Optimization, Robot movement,

Path finding, Maze passing
Franjo JOVIĆ*

Marina PEŠUT*
Damir BLAŽEVIĆ*
OPTIMIZATION OF PATH FINDING OF A NON-AUTONOMOUS ROBOT IN A MAZE

The article describes techniques used for programming a successful movement of non-autonomous robot through series of obstacles in a maze.
Obstacles are detected through a robots sensor grid, processed and stored. After data gathering process, information is transmitted to external data processing unit using infra red beam.
External data processing unit estimates the shortest path for successful overcoming of obstacles and detects maze exit. Several complex algorithms are applied for path optimization. After external data processing, the results are beamed back to the non-autonomous robot in a suitable form. In the second passing the robot successfully avoids obstacles and exits the maze using the shortest path.
Path optimization algorithms are resource demanding and therefore not yet suitable for robot's circuitry deployment.
1. INTRODUCTION
Finding a shortest path through a maze is a basic computer science problem that can take many forms. Also, path planning and navigation for mobile robots, in particular the case where the environment is known, is a well studied problem. In practice, however, one problem is that often no complete knowledge about the environment is available, so environment can be considered as a maze.
In this paper, we consider the case where a maze has a single goal location, and non-autonomous robot must find a path to that goal from any arbitrary point and optimize its path. Two optimization algorithms are proposed.
For this investigation we needed to construct a non-autonomous robot. The robot is constructed from LEGO Mindstorms Robotics Invention System 2.0 package and its sensor grid consists of light, rotation and touch sensors. Using that sensor grid by the proposed algorithm called “First passing”, robot is required to produce a complete path to the goal area, i.e. to store it in its memory. It should be emphasized that the range of the sensors is limited, as well as the available RAM and ROM memory. Once the goal area was found, collected data were transmitted to the external data processing unit using infra-red beam. Descriptions of optimization algorithms are shown in chapter 3.
2. “FIRST PASSING” ALGORITHM AND MAZE CONSTRUCTION
When making abstraction of the maze, it can be imagined as a building’s floor viewed from above and presented as white areas while the black areas represent the obstacle or the walls. The green area symbolized the target area robot is to find, and the edges represent the possible paths that the robot can take to travel from node to node (area to area).
Three basic assumptions are used when constructing the non-autonomous robot:
1. It should be able to distinguish three different colors of the pad

2. It should be able to make precise right and left turns for 90º

3. It should be able to memorize its movement throughout the maze
For slower, but more powerful and accurate movement of the robot, we used 3:1 gearing. Successful navigation greatly depended on the built-in sensor grid used for movement decisions where the precision of motion is greatly affected by the sensor readings. Sensor grid was arranged as follows: the first light sensor was attached to the front of the robot, the second light sensor was attached to the left side of the robot, the rotation sensor was connected to the axis of the gears and touch sensor was attached to the back of the robot.
The idea for the algorithm “First passing” was to enable robot move along the pad in search for the goal avoiding obstacles on its way and store rotation sensor readings to its memory. Since the maze was two-dimensional, i.e. black areas presented obstacles and white area allowed movement path, complete maze layout can be presented for the given case as a matrix system sized 7x11 equal areas. More fine grained maze can be achieved using larger map or by shortening default unit of movement which in our case was determined by precise reading of the rotation sensor. A non-complex shortest or trivial shortest path problem is the shortest path computation between a source and a destination. Simplicity and efficiency of “First passing” algorithm was necessitated due to limited RAM and ROM memory of the robot. Most efficient algorithm for the search of the goal followed “First passing” algorithm presented in Fig. 1.
[image: image1.emf]MOVE

FORWARD

FOR ONE

AREA

LEFT

SENSOR

DETECTS

OBSTACLE

FRONT

SENSOR

DETECTS

OBSTACLE

TURN RIGHT TURN LEFT

YES

NO

NO

YES

STORE

ROTATION

SENSOR

READINGS

FRONT

LIGHT

SENSOR

OVER

GREEN PAD

NO

YES

GOAL FOUND

Fig 1. Flowchart of the “First passing” Algorithm
Using this algorithm, robot explored 99% of the maze and successfully found goal. Obstacles in the maze were arranged in a way that robot made two kinds of “mistakes”, meaning it could enter “dead end path” (double-dotted line in Fig. 2) or it could make unnecessary circle around obstacles (dotted line in Fig. 2). Solid line in the Fig. 2 represents movement by the algorithm “First passing” and dotted line represents movement after optimization.
[image: image2.jpg]

[image: image3.jpg]

Fig. 2. Actual movement by algorithm “First passing” and movement “mistakes” that will be optimized
After successful navigation through the unknown maze and discovery of the goal, memorized data are sent to the external processing unit for post processing.
3. ALGORITHM FOR THE FIRST AND SECOND OPTIMIZATION
We considered maze as a matrix system sized of 7x11 equal areas. Since data received from the robot are in a shape of rotation sensor readings, external data processing unit is needed to convert them into matrix coordinates. In this way we had precise robot movement where its each step is shown as a pair of coordinates presenting rows and columns. Algorithm for conversion to matrix coordinates layout is shown in Fig. 3.
[image: image4.emf]ROTATION READING

IS EQUAL TO ONE

AREA MOVEMENT?

