
An improved XML syntax for the Java
programming language

Marko Topolnik
University of Zagreb, FER

Unska 3, Zagreb, Croatia (HR-10000)
marko.topolnik@fer.hr

Abstract— The benefits of using XML to encode program-
ming language’s source code have already been identified
and XML syntaxes developed for this purpose. However,
there is an absence of a systematic identification of the
requirements that need to be met in order to fully leverage
the potentials of XML and the key concept of the abstract
syntax is being misinterpreted. Due to this the syntaxes
have various deficiencies, a number of which are common
to many of them. This paper clarifies the concepts, identifies
these deficiencies, and proposes a new syntax for the Java
programming language which avoids them. The superiority
of the new syntax is demonstrated by comparing it with
two of the most relevant publicly available syntaxes with
the same purpose.

I. INTRODUCTION

The benefits of using XML to encode programming
languages’ source code have already been identified [1],
[2] and XML syntaxes developed for this purpose [3], [4],
[5]. However, there is a lack of a systematic approach to
the identification of more precise goals the syntax should
achieve in order to fully leverage the potentials of this
approach. Particularly, it appears that the central concept
in the application of XML to source code, that of the
abstract syntax, is not being interpreted properly.

In order to explore this subject, a research project
named Jezix was started. The main goal of the project
was the development of an XML syntax for the Java pro-
gramming language that is based on the correct treatment
of the concept of the abstract syntax, which allows it to
optimally leverage the identified potentials of XML. The
results of the research were validated by demonstrating
the proposed syntax’s superiority over existing syntaxes.
This was achieved by solving several code analysis prob-
lems for the proposed and two of the most relevant
existing syntaxes and then comparing the amount of effort
needed and the properties of the resulting query code.

The next section gives an overview of source code and
XML. It repeats some well-known results of the formal
language theory, but also clarifies important concepts and
defines some terms used later. Section III presents the
two key benefits of using XML for source code. Section
IV reflects on the effects of using XML on the quality
of the machine-to-human interface. Section V presents
the most sensitive requirements the XML syntax has
to meet. Section VI gives a critical overview of other
existing syntaxes and identifies the common root of many
of their deficiencies. Section VII briefly introduces the
proposed syntax and proceeds to the presentation of the

results of its comparison with the two other syntaxes.
Finally, the closing section summarizes the achievements
and conclusions of the Jezix project.

II. OVERVIEW OF SOURCE CODE AND XML
A programming language has two important compo-

nents:
1) A set of basic concepts and a syntax (called the

abstract syntax) for combining them into a de-
scription of the desired behaviour of the program.
The description has the form of a tree, called the
abstract syntax tree (AST).

2) An alphabet of characters and a syntax (called the
concrete syntax) for combining them into a textual
encoding of the AST—the source code.

The text of the source code, then, is structured ac-
cording to the concrete syntax, whose rules are usu-
ally separated into two layers for easier formalization,
called the lexical and syntactic grammars. The compiling
process begins with the lexing of the source code text
into a sequence of tokens (character strings) according to
the lexical grammar. The token sequence is then parsed
according to the syntactic grammar and the result is a tree,
called the parse tree, or the concrete syntax tree (CST).
The syntactic grammar is formally a context-free grammar
(CFG [6]), usually defined in the Extended Backus-Naur
Form (EBNF). The rules of the grammar have to be such
that each valid token sequence can be parsed into exactly
one CST. Otherwise the grammar would be ambiguous:
it would allow different iterpretations of the same source
code text.

The AST is produced by processing the information
found in the CST and possibly additional information
from the broader environment, such as other code mod-
ules. The program description it represents can be re-
garded as the meaning of its source code document.
The abstract syntax contains additional, higher-level con-
straints so that only a subset of valid CSTs produce a valid
AST. In a typical programming language specification
these constraints are only described in plain English,
without precise formalization. The abstract syntax also
has an important formal property that sets it apart from the
concrete syntax: since it is never used for parsing, the idea
of ambiguity as defined above—and thus the associated
requirement—becomes irrelevant.

