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Abstract: The variable Zagreb vM2 index is introduced and applied to the structure-
boiling point modeling of benzenoid hydrocarbons.  The linear model obtained (the 
standard error of estimate for the fit model Sfit=6.8 oC) is much better than the 
corresponding model based on the original Zagreb M2 index (Sfit=16.4 oC).  Surprisingly, 
the model based on the variable vertex-connectivity index (Sfit=6.8 oC) is comparable to 
the model based on vM2 index. A comparative study with models based on the vertex-
connectivity index, edge-connectivity index and several distance indices favours models 
based on the variable Zagreb vM2 index and variable vertex-connectivity index.  
However, the multivariate regression with two-, three- and four-descriptors gives 
improved models, the best being the model with four-descriptors (but vM2 index is not 
among them) with Sfit=5 oC, though the four-descriptor model contaning vM2 index is 
only slightly inferior (Sfit=5.3 oC). 

 
Keywords: Zagreb M2 index, variable Zagreb vM2 index, QSPR modeling, benzenoid 
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Introduction 
 

The concept of the variable molecular descriptors was proposed as an alternative way of 
characterizing heteroatoms in molecules [1,2], but also to assess the structural differences, such as, for 
example, the relative role of carbon atoms of acyclic and cyclic parts in alkylcycloalkanes [3]. The 
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idea behind the variable molecular descriptors is that the variables are determined during the 
regression so that the standard error of estimate for a studied property is as small as possible.   

Several molecular descriptors have already been tested in their variable forms in QSPR and QSAR 
[4-12]. Here we report the use of the variable Zagreb vM2 index in the structure-boiling point modeling 
of benzenoid hydrocarbons. We selected benzenoid hydrocarbons because there are several structure-
boiling point models of these compounds already published [13,14]. Due to this fact, we were also able 
to carry out a comparative study of the model based on vM2 index against the models based on the 
standard vertex-connectivity index, variable vertex-connectivity index, edge-connectivity index and 
several distance indices. Since the Zagreb index in its original form was derived using graph-
theoretical concepts and terminology [15], we will use these in the present report. Graphs will be 
generated from molecules in the usual way by replacing atoms with vertices and bonds with edges 
[16]. Besides, graphs that we will use will represent only carbon skeletons of benzenoid hydrocarbons. 
Therefore, benzenoid hydrocarbons in this report will be presented as various arrangements of 
hexagons in the plane. 
 
The Zagreb M2 index and Its Variable Form vM2 
 

Originally, the Zagreb M2 index together with the Zagreb M1 index appeared in the topological 
formula for the total π-electron energy of conjugated molecules [17]: 

 M2 = Σ d(i) d(j)        (1) 
        edges 

where d(i) is the degree of vertex i and d(i) d(j) is the weight of edge i-j.  This index was first used as a 
branching index [18] and later as a useful molecular descriptor in various forms in QSPR and QSAR 
studies [19-23]. 

The easiest way to introduce the variable Zagreb vM2 index is by means of an example.  For this 
purpose we will use a graph G representing the carbon skeleton of naphthalene (see Figure 1). 

 
Figure 1.  Graph G representing the carbon skeleton of naphthalene 

 
 
 
 

 
 
 

Since it is known from the chemistry of benzenoid hydrocarbons [24,25] that the carbon atoms 
with two adjacent carbon atoms possess different characteristics then the carbon atoms with three 
adjacent atoms, we assess their relative roles by differentiating these two groups with variable 
parameters.  Using the graph-theoretical approach, the difference between the two groups of carbon 
atoms is expressed by means of the degrees of the corresponding vertices plus the variables. Hence, the 
vertex-degree of the carbon atom adjacent to two other carbon atoms is taken to be: 

G
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d = 2 + x         (2) 

and likewise the vertex-degree of the carbon atom adjacent to three other carbon atoms is given by: 

d = 3 + y         (3) 

  Putting (2) and (3) into (1), one obtains the following Zagreb vM2 index for naphthalene as a 
function of the variables x and y: 

 vM2 = 6 (2 + x)2 + 4 (2 + x) (3 + y) + (3 + y)2     (4) 

In general, the variable Zagreb vM2i index of a benzenoid hydrocarbon i can be given as: 

 vM2i = c1i (2 + x)2 + c2i (2 + x) (3 + y) + c3i (3 + y)2    (5) 

We denote the boiling point of a benzenoid hydrocarbon i (i=1,…,21) by bpi.  Thus, for naphthalene 
(i=1), bp1=218°C and c11, c21 and  c31 are respectively 6, 4 and 1.  In Table 1 we give bpi, c1i, c2i and c3i 
values for 21 benzenoid hydrocarbons whose graphs are given in Figure 2.   

