
STENCIL SHADOW VOLUMES FOR COMPLEX AND
DEFORMABLE OBJECTS

Ivica Kolić, Željka Mihajlović, Leo Budin

University of Zagreb, Faculty of Electrical Engineering and Computing
Unska 3, 10 000 Zagreb, Croatia

ABSTRACT
We present real-time shadow method based on the shadow
volume that exploit capabilities of the modern graphics
cards. Algorithm is primarily created for casting shadows of
a highly concave complex objects such as trees. For those
objects silhouette calculation that is usually preformed by
other shadow volume algorithms is complicated and poorly
justified. Instead of calculations, it is better to assume a
worst case scenario and use all of the edges for construction
of the shadow volume mesh, skipping silhouette
determination entirely. The achieved benefit is that all
procedure, the object and shadow calculation and rendering,
could be done on GPU. Proposed solution for shadow
casting allows open edges. Indexed vertex blending is used
for shadow projections, and the only calculation required is
determining projection matrices. Once created, shadow
volume is treated like any other mesh.
Keywords: shadow, shadow volumes, stencil testing, vertex
blending.

1. INTRODUCTION
Shadow represents one of the key elements in creating
realistic images. Their value is not only in aesthetic reasons,
but also in supplying additional information about object
placement in scene.

Shadow volumes are one of the most powerful techniques
used for real-time computer shadows [3, 5, 10]. Unlike some
other popular shadowing methods (shadow mapping) they
work well with all type of light sources. Because of the
enormous hardware demands, this technique has never been
completely accepted in real-time applications. Problem lies
in today’s algorithms that are still putting most of the work
on CPU, thereby ignoring full potential of graphic cards.
This property can be easily seen by changing video card
resolution and noticing that the frame rate is the same at
lower and at higher resolution setting.

With new features of graphic card being introduced, such as
transformation and lighting (T&L) and vertex shaders, CPU
is relived of processing lightning and geometry and allowed
to do additional calculation elsewhere. However, old
shadow volume algorithms do not use those new features of
graphic cards.

2. PREVIOUS WORK
Idea of shadow volume was first introduced in 1977 when
Frank Crow [1] published his ray-casting based shadow
volume algorithm. A pixel’s view ray is walked from the
viewer’s eye point and intersections with shadow volume
are counted prior to ray hitting some solid surface. Observed
pixel is shadowed in two cases. First case occurs when
number of intersections is odd and eye point is located
outside the shadow volume and the second case occurs if
eye point is located inside the shadow volume and number
of intersections is even.

In 1991 Heidmann published his stencil buffer based
shadow volume algorithm which is even today the main
shadow volume algorithm [2]. This time, stencil and depth
buffers were used to achieve functionality of the Crow’s
ray-casting. Scene was first rendered with only ambient
lightning updating the depth buffer. Shadowed parts of the
scene are marked using shadow volume mesh and depth
buffer information, and scene was rendered once more with
all of the lightning only updating unmarked parts of the
scene (two pass algorithm). However, most of the
developers prefer to use simpler method where scene is
completely drawn once and shadowed parts are marked and
darkened a bit (single pass algorithm).

For more complex objects then a triangle, additional effort
has to be made to determine the shape of the shadow
volume mesh. This is the bottle neck of the algorithm, and
the reasons why original Heidmannn’s algorithm does not
allow open edges. Explanation how to properly handle open
edges can be found in the work of Bergeron [4]. Shadow
volume has to be constructed from the object’s silhouette
seen from the light’s point of view. Simplest and fastest way
to determine objects silhouette is to separate positively and
negatively oriented triangles and isolate all the edges that
have one triangle oriented positively and another negatively.
In a case of a closed mesh (no open edges) every edge has
two triangles.

Improvement of the shadow volume method can be found in
work of many authors [6 - 9, 11].

Our approach is based on defining functions performed on
the stencil buffer for shadow volumes to create shadows.

3. SHADOW VOLUMES

The goal was to create an algorithm that will perform actual
marking of shadowed parts of the scene no different then
rendering any other mesh. If this is achieved, it will become
possible to use advanced mesh deforming features of the
modern graphic cards such as vertex shaders, while
rendering a shadowed scene. CPU calculations of shadow
volume shape will not be necessary, and shadow volume
will be deformed the same way the original mesh is, using
vertex shaders.

Figure 3. 2D representation of a projected back shadow
volume side.

In area D operation z-fail will occur when both front and
back sides of a shadow volume are drawn. On the other
hand, in area B stencilpass operation will occur twice, and in
area C z-fail will occur together with stencilpass operation.
It is also noticeable that there is a problem with area A
(shadowing triangle). If shadowing triangle is facing the
viewer, then it will be missing a small part of a front shadow
volume side. If the triangle is facing away from the viewer,
small part of a back shadow volume side will be missed.

