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ABSTRACT 
We present real-time shadow method based on the shadow 
volume that exploit capabilities of the modern graphics 
cards. Algorithm is primarily created for casting shadows of 
a highly concave complex objects such as trees. For those 
objects silhouette calculation that is usually preformed by 
other shadow volume algorithms is complicated and poorly 
justified. Instead of calculations, it is better to assume a 
worst case scenario and use all of the edges for construction 
of the shadow volume mesh, skipping silhouette 
determination entirely. The achieved benefit is that all 
procedure, the object and shadow calculation and rendering, 
could be done on GPU. Proposed solution for shadow 
casting allows open edges. Indexed vertex blending is used 
for shadow projections, and the only calculation required is 
determining projection matrices. Once created, shadow 
volume is treated like any other mesh. 
Keywords: shadow, shadow volumes, stencil testing, vertex 
blending. 

1. INTRODUCTION 
Shadow represents one of the key elements in creating 
realistic images. Their value is not only in aesthetic reasons, 
but also in supplying additional information about object 
placement in scene. 

Shadow volumes are one of the most powerful techniques 
used for real-time computer shadows [3, 5, 10]. Unlike some 
other popular shadowing methods (shadow mapping) they 
work well with all type of light sources. Because of the 
enormous hardware demands, this technique has never been 
completely accepted in real-time applications. Problem lies 
in today’s algorithms that are still putting most of the work 
on CPU, thereby ignoring full potential of graphic cards. 
This property can be easily seen by changing video card 
resolution and noticing that the frame rate is the same at 
lower and at higher resolution setting.  

With new features of graphic card being introduced, such as 
transformation and lighting (T&L) and vertex shaders, CPU 
is relived of processing lightning and geometry and allowed 
to do additional calculation elsewhere. However, old 
shadow volume algorithms do not use those new features of 
graphic cards.  

2.  PREVIOUS WORK 
Idea of shadow volume was first introduced in 1977 when 
Frank Crow [1] published his ray-casting based shadow 
volume algorithm. A pixel’s view ray is walked from the 
viewer’s eye point and intersections with shadow volume 
are counted prior to ray hitting some solid surface. Observed 
pixel is shadowed in two cases. First case occurs when 
number of intersections is odd and eye point is located 
outside the shadow volume and the second case occurs if 
eye point is located inside the shadow volume and number 
of intersections is even. 

In 1991 Heidmann published his stencil buffer based 
shadow volume algorithm which is even today the main 
shadow volume algorithm [2]. This time, stencil and depth 
buffers were used to achieve functionality of the Crow’s 
ray-casting. Scene was first rendered with only ambient 
lightning updating the depth buffer. Shadowed parts of the 
scene are marked using shadow volume mesh and depth 
buffer information, and scene was rendered once more with 
all of the lightning only updating unmarked parts of the 
scene (two pass algorithm). However, most of the 
developers prefer to use simpler method where scene is 
completely drawn once and shadowed parts are marked and 
darkened a bit (single pass algorithm).  

For more complex objects then a triangle, additional effort 
has to be made to determine the shape of the shadow 
volume mesh. This is the bottle neck of the algorithm, and 
the reasons why original Heidmannn’s algorithm does not 
allow open edges. Explanation how to properly handle open 
edges can be found in the work of Bergeron [4]. Shadow 
volume has to be constructed from the object’s silhouette 
seen from the light’s point of view. Simplest and fastest way 
to determine objects silhouette is to separate positively and 
negatively oriented triangles and isolate all the edges that 
have one triangle oriented positively and another negatively. 
In a case of a closed mesh (no open edges) every edge has 
two triangles. 

Improvement of the shadow volume method can be found in 
work of many authors [6 - 9, 11]. 

Our approach is based on defining functions performed on 
the stencil buffer for shadow volumes to create shadows.   



3. SHADOW VOLUMES  

 

The goal was to create an algorithm that will perform actual 
marking of shadowed parts of the scene no different then 
rendering any other mesh. If this is achieved, it will become 
possible to use advanced mesh deforming features of the 
modern graphic cards such as vertex shaders, while 
rendering a shadowed scene. CPU calculations of shadow 
volume shape will not be necessary, and shadow volume 
will be deformed the same way the original mesh is, using 
vertex shaders. 