 
Figure 2.  Graphs corresponding to studied benzenoid hydrocarbons 
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Table 1.  The values of experimental boiling points (bpi in oC, i=1,…,21) and                 
coefficients (c1i, c2i and  c3i) of the variable Zagreb vM2 indices of 21                
benzenoid hydrocarbons. 

                                               
vM2 index Benzenoid 

hydrocarbon 
bpi

 

c1i
 c2i

 c3i 
1 218 6 4 1 
2 338 7 6 3 

3 340 6 8 2 

4 431 8 8 5 

5 425 7 10 4 

6 429 9 6 6 

7 440 6 12 3 

8 496 7 10 7 

9 493 8 8 8 

10 497 8 8 8 

11 547 6 12 9 

12 542 7 10 10 

13 535 9 10 7 

14 536 8 12 6 

15 531 8 12 6 

16 519 9 10 7 

17 590 6 12 12 

18 592 9 10 10 

19 596 8 12 9 

20 594 8 12 9 

21 595 9 10 10 

  
Experimental values of boiling points of considered benzenoid hydrocarbons are taken from 

Randić [13]. 
Expression (5) for x=0 and y=0 reduces to: 

M2i = 22 c1i + 2·3 c2i + 32 c3i       (6) 

which is the formula for computing the original Zagreb M2 index of a given benzenoid i.It should also 
be noted that the variable connectivity index vχi is related to the Zagreb vM2i index with the same set of 
coefficients: 

vχi = c1i (2 + x)-1 + c2i [(2 + x) (3 + y)]-1/2 + c3i (3 + y)-1  (7) 
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For x=0 and y=0, eq. (7) reduces to one for computing the vertex-connectivity index of a benzenoid 
hydrocarbon i: 

vχi = 2-1 c1i + (2·3)-1/2 c2i + 3-1 c3i     (8) 
 

Results and Discussion 
 

In order to find optimal variable Zagreb vM2 index, the values of x were varied in the range 
between –2 and 2 and values of y were varied in the range between –3 and 3, both in steps of 0.1. This 
range of x and y values was imposed by the degrees of valences in benzenoid graphs. In non-optimized 
Zagreb index (M2), the values of variables x and y are equal to 0.0. We want to see are there optimal 
values of x and y near their non-optimized values (0.0, 0.0) for which the standard error of estimate of 
the structure-boiling point model reaches minimum. For each pair (x, y) in the given range, coefficients 
a0 and a1 in the linear regression model: 

 bp = a0 + a1 vM2        (9) 

were computed using the least square fitting procedure as implemented in the CROMRsel program 
[26-28]. The quality of models is expressed by fitted (descriptive) statistical parameters: the 
correlation coefficient Rfit, the standard error of estimate Sfit and F, the Fisher´s values. Sfit was 
computed with N and N-I-1 in the denominator, where N is the number of considered benzenoid 
hydrocarbons and I is the number of descriptors used in the model. In addition, the models were 
cross(internally)-validated using the leave-one-out method. Statistical parameters for the cross-
validated models are denoted by Rcv and Scv, where cv denotes the cross-validation. 

The linear structure-boiling point model based on the Zagreb vM2 index with the optimum values of 
x (0.0) and y (-1.2) is as follows: 

bp =  - 11.0 (± 8.2) + 5.767 (± 0.093) vM2      (10) 
N=21  Rfit =0.998  Sfit(N)=6.8  Sfit(N-I-1)=7.2  Rcv =0.997  Scv(N)=8.0  Scv(N-I-1)=8.4  F=3866 
 