Although it can be argued what the essence of XML
is, for the purpose of this paper it will be regarded as



a formal language for describing trees in textual form.
That is, an XML document can be viewed as plain-
text source code of a tree-describing language. The tree
described by it is called the document’s infoset. The
concrete syntax of XML is formalized through EBNF
in the specification document [7] and the abstract syntax
is the generic syntax of the infoset, the one that has to
be respected by any well-formed document. The generic
infoset syntax is very lax, only defining several types of
nodes and specifying general rules about their allowed
combinations. It can be specialized through the use of
a schema. Typically, XML schema languages (e.g., DTD
and W3C XML Schema) allow the definition of what is
essentially a CFG adapted to the generic syntax of the
infoset. The document following the rules of a schema is
said to be valid with respect to it.

In particular, the schema can be defined so that it
corresponds with the abstract syntax of a programming
language. In this paper, the term source code infoset will
be used to refer to an infoset following such a schema.
The paper considers the idea of using the XML encoding
of the source code infoset in place of the regular source
code.

III. THE KEY BENEFITS OF XML

A. Task automation

Programming languages routinely use as the alphabet
of their concrete syntax the character set of a global text-
encoding standard, such as ASCII or the more recent
Unicode. The application of a global encoding standard is
a prerequisite for code portability because it has to be sup-
ported on every computing platform. It also makes it pos-
sible to develop generic text editors and text-processing
languages that can be used in a very broad range of
specific situations. These tools have been used extensively
in software development to manage big software projects,
automate analytical tasks, ease the coordination between
remote developers, etc.

XML relies on the existing text-encoding standards and
additionally standardizes an infoset-describing CFG. If
traditional source code (with language-specific concrete
syntax) is used, a generic process (shared by virtually all
languages with minor variations) can be defined to lex
the text into a series of tokens, but a language-specific
process (involving the language’s concrete syntax EBNF)
is needed to produce the CST. In addition, the abstract
syntax needed for transformation into the AST is not
even formalized by the language specification. With XML
the concrete syntax is always the same and a generic
XML parser can produce the infoset of any document.
In the scenario under consideration, the infoset will be
equivalent to the AST. This difference is illustrated in
Figure 1.

Owing to this, generic tools can be developed that
manipulate the infoset directly instead of its plain-text
encoding. Today there are several standardized infoset-
processing languages, the most important being XSLT
(W3C Recommendation since 1999) and XQuery (still in
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Fig. 1. Comparison: traditional source code and XML

the Working Draft phase, but many tools already imple-
ment it). The first key benefit of XML is that the generic
and widely supported infoset-processing languages can
be employed to drastically increase (in comparison with
text-processing languages) the complexity of automation
problems that are feasible to solve.

B. Orthogonal extensions

There are many kinds of metadata, not needed to de-
scribe the AST, but whose presence inside the source code
document is still desirable from a wider perspective. They
can be placed inside orthogonal extensions of the source
code document—“extensions” because they extend the
document’s primary content, and “orthogonal” because
they do not influence the way it is processed by the
compiler. The most well-known example of an orthog-
onal extension is embedded API documentation, such as
Javadoc. There are issues with adding such data items
to the traditional source code, stemming from the use of
a language-specific concrete syntax. The concrete syntax
provides only for the inclusion of the primary content in
the source code. If metadata are inserted as additional
tokens, they will break the syntactic rules. There are
solutions, but they have various drawbacks. For example,
Javadoc places its data inside comments. These data are
ignored by the language parser and hence they are not a
part of the resulting AST (except possibly as the unparsed
text of the comments). Another approach, introduced in
Java version 5, is to add support for orthogonal extensions
explicitly in the concrete syntax. It allows extensions
to be added inside “annotations” of the source code.
The metadata can appear in the AST, but they can be
placed only at predetermined locations. Even though it is



theoretically possible to add comments anywhere, Javadoc
still restricts the points of extension to reduce the clutter.
For example, documentation about a method is placed
above its definition. This calls for redundancy—method
parameters have to be referred to via their identifiers, for
example. The link can be broken if the parameter name is
changed, but not in both places at once. This is illustrated
in Figure 2.