Figure 3. 2D representation of a projected back shadow 
volume side. 

In area D operation z-fail will occur when both front and 
back sides of a shadow volume are drawn. On the other 
hand, in area B stencilpass operation will occur twice, and in 
area C z-fail will occur together with stencilpass operation. 
It is also noticeable that there is a problem with area A 
(shadowing triangle). If shadowing triangle is facing the 
viewer, then it will be missing a small part of a front shadow 
volume side. If the triangle is facing away from the viewer, 
small part of a back shadow volume side will be missed. 

Unlike Heidmann’s algorithm, stencil buffer won’t be used 
in a form of counter increasing its values when front planes 
of a shadow volume are drawn or decreasing them in case of 
back planes. Also, attention won’t be focused only on 
stencil-pass or z-fail events while rendering shadow volume 
planes. Instead, operations will be preformed in both stencil-
pass and in z-fail case. Given that there is no calculation of a 
shadow volume by CPU, there is also no way of knowing 
what are back or front sides of a shadow volume, so the 
method should not differ them. This means that the same 
stencil testing parameters will be used when back and front 
planes of a shadow volumes are render. Therefore, entire 
process of marking shadowed parts of a scene can now be 
done in a single pass. 

3.1 Required Operations on the Stencil Buffer 
Before stepping into describing how algorithm works, a few 
guiding points will be introduced: 

• When ever certain polygon castes its shadow, no other 
polygon can erase it. This leads to conclusion that stencil 
comparison function will be NOTEQUAL to referent 
stencil buffer value representing marked shadowed area. 

Fig. 1. shows a 2D representation projected triangle. 2D 
representation of the projected front and back shadow 
volume sides are shown on Fig. 2. and 3. so that the areas 
affected by them could be easily perceived. • Shadow must be cast only on those areas where Z-FAIL 

and STENCILPASS operations have occurred together 
(surface of the shadowed object inside the shadow 
volume) – area C. 

 

• Where Z-FAIL occurs twice (inside of the shadowed 
object) stencil buffer values must be equal to zero – case 
of area D. Therefore, two Z-FAIL operations must 
cancel each other out (for example Z-FAIL operation = 
INVERT).  

• Where STENCILPASS occurs twice, stencil buffer value 
must also be equal to zero (area between shadowing and 
shadowed object) – case of area B. Therefore, two 
STENCILPASS operations must also cancel each other, 
however, the same operation used for Z-FAIL event can 
not be used in this case. 

Figure 1. 2D representation of a projected triangle.   
A) shadowing triangle; B) area between shadow and  
shadowing object; C) shadow; D) shadowed object. 

 
 

• On areas where operations Z-FAIL and STENCILPASS 
have occurred together (where shadow should be cast), 
ordering of these operations must not be relevant. Same 
result (stencil buffer value representing shadow) must be 
achieved whether Z-FAIL has occurred before 
STENCILPASS operation, or vice-versa. 

 • Since shadow volume is drawn only once, algorithm 
should not make difference between back and front side 
of shadow volume. Therefore, face culling should be 
disabled – shadow volume is rendered in a single pass 
(back and front sides together). 

Figure 2. 2D representation of a projected front shadow 
volume side. 



• On those areas where shadow should be, stencil buffer 
must have one value, and stencil buffer value of all other 
areas must be zero. 

 

3.2 Functions Applied on the Stencil Buffer 
We have to find right parameters for the following values: 

STENCILFUNCTON  = NOTEQUAL  a) Back side of shadow volume is drawn first STENCILPASS  = ? 
Z-FAIL   = ? 

 

SETNCILFAIL  = ? 
STENCILMASK  = ? 
SETNCILWRITEMASK = ? 
STENCILREF  = ? 
COLLMODE  = NONE 
ZFUNC   = ? 