Figure 3.  Scatter plot between the fit standard error of estimate (Sfit(N)) and x values in 

the range from –0.4 to +1.1 for the optimum value of  y (-1.2) 
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Figure 4.  Scatter plot between the fit standard error of estimate (Sfit(N)) and y values in 
the range from –3 to +1.1 for the optimum value of x (0.0) 
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Figure 5.  Scatter plot between the cross validated standard errors of estimate (Scv(N)) 

and x values in the range from –0.4 to +1.1 for the optimum value of  y  (-1.2) 
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Figure 6.   Scatter plot between the cross validated standard errors of estimate (Scv(N)) 
and y values in the range from –3 to +1.1 for the optimum value of x (0.0) 
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Figure 7.  Scatter plots between the experimental (bpexp) and calculated values of the  
      fit (bpfit) and cross-validated (bpcv) models, respectively 
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Figure 8.  Scatter plots of fit residuals versus fitted values (bpfit) and of cross validated 
residuals versus cross validated values (bpcv), respectively  
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In Figure 3, we give the scatter plot between Sfit(N) and x values for the optimum value of  y (–1.2) 
and in Figure 4, we give the scatter plot between Sfit(N) and y values for the optimum value of x (0.0). 
The results for the fitted models were supported by the results for the cross-validated models (see 
Figures 5 and 6). 

In Figure 7, we give plots between the experimental and calculated boiling points for fit and cross-
validated models and in Figure 8 we give the scatter plots of fit residuals against the fitted values and 
cross-validated residuals against cross-validated boiling points, respectively.  

Model (10) is much superior to the linear model based on the original M2 index: 

bp =  98 (± 16) + 2.63 (± 0.10) M2       (11) 
 N=21 Rfit=0.986  Sfit(N)=16.4  Sfit(N-I-1)=17.2  Rcv=0.980  Scv(N)=19.6  Scv(N-I-1)=20.6  F=656 

We also derived the structure-boiling point model using the variable vertex-connectivity index vχ 
and the CROMRsel procedure. The following linear model is obtained for the optimum parameters x 
(0.0) and y (0.5): 

bp = - 11.5 (± 8.2) + 46.27 (± 0.74) vχ      (12) 
N=21  Rfit =0.998  Sfit(N)=6.8  Sfit(N-I-1)=7.2  Rcv =0.997  Scv(N)=8.0  Scv(N-I-1)=8.4  F=3866 

Both models, (10) and (12), possess practically identical statistical parameters.  This is unexpected 
results, since the vertex-connectivity index [29] is superior to the Zagreb M2 index in building QSPR 
models, though there are indications [22] that the various variable forms of these two indices lead to 
the models of the same quality regarding the statistical parameters.  However, that is so because both 
eqs. (5) and (7) are based on the same coefficients c1i, c2i and c3i at constant factors. 

We also considered the following linear model: 

 bpi = b0 + b1 c1i + b2 c2i + b3 c3i      (13)  

where c1i, c2i and c3i are taken from Table 1. 
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The resulting model: 

 bp = - 11.2 (± 14.2) + 22.8 (± 1.6) c1 + 21.2 (± 0.9) c2 + 18.4 (± 0.7) c3 (14) 
N=21  Rfit =0.998  Sfit(N)=6.8  Sfit(N-I-1)=7.5  Rcv =0.996  Scv(N)=9.2  Scv(N-I-1)=10.2 F=1176 

possesses fit statistical parameters Rfit and Sfit(N) almost identical to those in the models (10) and (12). 
These parameters would be exactly the same if x and y were obtained more accurately. Because of the 
greater number of descriptors used in model (14) its Sfit(N-I-1), Scv(N), Scv(N-I-1), Rcv and F values are 
somewhat worse.   

Models (10) and (14) are related by:  

b0 = a0          (15) 
b1 = a1 (2 + x)2        (16) 
b2 = a1 (2 + x) (3 + y)        (17) 
b3 = a1 (3 + y)2        (18) 

Similar relationships exist also between models (12) and (14). 
Models (10) and (12) possess better statistical properties than the models we found in the literature.  

Below we give the models based on the vertex-connectivity index [13,14] and the edge-connectivity 
index [14], respectively: 

bp =  - 34.4 (± 9.7) + 52.58 (± 0.95) χ      (19) 

         N=21   Rfit =0.997   Sfit(N-I-1)=8.1   F=3045 

bp =  13.9 (± 8.6) + 40.07 (± 0.71) ε      (20) 
         N=21   Rfit =0.997   Sfit(N-I-1)=7.9   F=3179 

where χ denotes the vertex-connectivity index [29], while ε denotes the edge-connectivity index [30].  
Both models (19) and (20) are fitted models − they were not cross-validated. 