/** @param newVal new attribute value  */

public void set( Object newVal )
{
  ...
}

Redundanc y Ignored by parser

Fig. 2. Problems with Javadoc

XML’s universal concrete syntax allows a new node
to be added anywhere without changing any rules. Also,
by employing the XML Namespaces standard, additional
nodes can be marked as not being a part of the primary
content—that is, as being metadata. There is no need for
a programming language’s schema to explicitly support
this feature. Figure 3 illustrates this. Notice the prefix
doc: on the description element. This places its name
into a separate namespace and is used to identifiy it as the
container of an orthogonal extension. Also notice how the
description element is placed inside the parameter element
and thus any redundancy is avoided.
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Fig. 3. Equivalent of Javadoc in XML

IV. HUMAN INTERFACE ISSUES WITH XML

The concept of a context-free grammar was developed
in an attempt to formalize the syntax of natural languages.
The reasons to employ a language-specific CFG for source
code are twofold: using a CFG in general allows the
code to inherit the structural characteristics of natural
languages and using a language-specific CFG allows it
to be closely related to the language’s abstract syntax.
This allows source code constructs to resemble natural
language sentences and makes the code easy to read and
write directly as text. On the other hand, with XML a sim-
ple, universal concrete syntax is used, generally unrelated
to the abstract syntax of the programming language. The
document looks much less like natural language text and
this makes it less readable. The use of a universal syntax

also introduces more redundancy so the documents are
bigger, usually by a factor of three to five.

But, in a comparison between generic editors for text
and XML as human interfaces, the XML editor can have
advantages of its own. XML can be presented in the form
of the infoset, not text. There will be no chance for the
user to create an ill-formed (unparseable) document. If we
accept that a global standard for a machine-processable
schema definition will be an integral part of the XML
framework, the editor would be able to monitor the user’s
input for mistakes and correct them at once. It would also
be able to help the user with a list of nodes allowed
at the insertion point. A text editor can achieve such
functionality only by being language-specific.

A tree-based user interface with schema-based assisting
seems like a very good interface for a beginner—node
labels can make the source code self-explanatory. But
to an experienced developer, working with the full tree
structure could become a burden. He will prefer to author
and read code using a more concise syntax. The use of
XML-based source code does not preclude such a form
of human interface, but it could be just one part of the
whole development framework, which could employ a
variety of human interface paradigms for code authoring
and presentation.

V. REQUIREMENTS ON THE SYNTAX

The key to successfully applying XML for source code
lies in a good design of the programming language’s
abstract syntax—more precisely, the schema of the source
code infoset. It has to allow the potentials of XML to
be fully leveraged. This section discusses the two most
sensitive requirements, which are both very important and
very involving to meet.

A. Query-friendliness

A query is generally a request to extract specified
information from a data source. One of the two most
important benefits identified above that XML can bring is
the advantage in task automation and practically any code-
processing task involves acquiring some information from
the source code document. That means that the automatic
processing of queries is crucial to task automation. If
the infoset syntax is not carefully designed, a piece of
information that could in principle be trivial to acquire
might require a very complex query. So before every
design choice is made, it has to be asked how it will
influence the queries.

B. Strict WXS definition

As already mentioned, native XML editors can use a
machine-processable schema definition in order to assist
the code author by suggesting the correct syntax at every
point and correcting mistakes. Also, any processing tool
will be more reliable and easier to develop if it can
rely on automatic validity checking of input documents.
These and other reasons make it important for the schema
definition to formalize as many rules of syntax as possible.

There is a choice of many XML schema languages
today with varying degrees of expressiveness. The W3C



XML Schema (WXS) is overall the most expressive
and, apart from the old DTD, the best-supported one.
It is establishing itself as the global standard and can
be expected to become an integral part of the XML
framework. This means that support for it will be taken
for granted on any computing platform.

