested in estimating the number of Diophan-
tine m-tuples. According to the above mentioned results from [8], the only
interesting cases are m = 2, m = 3, m = 4 and, perhaps, m = 5.

Let us define

D, (N)=|{D C{1,2,...,N} : D is a Diophantine m-tuple }|.

In Section 2, we prove that Dy(N) ~ 7r%Nlog N.
It was known already to Euler that every Diophantine pair {a, b} can be
extended to a Diophantine quadruple. Namely, if ab 4+ 1 = 72, then

{a,b,a+b+2r dr(a+7r)(b+1)} (1)

is a Diophantine quadruple. Diophantine triple of the form {a,b,a+ b+ 2r}
is called a regular Diophantine triple. In 1979, Arkin, Hogatt and Strauss
[1] proved that every Diophantine triple can be extended to a Diophantine
quadruple. More precisely, if ab+ 1 =12, ac+ 1 = 5%, bc + 1 = t2, then

{a,b,c,a+ b+ c+ 2abec + 2rst} (2)

is a Diophantine quadruple. Diophantine quadruple of the form (2) is called
a regular Diophantine quadruple.

Regular triples and quadruples play an essential role in the estimates
of the numbers D3(N) and D4(N). Namely, we will show that the main
contribution to D3(/N) comes from regular Diophantine triples, while the
main contrubution to D4(NN) comes from quadruples of the form (1). Using
these facts, we are able to prove in Sections 3 and 4 that D3(N) ~ %N log N
and that the true order of magnitude of Dy(N) is v/N log N. Determining
the constant C' such that Dy(N) ~ Cv/Nlog N remains an open problem.
At present, we are able to show that if such constant exist, then 0.1608 <
C < 0.5354.

It follows from [8] that there exist a constant K such that D5(N) < K for
all positive integers N. In Section 5 we prove that we may take K = 101930,

2 Diophantine pairs
Lemma 1 The number of solutions of the congruence

z2=1 (mod b)
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in the range 1 < z < b is 2°0) if b is odd or b = 4 (mod 8); ow(0)—1 4f
b=2 (mod 4); 2¢°®+1 ifb =0 (mod 8). Here w(b) denotes the number of
distinct prime factors of b.

PROOF. See [13, g, §4, ch. V]. [

Lemma 2
N
w(z) _ 6
> v = —Nlog N + O(N)
rx=1

PrRoOOF. We have

a (z) a al N al MQ(d)
RS S o= % bJ:N.Z — +ON).
z=1 z=1  dlz, p2(d)=1 d=1, p2(d)=1 d=1
Let
d 6
2
A(d) = Z;M () = —d+ O(Vd).
It follows
N N
A(d) — A(d—1)
w@)  _
> 2 NY y + O(N)
r=1 d=1
N-1
A(d)  A(N)
= N O(N
2oqd+ny TN " ()
N-1
6 1
= —N —
2 d+1 +ON)
d=1
6
= ﬁNlogN—FO(N)

Theorem 1
6

PROOF. Let b < N be a positive integer. If {a, b} is a Diophantine pair,
then there exist an integer r such that

ab+1=r% (3)
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On the other hand, all solutions r of the congruence r*> = 1 (mod b), such
that 1 < r < b, induce (by (3)) a Diophantine pair {a, b} such that a < b.
Hence, by Lemmas 1 and 2, we have

N LN/2] LN/4]
Dy(N) = Y 2000 — N gl p g N o) _ N
b=1 b=1 b=1

- %NlogN - % (% v 0(1)) log (% + 0(1))
+2. % (g +0(1)) log (% +0() +0(N)

6 11
= S Nlogh- (1—§+§) + O(N)

6
= leogN—i—O(N)

3 Diophantine triples

We have D3(N) = Dél)(N) +D§2)(N) where Dél)(N) denotes the number of
regular Diophantine triples in {1,2,..., N}, i.e. triples of the form {a,b,a+
b+ 2r} where ab+ 1 =2, r > 0, while Déz)(N) denotes the number of all
other (irregular) Diophantine triples in {1,2,..., N}.

Proposition 1
N — 5
D3’ (N)= —Nlog N +O(N)
T

PROOF. Let ¢ = a+b+2r. Then b = a+c—2s, where ac+1 = s2, s > 0.
Every pair {a,c}, such that ac + 1 = s? and a < ¢ < N induces a regular
triple {a,a+c—2s,c} C {1,2,...,N}. (Note that a+c—2s =0iff a = ¢—2.)
Every regular triple {a, b, c} is obtained twice by this construction: starting
with {a, c} and starting with {b, c}. Therefore,

DY (V) = %(DQ(N) ~N+2)= %NlogN+O(N). (4)

[
From (4), it follows directly
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Corollary 1

Dy(N) =N (mod 2)

Lemma 3
N 1
ZZ‘U(I)— = O(log® N),
x
r=1
N
1
wz) = _
;2 — = 0(1),
N 1 924
rx=1

PROOF. The proof is analogous to the proof of Lemma 3, using the
facts that the series » o lngz is convergent, while SV lsz $log” N

=1 =z
and Y00, 1982 ~ 49/ Nlog N. m
Proposition 2

PrROOF. Let {a,b,c}, a <b < ¢, be an irregular Diophantine triple. By
[11, Lemma 4], there exists a positive integer co < 75 such that {a,b, co, c}
is a regular Diophantine quadruple. If the Diophantine triple {a,b,co} is
regular, then cg = a + b+ 2r. Otherwise, by the same result of Jones [11],
we have ¢y > 4ab or b > 4acy. We will consider these four cases separately.