The quadratic models with χ and ε do not represent an improvement and they also have not been 
cross-validated [13,14]: 

bp =  - 50 (± 35) + 56.3 (± 8.1) χ - 0.21 (± 0.45) χ2    (21) 
         N=21   Rfit =0.997   Sfit(N-I-1)=8.2   F=1460 

bp =  - 36 (± 26) + 50.0 (± 5.0) ε - 0.47 (± 0.23) ε2    (22) 
         N=21   Rfit =0.998   Sfit(N-I-1)=7.3   F=1848 

The multivariate regression with two descriptors (ε and ws) also does not represent the 
improvement over the models (10) and (18) [14]: 
 

bp =  - 32 (± 22) + 48.0 (± 3.5) ε + 3.6 (± 1.6) ws    (23) 
         N = 21   Rfit = 0.998   Sfit(N-I-1)= 7.2   F = 1944 

where ws is a Wiener-like index [31], obtained from the quotient matrix ∆/D.  ∆ is the detour matrix 
[32,33] and D is the distance matrix [34].   

We also carried out the multivariate regression with two, three and four descriptors using the 
CROMRsel procedure and the obtained fitted model were cross-validated.  Descriptors we considered 
were vM2, χ, ε and three distance indices (the Wiener sum index WS, ws, the detour index ω).  The WS 
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index is a Wiener-like index, obtained from the quotient matrix D/∆ [35] and ω is equal to the half-
sum of the elements of the detour matrix [32,36]. We considered χ, ε, WS, ws and ω indices because 
they have been used in the previous structure-boiling point studies of benzenoid hydrocarbons [13,14].  
Below we give the best obtained models followed by the best models containing the vM2 index − in the 
case of the two-descriptor model the best model contains the vM2 index: 

(i) The two-descriptor model 

bp =  - 40 (± 22) + 6.42 (± 0.46) vM2 – 0.021 (± 0.014) ws   (24) 
N=21  Rfit =0.998  Sfit(N)=6.5  Sfit(N-I-1)=7.0  Rcv =0.996  Scv(N)=8.4  Scv(N-I-1)=8.9  F=2048 

(ii) The three-descriptor models 

bp =  - 46 (± 18) + 52.7 (± 3.3) ε – 0.167 (± 0.044) ws + 0.037 (± 0.012) ω (25) 
N=21  Rfit =0.999  Sfit(N)=5.3  Sfit(N-I-1)=5.9  Rcv =0.997  Scv(N)=7.5  Scv(N-I-1)=8.2  F=1936 

bp =  - 47 (± 24) + 37.9 (± 3.4) vM2 – 0.32 (± 0.45) ws - 0.024 (± 0.015) WS (26) 

N=21  Rfit =0.998  Sfit(N)=6.3  Sfit(N-I-1)=7.0  Rcv =0.996  Scv(N)=8.6  Scv(N-I-1)=9.4  F=1338 

(iii) The four-descriptor models 

bp =  - 62 (± 22) + 59.2 (± 5.8) ε – 0.72 (± 0.54) WS – 0.242 (± 0.071) ws 
+ 0.057 (± 0.019) ω       (27) 

N=21  Rfit =0.999  Sfit(N)=5.0  Sfit(N-I-1)=5.7  Rcv =0.997  Scv(N)=7.6  Scv(N-I-1)=8.5  F=1518 
 

bp =  - 88 (± 26) + 8.62 (± 0.91) vM2 – 1.77 (± 0.68) WS – 0.207 (± 0.073) ws 
+ 0.051 (± 0.020) ω       (28) 

N=21  Rfit =0.999  Sfit(N)=5.3  Sfit(N-I-1)=6.1  Rcv =0.997  Scv(N)=7.7  Scv(N-I-1)=8.7  F=1330 

The model (27) possesseses the lowest values of the standard errors of estimate, but the linear 
models based on the variable Zagreb M2 index (10) and the variable connectivity index (18) are also 
very good models with the standard errors of estimate for the fit and cross-validated models of 6.8 
(7.2) oC and 8.0 (8.4) oC, respectively.   

We also considered the intercorrelation between the descriptors used in building up models (24) – 
(28).  The intercorrelation matrix reflecting the pairwise linear correlation between vM2, ε, WS, ws and 
ω computed for 21 benzenoid is given in Table 2. 
 