In addition to automating validation, WXS introduces
a rich set of built-in datatypes and provides for the defin-
ition of new ones, including complex datatypes. By using
type information from the document’s schema definition
more sense can be made out of it in an automated way. For
example, the new generation of core XML technologies
(XPath 2.0 and XQuery 1.0 [8]) allow the formulation of
more powerful queries based on type information.

VI. RELATED WORK

Several publicly available XML source code syntaxes
were analyzed with respect to the stated requirements.
Some design choices which reduce their quality (make
them satisfy the requirements to a lesser proportion) were
repeatedly found in these syntaxes. For many of these
deficiencies a common root was identified: the design
of certain parts of these syntaxes is influenced by pro-
gramming language’s concrete syntax. This makes them
describe certain meanings in a complicated, roundabout
way that requires an unnecessarily sophisticated process
to automate their understanding. This is reflected in the
complexity of queries that have to access those meanings.
The probable cause of this is the typical structure of what
is called the AST inside compilers. The syntax of these
trees is not the true abstract syntax; it is actually very
close to the concrete syntax of the standard source code.
This section presents these analyzed syntaxes.

A. Syntaxes used for comparison

JavaML by Greg Badros [3] shares a number of design
goals with Jezix and is overall the most similar to Jezix’s.
The main difference is that it is designed to have a
stronger connection with the standard source code. Its
rules enable it to retain the exact choice of concrete syntax
constructs and even some formatting. This is an additional
source of weaknesses discussed below.
Uses special identifiers. The syntax does not explic-
itly support the expression types “class variable name”,
“static method invocation”, “qualified this”, “qualified
super” and “class literal”. These meanings are produced
by using keywords as identifiers so that, after the code
is transformed into the standard format, its meaning is
appropriate. Thus there are special cases in which the
meaning of the constructs changes according to rules
analogous to the rules of Java’s concrete syntax. This
makes the understanding of the constructs difficult to
automate. An example is the class literal expression,
written Object.class in the standard syntax:

<field-access name="class">
<var-ref name="Object"/>

</field-access>

Here a construct with the primary meaning “field ac-
cess” is used to encode the class literal by employing

the keyword class in place of the field name. Without
reference to the standard Java syntax, such a rule makes
no sense. It has a devastating effect on some queries, such
as those used in the comparison with the Jezix syntax.
Incomplete. The syntax definitely does not support the
expressions “qualified class instance creation” and “qual-
ified superclass constructor invocation”. They are not
expressible even in a construct that would have the correct
meaning after transformation into the standard source
code.
Language-specific concrete syntax is retained for some
constructs. This is in itself a deficiency, but it is made
worse by the fact that the meaning of these constructs is
context-dependent—it depends on the contents of other
visible code modules. For example, the package name
is not separated from type name (as in java.util.List

which can, depending on the context, mean a nested class
List inside the class util which is in the package java,
or a class List in the package java.util). The situation
is even more difficult in places where both variable
identifiers and type names can occur. For example, in the
construct

<field-access name="out">
<var-ref name="System"/>

</field-access>

System might be the name of a local variable, parameter,
attribute, or a type. Depending on the nature of the
referenced entity, the meaning of the construct thoroughly
changes. Another example of language-specific syntax is
in array type specification, which uses brackets as part
of the type name (as in Object[]). The meaning of this
construct is not context-dependent, so the only problem
is the need for language-specific string parsing.
Uses recursive forms to encode binary operations and
array access. Even though they are formally correct,
queries into such constructs are cumbersome and un-
readable. The concrete syntax uses the infix notation for
operations, which forces the binary operation model. The
left operand can be an operation of the same type, thus
forming a binary tree equivalent to a list. It is equally
correct to define operations as accepting a list of two or
more operands and the resulting constructs will be much
easier to process. Multidimensional arrays are modelled
in the concrete syntax as one-dimensional arrays of one-
dimensional arrays. Access of an array element is then
modelled as multiple nested accesses. It is equivalent and
more practical to treat arrays directly as multidimensional.
Represents parentheses. Operator precedence, as well as
parentheses made necessary by it, are strictly the conse-
quence of the infix notatation used in the concrete syntax.
In order to reduce the need for explicit operator binding,
operator precedence is defined and parentheses are used
when it needs to be overridden. The infoset syntax has no
reason to use the infix notation and operators are always
explicitly bound to their operands, so operator precedence
and parentheses only add unneeded complexity.
Includes formatting hints for the standard format.
The syntax supports the inclusion of line and column
number of a statement in the standard source code. These