As mentioned before, Z-FAIL operation must cancel itself. 
This can be archived by applying INVERT operation of 
stencil buffer value when this event happens. If zero is 
inverted twice, the final stencil buffer value will also be 
zero. 

b) Then the front side of shadow volume is drawn 

 

STENCILZFAIL  = INVERT 

A choice of a STENCILPASS operation also has a 
nullification nature. This time the same operation as used for 
Z-FAIL case cannot be used since it is necessary that this 
two operations working together cause stencil buffer to 
reach final stencil value representing the shadow. Operation 
INCR is chosen, but limited on only first bit (inverting the 
first bit). This is achieved by setting 
STENCILWRITEMASK to 1101, so that the second bit can 
never become 1. In example, if beginning stencil buffer 
value of a current pixel is 0, when STENCILPASS 
operation occurs it will become 1. If STENCILPASS occurs 
for the second time, stencil buffer value of that pixel will 
once again become 0. It should actually become 2 but since 
the second bit can’t be written, 0 will be written instead. So, 
to conclude: 

c) Then, a shadowing triangle is redrawn once more 
to correct its stencil values. 

Figure 4. Stencil buffer values after rendering shadow 
volume when back side of a shadow volume is drawn first. 

For every triangle casting the shadow, seven additional 
shadow volume triangles has to be drawn. If shadow casting 
triangle is facing the light it should not be shaded and its 
stencil buffer value should be zero. In Fig. 4. the triangle 
facing the light was marked by its back shadow volume side 
with value 1101. The STENCILZFAIL operation happens 
once again when a shadow casting triangle is drawn as a 
part of a shadow volume. During rendering, a ZFUNCTION 
parameter (z-buffer comparison function) must be set to 
LESS. This will always induce Z-FAIL event, and set its 
stencil buffer values to zero.  

STENCILPASS  = INCR 
 STECILWRITEMASK = 1101b 
 SETNCILMASK  = 1101b 

These parameters are actually solution to a shadow marking 
problem. On those areas where STENCILPASS operation 
occurs together with STENCILZFAIL operation, a unique 
stencil buffer value (representing a final shadow value) will 
be reached. This value is 1100, and it occurs only on 
shadowed parts of a scene – area C and in some cases area 
A (depending of a triangle orientation). 

4. RESULTS 
Testing included comparison between Heidmann’s and 
proposed algorithm while dropping shadow of a small 
branch shown on Fig. 5. Model is composed of 6790 
vertices and 2878 triangles. Testing was done in three most 
common screen resolutions. During the testing of a 
Heidmann’s algorithm no checking was done whether the 
camera was located within shadow volume which 
additionally speeded up its algorithm. Results are shown in 
Table 1. followed by graphs on Fig. 6 and 7. 

STENCILREF  = 1100b 

Example of a triangle casting shadow will be explained 
next. Two examples are possible. In first case back side of 
shadow volume is drawn first as showed on Fig. 4, and in 
second case front side of shadow volume is drawn first. It is 
important to consider that at the beginning all stencil buffer 
values are set to zero. 

Testing configuration: 
- Intel Pentium 4 2.8 GHz, 1 GB RAM, Windows XP; 
- ATI Radeon 9700, 128 MB, DirectX 8.1a; 



Microsoft’s X-Box has CPU that runs at only 720 MHz. If 
we had used a CPU similar to the one of the X-Box, results 
of a Heidmann’s algorithm would be approximately three 
times slower. On the other hand X-Box’s has a powerful 
GPU similar to the one we used, so the results of our new 
algorithm wouldn’t be much different then the one we 
achieved. Because of a slow central processor X-Box should 
always prefer using this new algorithm rather then 
Heidmann’s. 

 
5. CONCLUSION Figure 5. Testing model. 

Our stencilled shadow volume algorithm is highly robust, 
simple to implement and supports even most advanced 
hardware functionality available today. It is finally possible 
to use shadow volumes in contest of hardware accelerated 
vertex blending or vertex shaders in generally. Testing 
showed that Haidmann’s algorithm is slower even though 
it’s doing less then a half of the graphic work preformed by 
algorithm that we propose. We can conclude, that even 
thought the extremely fast CPU was used it was not good 
enough for the Heidmann’s algorithm. So, passing work 
from CPU to a GPU is important concept. 

Table 1. Testing results are in frames per seconds (FPS). 

Branch testing 640x480 800x600 1024x768

New 52,88 45,7 32,82 

Heidmann 43,23 36,36 28,19 

Full screen No shadow 76,22 74,4 73,53 

New  82,1 61,54 42,66 

Heidmann 52,91 46,73 34,98 
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