1) If co = a+ b+ 2r, then N > ¢ > 4abcy > b®. According to Theorem
1, the number of such triples is O(v/N log N).

2) Let cp = a+b—2r. We have acop+1 = sg, so > 0, and b = a+co+2sp.
Furthermore, N > ¢ > 4abcy > (max(a, cp))?, and again Theorem 1 implies
that the contribution of such triples is O(v/N log N).

3) Assume that ¢y > 4ab. Then N > 16a%b> > b>. Hence, we have
O(V/'N log N) possible pairs {a,b}. For a fixed pair {a,b}, ¢ is an element of
the union of finitely many binary recursive sequences. Each such sequence
corresponds to a solution of the congruence 23 =1 (mod b). According to
[7, Lemma 1], there are at most 20%/* such sequences. Hence, the number
of possible ¢’s is O(N3/®log N), and the contribution of the third case in
O(N"/8log N).
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4) Assume that b > 4acy. Then N > 16a2cg and ¢y < @. Furthermore,

a

N
N > 472 and r < @ Let g(a) = e g and z = L‘{TNJ Then the

a
contribution of this case is, by Lemma 1, bounded by

z/2 z/4

3 24Wg(a) = 3 2@g(2a) + 23 24 g (4a).
a=1 a=1

a=1

By Lemma 3, we have

w(a) o) = wia) IV wia) VAV
;2 9(a) ;2 8a? * ;2 4a
=N -0(1) + VN -O(log? N) = O(N).

Analogously, 22/221 2¢(@)g(2a) = O(N) and szl 2¢(@g(4a) = O(N).
Therefore, the contribution of the fourth case is O(N).

Theorem 2
3

ProoOF. Directly from Propositions 1 and 2. [ |

4 Diophantine quadruples
Theorem 3

D4(N) = ©(V/Nlog N)
More precisely,

D4(N) > 0.1608 V/Nlog N,
D4(N) < 0.5354v/NlogN,

for sufficiently large N.

PROOF. There are three types of Diophantine quadruples {a,b,c,d}:
1) irregular quadruples; 2) regular quadruples in which the triple {a, b, c} is
not regular; 3) quadruples of the form (1). We will estimate the numbers of
quadruples of each of these three types separately.
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1) By [8, Proposition 1], if {a, b, ¢, d} is an irregular Diophantine quadru-
ple and a < b < ¢ < d, then d > ¢*5. Hence, ¢ < N?/7 and, by Theorem
2, the number of possible triples {a,b,c} is O(N?"log N). It remains to
estimate the number of possible d’s.

Let cd + 1 = 22, According to [7, Lemma 1], 2z belongs to the union of
finitely many binary recursive sequences, and each such sequence is gener-
ated by zp, which satisfies 22 = 1 (mod ¢) and zg < ¢¥/*. Let w(c) = k.
Then the number of possible z is bounded by 2*+1.

Let p; denotes the i-th prime. Then ¢ > py---pg. If £ > 2, we have

1 1
1 > = =
ogc > Z logp > 5Pk > leogk‘ (5)
PPk

(see [12]), but this is also true for k = 1.

Therefore, 28 < 2logc/logh  (0.7/logk — 1f ok > (001 thep k < €70
and ¢ < 2100k < 1010%, Hence, we may assume that 28 < 001 But, it
implies that the number of possible zy’s is O(N92/7), while the number of
possible d’s is O(N%%/T1og N). Finally, we obtain that the contribution of
quadruples of the first type is O(N%2921og? N).

2) Since {a, b, ¢} is not regular, by [11, Lemma 4], we have ¢ > 4ab+a+
b+ 1. It implies

d > 4abc + ¢ > (4ab+a + b+ 1)(4ab + 1) > (4ab + 4)(4ab + 4) = 16,

As in 1), we can prove that for a fixed pair {a,b} there are at most
O(b%% 1og N) = O(N®1) possible ¢’s. The number of pairs {a, b} is bounded
by

VN/2 N L,
2 Z 2“’(‘1)ZT = O(v/Nlog? N) + O(VNlog N) = O(V'N log? N),
a=1

and the contribution of quadruples of the second type is O(N?261og? N).

3) Denote the number of quadruples of the third type by E®)(N).

Since both {a,b,c} and {a,b,c,d} are regular, we have ¢ = a + b + 2r
and 4abc + ¢ < d < 4abc+ 4c. 1t is easy to check that a + b > 2r. Therefore
we have ¢ > 4r and d < 4der? < %. By Theorem 2 (or Proposition 1), for
sufficiently large IV, we have

3 .
2 LY4N .