Unlike Heidmann’s algorithm, stencil buffer won’t be used
in a form of counter increasing its values when front planes
of a shadow volume are drawn or decreasing them in case of
back planes. Also, attention won’t be focused only on
stencil-pass or z-fail events while rendering shadow volume
planes. Instead, operations will be preformed in both stencil-
pass and in z-fail case. Given that there is no calculation of a
shadow volume by CPU, there is also no way of knowing
what are back or front sides of a shadow volume, so the
method should not differ them. This means that the same
stencil testing parameters will be used when back and front
planes of a shadow volumes are render. Therefore, entire
process of marking shadowed parts of a scene can now be
done in a single pass.

3.1 Required Operations on the Stencil Buffer
Before stepping into describing how algorithm works, a few
guiding points will be introduced:

• When ever certain polygon castes its shadow, no other
polygon can erase it. This leads to conclusion that stencil
comparison function will be NOTEQUAL to referent
stencil buffer value representing marked shadowed area.

Fig. 1. shows a 2D representation projected triangle. 2D
representation of the projected front and back shadow
volume sides are shown on Fig. 2. and 3. so that the areas
affected by them could be easily perceived. • Shadow must be cast only on those areas where Z-FAIL

and STENCILPASS operations have occurred together
(surface of the shadowed object inside the shadow
volume) – area C.

• Where Z-FAIL occurs twice (inside of the shadowed
object) stencil buffer values must be equal to zero – case
of area D. Therefore, two Z-FAIL operations must
cancel each other out (for example Z-FAIL operation =
INVERT).

• Where STENCILPASS occurs twice, stencil buffer value
must also be equal to zero (area between shadowing and
shadowed object) – case of area B. Therefore, two
STENCILPASS operations must also cancel each other,
however, the same operation used for Z-FAIL event can
not be used in this case.

Figure 1. 2D representation of a projected triangle.
A) shadowing triangle; B) area between shadow and
shadowing object; C) shadow; D) shadowed object.

• On areas where operations Z-FAIL and STENCILPASS
have occurred together (where shadow should be cast),
ordering of these operations must not be relevant. Same
result (stencil buffer value representing shadow) must be
achieved whether Z-FAIL has occurred before
STENCILPASS operation, or vice-versa.

 • Since shadow volume is drawn only once, algorithm
should not make difference between back and front side
of shadow volume. Therefore, face culling should be
disabled – shadow volume is rendered in a single pass
(back and front sides together).

Figure 2. 2D representation of a projected front shadow
volume side.

• On those areas where shadow should be, stencil buffer
must have one value, and stencil buffer value of all other
areas must be zero.

3.2 Functions Applied on the Stencil Buffer
We have to find right parameters for the following values:

STENCILFUNCTON = NOTEQUAL a) Back side of shadow volume is drawn first STENCILPASS = ?
Z-FAIL = ?

SETNCILFAIL = ?
STENCILMASK = ?
SETNCILWRITEMASK = ?
STENCILREF = ?
COLLMODE = NONE
ZFUNC = ?

As mentioned before, Z-FAIL operation must cancel itself.
This can be archived by applying INVERT operation of
stencil buffer value when this event happens. If zero is
inverted twice, the final stencil buffer value will also be
zero.

b) Then the front side of shadow volume is drawn

STENCILZFAIL = INVERT

A choice of a STENCILPASS operation also has a
nullification nature. This time the same operation as used for
Z-FAIL case cannot be used since it is necessary that this
two operations working together cause stencil buffer to
reach final stencil value representing the shadow. Operation
INCR is chosen, but limited on only first bit (inverting the
first bit). This is achieved by setting
STENCILWRITEMASK to 1101, so that the second bit can
never become 1. In example, if beginning stencil buffer
value of a current pixel is 0, when STENCILPASS
operation occurs it will become 1. If STENCILPASS occurs
for the second time, stencil buffer value of that pixel will
once again become 0. It should actually become 2 but since
the second bit can’t be written, 0 will be written instead. So,
to conclude:

c) Then, a shadowing triangle is redrawn once more
to correct its stencil values.

Figure 4. Stencil buffer values after rendering shadow
volume when back side of a shadow volume is drawn first.

For every triangle casting the shadow, seven additional
shadow volume triangles has to be drawn. If shadow casting
triangle is facing the light it should not be shaded and its
stencil buffer value should be zero. In Fig. 4. the triangle
facing the light was marked by its back shadow volume side
with value 1101. The STENCILZFAIL operation happens
once again when a shadow casting triangle is drawn as a
part of a shadow volume. During rendering, a ZFUNCTION
parameter (z-buffer comparison function) must be set to
LESS. This will always induce Z-FAIL event, and set its
stencil buffer values to zero.

STENCILPASS = INCR
 STECILWRITEMASK = 1101b
 SETNCILMASK = 1101b

These parameters are actually solution to a shadow marking
problem. On those areas where STENCILPASS operation
occurs together with STENCILZFAIL operation, a unique
stencil buffer value (representing a final shadow value) will
be reached. This value is 1100, and it occurs only on
shadowed parts of a scene – area C and in some cases area
A (depending of a triangle orientation).