ROTATION READING

IS EQUAL TO RIGHT

TURN?

ROTATION READING

IS EQUAL TO LEFT

TURN?

INCREASE VARIABLE

rot BY ONE

YES

DECREASE VARIABLE

rot BY ONE

YES

 VARIABLE

rot = 0

VARIABLE

rot = 1

VARIABLE

rot = 3 OR

rot = -1

VARIABLE

rot = 2 OR

rot = -2

INCREASE

ROW BY ONE

INCREASE

COLUMN BY

ONE

DECREASE

ROW BY ONE

DECREASE

COLUMN BY

ONE

YES YES

YES

YES

ARRAY OF

ROTATION

SENSOR

READINGS

STORE DATA TO

VECTOR v OF

THE CLASS Koor

ARRAY OF PATH

MOVEMENT

COORDINATE PAIRS

NO

NO

NO

YES

NO

NO

NO

NO

END OF

ARRAY?

YES

NO

Fig. 3. Algorithm for conversion to matrix coordinates layout

First optimization task is to remove “dead ends” from primary robot movement and it follows “First optimization” algorithm in Fig. 4.
[image: image5.emf]ARRAY OF PATH

MOVEMENT

COORDINATE PAIRS

END OF

ARRAY?

YES

ARRAY OF PATH

MOVEMENT AFTER FIRST

OPTIMIZATION

CURRENT COORDINATE PAIR

EQUAL TO REMAINING

COORDINATE PAIRS IN ARRAY

NO

YES

NO

STORE DATA TO

VECTOR v2 OF

THE CLASS Koor

NEXT

COORDINATE

PAIR

Fig. 4. “First optimization” algorithm

It is obvious that this algorithm searches for exactly the same pair of coordinates which points out that robot passed twice the same area of the matrix. Therefore, its movement between first passing through the area with repeated coordinates and second passing of the same area is unnecessary and can be removed from primary movement path.
Second optimization detects the possibility to shorten movement path vertically. As the “First passing” algorithm moves robot through the maze following left edge (left light sensor over black area), it is mandatory to examine if there are two pairs of coordinates that have the same column coordinate but their row coordinate differs by 1. Thus, robot made undesirable circle around the obstacle and all pairs of coordinates between discussed two areas need to be removed. “Second optimization” algorithm flowchart can be seen on Fig. 5.
[image: image6.emf]ARRAY OF PATH

MOVEMENT AFTER

FIRST OPTIMIZATION

END OF

ARRAY?

YES

ARRAY OF PATH

MOVEMENT AFTER

SECOND OPTIMIZATION -

SHORTEST PATH

CURRENT ROW COORDINATE DIFFERS BY ONE

FROM REMAINING ROW COORDINATES IN ARRAY

&&

CURRENT COLUMN COORDINATE EQUALS TO

REMAINING COLUMN COORDINATES IN ARRAY

NO

YES

NO

STORE DATA TO

VECTOR v3 OF

THE CLASS Koor

NEXT

COORDINATE

PAIR

Fig. 5. “Second optimization” algorithm

4. CONCLUSION
The paper presents path finding of non-autonomous robot and shows that it can be well optimized. It gives two optimization algorithms that are resource demanding and therefore executed by the external data processing unit. Future study should determine what is obligatory memory size required for robot's circuitry deployment so that it can calculate optimization algorithms on its own. By doing that, path optimization would be a real time system variable.
Furthermore, maze could be presented as three-dimensional space which would demand different robot construction and use of touch sensors.

Finally, an often-mentioned advantage of presented algorithms is that solution can be found even if maze topology or start position are changed, i.e. for adaptive maze scenery.
5. REFERENCES
[1] OVERMARS M., Programming Lego Robots using NQC, Departmant of Computer Science, Utrecht, 1999.

[2] KEKOA PROUDFOOT, RCX Internals, http://graphics.stanford.edu/~kekoa/rcx/#Intro, 1999.

[3] BALAGURUSA E, Programming with JAVA, Tata McGraw-Hill Publishing Company Limited, New Delhi, 1999.
[4] HEMPEL R., Mindstorms MazeWalker, http://www.hempeldesigngroup.com/lego/mazewalker/, 2000.
* University of Osijek, Faculty of Electrical Engineering in Osijek