Table 2.  The intercorrelation matrix 
 

 
vM2 ε WS ws ω 

vM2 1.000 0.999 0.946 0.981 0.973 

ε  1.000 0.936 0.983 0.974
WS   1.000 0.912 0.920
ws    1.000 0.997
ω     1.000
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The intercorrelation-degree is appraised by the correlation coefficient R. Pairs of indices with R ≥ 
0.97 are regarded highly correlated, those with 0.90 ≤ R ≤ 0.97 appreciably correlated, those with 0.50 
≤ R ≤ 0.89 weakly correlated and the pairs of descriptors with low values of R (< 0.50) not correlated 
[37].  It appears that, according to the above classification, all the considered descriptors are either 
highly correlated (vM2,ε; vM2,ws; vM2,ω;ε, ws; ε,ω; ws, ω ) or appreciably correlated (vM2,WS; ε,WS; 
WS, ws; WS,ω).  However, as Randić [e.g., 38] pointed out, the intercorrelation criterion should not be 
always used for filtering descriptors to be used in building up the QSPR models.  

 
Conclusions 
 

The variable Zagreb M2 index was used in the structure-boiling point modeling of benzenoid 
hydrocarbons.  The obtained model is practically identical to the model based on the variable vertex-
connectivity index and this is due to close relationship between the formulas for the two indices. 

Comparative analysis of models based on several descriptors favoured the multivariate models with 
three and four descriptors. The best models with three and four descriptors did not include vM2 index.  
However, the next best three- and four-descriptor models contain the vM2 index.  The best two-
descriptor model contains vM2 index. The standard errors of estimate for the fit and cross-validated 
models listed in this report are in the 5.0 oC–9.4 oC range and this is a very good result since it shows 
that the boiling points of benzenoid hydrocarbons can be predicted within an error range of 0.8– 4.3%. 

 
Acknowledgments.  
 

This work was supported by Grant No. 0098034 rewarded by the Ministry of Science and 
Technology of Croatia.  We thank the reviewers for very helpful and detailed comments. 
 
References and Notes 
 
1. Randić, M. Novel graph theoretical approach to heteroatoms in QSAR. Chemometrics Intel. Lab. 

Syst. 1991, 10, 213-227 
2. Randić, M. On computation of optimal parameters for multivariate analysis of structure-property 

relationship. J. Chem. Inf. Comput. Sci. 1991, 31, 970-980 
3. Randić, M.; Plavšić, D.; Lerš, N. Variable connectivity index for cycle-containing structures. J. 

Chem. Inf. Comput. Sci. 2001, 41, 657-662 
4. Randić, M.; Basak, S.C. Multiple regression analysis with optimal molecular descriptors. SAR QSAR 

Environ. Res. 2000, 11, 1-23 
5. Randić, M.; Pompe, M. The variable molecular descriptors based on the distance matrix. J. Chem. 

Inf. Comput. Sci. 2001, 41, 575-581 
6. Randić, M.; Basak, S.C. On use of the variable connectivity index 1χf in QSAR: Toxicity of aliphatic 

ethers. J. Chem. Inf. Comput. Sci. 2001, 41, 614-618 
7. Randić, M.; Pompe, M. The variable connectivity index 1χf versus traditional molecular 

descriptors: A comparative study of 1χf against descriptors of CODESSA. J. Chem. Inf. Comput. 
Sci. 2001, 41, 631-638 



Molecules 2004, 9 
 

1220

8. Nikolić, S.; Plavšić, D.; Trinajstić, N. On the Balaban-like topological indices. MATCH − Comm. 
Math. Comput. Chem. 2001, 44, 361-386 

9. Amić, D.; Lučić, B.; Nikolić, S.; Trinajstić, N. Predicting inhibition of microsomal p-
hydroxylation of aniline by aliphatic alcohols: A QSAR approach based the weighted path 
numbers. Croat. Chem. Acta 2001, 74, 237-250 

10. Amić, D.; Basak, S.C.; Lučić, B.; Nikolić, S.; Trinajstić, N. Structure-water solubility of 
aliphatic alcohols using the weighted path numbers. SAR QSAR Environ. Res. 2002, 13, 281-295 

11. Lučić, B.; Miličević, A.; Nikolić, S.; Trinajstić, N. On variable Wiener index. Ind. J. Chem. 2003, 
42A, 1279-1282  

12. Miličević, A.; Nikolić, S. On variable Zagreb indices. Croat. Chem. Acta 2004, 77, 97-1001 
13. Randić, M. Quantitative structure-property relationship. Boiling points of planar benzenoids. New 

J. Chem. 1996, 20, 1001-1009 
14. Plavšić, D.; Trinajstić, N.; Amić, D.; Šoškić, M. Comparison between the structure-boiling point 

relationships with different descriptor for condensed benzenoids. New J. Chem. 1998, 22, 1075-
1078 

15. Harary,  F. Graph Theory, 2nd printing; Addison-Wesley: Reading (MA, U.S.A.), 1971 
16. Trinajstić, N. Chemical Graph Theory, 2nd edition; CRC Press: Boca Raton (FL, U.S.A.), 1992 
17. Gutman, I.; Trinajstić, N. Graph theory and molecular orbitals. Total π-electron energy of 

alternant hydrocarbons. Chem. Phys. Lett. 1972, 17, 535-537 
18.  Gutman, I.; Ruščić, B.; Trinajstić, N.; Wilcox, Jr., C.F. Graph theory and molecular orbitals. XII. 