4. RESULTS
Testing included comparison between Heidmann’s and
proposed algorithm while dropping shadow of a small
branch shown on Fig. 5. Model is composed of 6790
vertices and 2878 triangles. Testing was done in three most
common screen resolutions. During the testing of a
Heidmann’s algorithm no checking was done whether the
camera was located within shadow volume which
additionally speeded up its algorithm. Results are shown in
Table 1. followed by graphs on Fig. 6 and 7.

STENCILREF = 1100b

Example of a triangle casting shadow will be explained
next. Two examples are possible. In first case back side of
shadow volume is drawn first as showed on Fig. 4, and in
second case front side of shadow volume is drawn first. It is
important to consider that at the beginning all stencil buffer
values are set to zero.

Testing configuration:
- Intel Pentium 4 2.8 GHz, 1 GB RAM, Windows XP;
- ATI Radeon 9700, 128 MB, DirectX 8.1a;

Microsoft’s X-Box has CPU that runs at only 720 MHz. If
we had used a CPU similar to the one of the X-Box, results
of a Heidmann’s algorithm would be approximately three
times slower. On the other hand X-Box’s has a powerful
GPU similar to the one we used, so the results of our new
algorithm wouldn’t be much different then the one we
achieved. Because of a slow central processor X-Box should
always prefer using this new algorithm rather then
Heidmann’s.

5. CONCLUSION Figure 5. Testing model.

Our stencilled shadow volume algorithm is highly robust,
simple to implement and supports even most advanced
hardware functionality available today. It is finally possible
to use shadow volumes in contest of hardware accelerated
vertex blending or vertex shaders in generally. Testing
showed that Haidmann’s algorithm is slower even though
it’s doing less then a half of the graphic work preformed by
algorithm that we propose. We can conclude, that even
thought the extremely fast CPU was used it was not good
enough for the Heidmann’s algorithm. So, passing work
from CPU to a GPU is important concept.

Table 1. Testing results are in frames per seconds (FPS).

Branch testing 640x480 800x600 1024x768

New 52,88 45,7 32,82

Heidmann 43,23 36,36 28,19

Full screen No shadow 76,22 74,4 73,53

New 82,1 61,54 42,66

Heidmann 52,91 46,73 34,98

Windowed No shadow 641,03 534,76 427,53 6. REFERENCES
[1] Frank Crow, “Shadow Algorithms for Computer Graphics”,

Proceedings of SIGGRAPH, 1977, pp. 242-248.

0

10

20

30

40

50

60

640 x 480 800 x 600 1024 x 768

Full screen New algorithm

Full screen Heidman's algorithm

[2] Tim Heidmann, “Real Shadows Real Time”, IRIS Universe,
Number 18, 1991, pp. 28-31.

[3] Harlen C. Batagelo and Ilaim C. Junior, “Real-Time Shadow
Generation Using BSP Trees and Stencil Buffers,” XII
Brazilian Symposium on Computer Graphics and Image
Processing, Campinas, Brazil, Oct. 1999, pp. 93-102.

[4] Philippe Bergeron, “A General Version of Crow’s Shadow
Volumes,” IEEE Computer Graphics and Applications, Sept.
1986, pp. 17-28.

[5] Jason Bestimt and Bryant Freitag, “Real-Time Shadow
Casting Using Shadow Volumes,” Gamasutra.com web site,
Nov. 15, 1999.

[6] David Blythe, Tom McReynolds, et.al., “Shadow Volumes,”
Program with OpenGL: Advanced Rendering, SIGGRAPH
course notes, 1996.

Figure 6. Testing in full screen mode.

0

10

20

30

40

50

60

70

80

90

640 x 480 800 x 600 1024 x 768

Window ed New algorithm
Window ed Heidman's algorithm

[7] Lynne Brotman and Norman Badler, “Generating Soft
Shadows with a Depth Buffer Algorithm,” IEEE Computer
Graphics and Applications, Oct. 1984, pp. 5-12.

[8] Mark Kilgard, “Improving Shadows and Reflections via the
Stencil Buffer,” Advanced OpenGL Game Development
course notes, Game Developer Conference, March 16, 1999,
pp. 204-253.

[9] Michael McCool, “Shadow Volume Reconstruction from
Depth Maps,” ACM Transactions on Graphics, Jan. 2001, pp.
1-25.

[10] Mark Kilgard, “Robust Stencil Volumes,” CEDEC 2001
presentation, Tokyo, Sept. 4, 2001.

[11] Andrew Woo, Pierre Poulin, and Alain Fournier, “A Survey
of Shadow Algorithms,” IEEE Computer Graphics and
Applications, Nov. 1990, pp. 13-32. Figure 7. Testing in windowed mode.

	ABSTRACT