1 V4
3 _ 3
EG)(N) > - 5 log NV = ?\/N log N. (6)
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In the opposite d:lirection, we have the following inequalities d > 16a3
2
andd>4r2-%:4i.

4
Let h(a) = % and y = H/ %J Then

y/2 y/4

E®)(N) < Z 29 nh(a) =Y 2°@h(2a) +2)  2°h(4a
a=1 a=1

Using Lemma 3, we obtain

Yy Yy \4/N Yy 1
> 2(a) = Yo 4 TE S 0

a=1 a=1 a=1
6 VN 1 VN 24 Ry 1
1
= —=—VN(log N)(1+4v2) + O(\/N).
NOL

Analogously,

y/2

Z Qw(a)h(ga) — \3/51772 e/ﬁ(log N)(% + 2\[2) + O(W)

and

y/4 1

> 29@h(4a) = Tf(logjv)( +v2) + O(VN).

a=1 \/ETFQ
Therefore, for sufficiently large N, we have

EG)(N) < S(4V2+ 1)V Nlog N. (7)
f 2m

The statement of the theorem follows directly from the inequalities (6) and
(7). |

Remark 1 From the proof of Theorem 3, it follows that the main contri-
bution to the number Dy(N) comes from the number E®)(N) of quadruples
of the form {a,b,a + b+ 2r,4r(a + b)b + r)}. In order to get better insight
in asymptotic behavior of the numbers D4(N), it is natural to consider the
numbers e (N) = EG)(N)/V/Nlog N. Here are some experimental results
about these numbers:

e®(10%) ~ 0.1254, @ (10°) ~ 0.1747, ®)(10'?) ~ 0.2057,
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e®(101) ~ 0.2277, ¢®(10'®) ~ 0.2440, ®)(10'%) ~ 0.2485.

These results suggest that there is a constant C, 0.2485 < C' < 0.5354, such
that Dy(N) ~ CV/Nlog N.

5 Diophantine quintuples
Theorem 4
Ds5(N) < 101930

ProOOF. Let {a,b,c,d,e} be a Diophantine quintuple, where a < b <
c < d < e. Then, by [8, Corollary 4], we have d < 10?!" and e < 1010%°, By
the main result of [9], we may assume that {a,b} # {1,3}.

Assume first that the quadruple {a,b, ¢, d} is regular. Then d > 4abc >
b?> and b < 10'°%6. Let us estimate the number of possible pairs {a,b}
which satisfies these conditions. We have at most 1018 such pairs satisfing
b < 103%9. Assume that 103% < b < 101986, Let k = w(b). By (5), we have

1
logb > gklog k. (8)

If 28 > 1925 then (8) implies k < 256 and b < 10°%?, a contradiction. Hence,
2F < 925 and the number of corresponding pairs {a, b} is less than

101086 _7 101086 _7 101086
Z 2w(b)+1 < 2 Z b0.25 < 2/ b0.25 db < 101358‘
b=10309+1 b=103094-1 10309

For a fixed pair {a, b}, the third number ¢ is an element of the union of
finitely many binary recursive sequences. According to [7, Lemma 1], the
number of these sequences is less than or equal to the number of solutions of
the congruence 22 =1 (mod b) in the range —0.716%7 < 25 < 0.716%75. If
b < 10%% this number is obviously < 10232, while if 103% < b < 10086 it is
< w1 < 9p0-25 £ 10272 Elements is these sequences grow exponentially,
and the corresponding base is > 4ab > 32. Therefore, in any of these
binary sequences, there are at most logs, 102'7! elements less than 10271,
Therefore, the number of ¢’s is < 10276,

Since {a, b, ¢, d} is regular, for fixed {a,b, c}, d is unique, while for e we
have at most 1027 - logs, 1010 < 10298 possibilities.

Hence, the number of Diophantine quintuples {a, b, ¢, d, e} in which the
subset {a, b, c,d} is regular, is less than

101358 . 10276 . 1 . 10298 — 101930
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Assume now that the quadruple {a,b,c,d} is irregular. Then, by [8,
Lemma 6], d > ¢*%b!5 > b* and b < 10°*3. As above, the number of
possible pairs {a,b} which satisfy these conditions with b < 103%Y is less
than 10%18, and for 103%° < b < 10%#3, there are less than

1054371 1054371 10543

Z 2w(b)+1 <92 Z b0.25 < 2/ b0.25 db < 10679
b=10309 41 b=10309 41 1039
such pairs.

For fixed pair {a, b}, the number of binary sequences in which ¢’s, d’s and
e’s may be contained is bounded by 10232 if b < 10%%9, and by 2925 < 1037
if 10399 < b < 10543,

Hence, the number of Diophantine quintuples {a, b, ¢, d, e} in which the
subset {a,b, c,d} is irregular, is less than

2
10679 . (10232 10g35 102171) 10232 10g39 101026 < 101408,
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