Acyclic polyenes. J. Chem. Phys. 1975, 62, 3399-3405 
19. Devillers, J.; Balaban, A.T. Editors; Topological Indices and Related Descriptors in QSAR and 

QSPR; Gordon & Breach: Amsterdam (The Netherlands), 1999 
20. Todeschini, R.; Consonni, V. Handbook of Molecular Descriptors; Wiley-VCH: Weinheim 

(Germany) 2000 
21. Nikolić, S.; Kovačević, G.; Miličević, A.; Trinajstić, N. The Zagreb indices 30 years after. Croat. 

Chem. Acta 2003, 76, 113-124  
22. Vukičević, D.; Trinajstić, N. Modified Zagreb M2 index − Comparison with the Randić 

connectivity index for benzenoid systems. Croat. Chem. Acta 2003, 76, 183-187   
23. Miličević, A.; Nikolić, S.; Trinajstić, N. On reformulated Zagreb indices. Molecular Diversity 

2004, in press 
24. Clar, E. Polycyclic Hydrocarbons; Academic Press: London (U.K.) 1964 
25. Gutman, I.; Cyvin, S.J. Introduction to the Theory Benzenoid Hydrocarbons; Springer-Verlag: 

Berlin (Germany), 1989 
26. Lučić, B.; Trinajstić, N. Multivariate regression outperforms several robust architectures of neural 

networks. J. Chem. Inf. Comput. Sci. 1999, 39, 121-132  
27. Lučić, B.; Trinajstić, N.; Sild, S.; Karelson, M.; Katritzky, A.R. A new efficient approach for 

variable selection based on multiregression: Prediction of gas chromatographic retention times 
and response factors. J. Chem. Inf. Comput. Sci. 1999, 39, 610-621  

28. Lučić, B.; Amić, D.; Trinajstić, N. Nonlinear multivariate regression outperforms several 
concisely designed neural networks on three QSPR data sets. J. Chem. Inf. Comput. Sci. 2000, 40, 
403-413 



Molecules 2004, 9 
 

1221

29. Randić, M. On characterization of molecular branching. J. Am. Chem. Soc. 1975, 97, 6609-6615 
30. Estrada, E. Edge adjacency relationships and a novel topological index related to molecular 

volume. J. Chem. Inf. Comput. Sci. 1995, 35, 31-33  
31. Wiener, H. Structural determination of paraffin boiling points. J. Am. Chem. Soc. 1947, 69, 17-

209 
32. Amić, D.; Trinajstić. N. On the detour matrix. Croat. Chem. Acta 1995, 68, 53-62 
33. Trinajstić. N.; Nikolić, S.; Lučić, B.; Amić, D.; Mihalić, Z. The detour matrix in chemistry. J. 

Chem. Inf. Comput. Sci. 1997, 37, 631-638 
34. Mihalić, Z.; Veljan, D.; Amić, D.; Nikolić, S.; Plavšić, D.; Trinajstić. N. The distance matrix in 

chemistry. J.Math. Chem. 1992, 11, 223-258 
35. Randić, M. On characterization of cyclic structures. J. Chem. Inf. Comput. Sci. 1997, 37, 1063-

1071 
36. Lukovits, I. The detour index. Croat. Chem. Acta 1996, 69, 873-883 
37. Trinajstić, N.; Nikolić, S.; Basak, S.C.; Lukovits, I. Distances indices and their hypercounterparts: 

Intercorrelation and use in the structure-property modeling. SAR QSAR Environ. Res. 2001, 12, 
31-54 

38. Randić, M. The connectivity index 25 years after. J. Mol. Graph. Model. 2001, 20, 19-35 
 
© 2004 by MDPI (http://www.mdpi.org). Reproduction is permitted for noncommercial purposes. 
 
 
 
 
 
 
 