could have been treated as metadata and added through
an orthogonal extension.
Schema definition in DTD lacks strictness. The DTD is
in general less expressive than WXS, but the DTD for this
syntax is also less strict than it could be. Some examples
are:

• Any text allowed as the symbol of a binary operation.
• Any combination of operations allowed, breaking

operator precedence and left associativity.
• Any combination of method modifiers (private, sta-

tic, final, abstract, etc.) allowed in every context.
Requires constructor name. Constructors in Java have
no name, but this syntax requires the name of the class
to be redundantly repeated as constructor name.
Does not define its namespace. Every XML syntax
should use a namespace. This is especially important for
the implementation of orthogonal extensions. DTD has no
direct support for namespaces, so its use is a problem in
this context as well.

JavaML by Evan Mamas [4] is another syntax with
similar goals as Jezix, but different design principles. It
is used in the IBM alphaWorks’ Reengineering Toolkit
for Java (ret4j). The syntax is explicitly based on the
AST from Java compilers, which results in many of the
following shortcomings.
Highly redundant construct for expressions. Even the
simplest expressions, such as a literal number, have to be
encoded with 19 elements nested inside each other. This
follows from Java’s concrete syntax EBNF that has to deal
with the issue of grammar ambiguity. By virtue of this,
the syntax enforces operator precedence and requires the
explicit use of parentheses to override it.
Unnecessarily complex constructs. Some constructs,
especially declarations (class, method, variable, etc.) and
primary expressions (method invocation, member access,
etc.) have unnecessarily complicated structure which re-
sults in processing overheads. This is an example of a
class declaration:

<TypeDeclaration>
<ClassDeclaration isPublic="True">

<UnmodifiedClassDeclaration
Identifier="DotTest" Extends="True">
<Name Identifier="BaseClass"/>
<Name Identifier="Interface1"/>
<Name Identifier="Interface2"/>
<ClassBody> ... </ClassBody>

</UnmodifiedClassDeclaration>
</ClassDeclaration>

</TypeDeclaration>

The same meaning is repeated by three nested
elements: TypeDeclaration, ClassDeclaration, and
UnmodifiedClassDeclaration. The Extends attribute is
unexpectedly of boolean type and specifies whether the
first in the list of Name elements that follow is the name
of a superclass instead of an implemented interface.
Incomplete. The construct “qualified super” is not sup-
ported.
Schema definition in DTD lacks strictness. The most
important example are the rules for defining accessibility
levels. Each level has a separate attribute, for example

isPrivate and isPublic. It is impossible in DTD (or in
WXS) to enforce the setting of only one of them to true.
This is an example where the very choice of a syntax rule
prevents its formalization in the chosen schema language.

The following items are equivalent to the ones al-
ready explained for the Badros’s syntax so they are
just listed: Language-specific syntax for type names;
Type and variable names can occur in the same
location; Requires constructor names; Does not define
its namespace.

B. Other syntaxes with similar goals

XQueryX [9] is an XML syntax, still under development,
equivalent to the concrete syntax of the XQuery language
(in [9] it is incorrectly called the abstract syntax). Apart
from the fact that it models the concrete instead of
the abstract syntax, two additional shortcomings were
identified:

• XML attributes are completely avoided and simple
elements are used instead. This enforces unneces-
sary syntactic constraints because subelements are
required to appear in a specified order even though
the order is semantically irrelevant.

• WXS’s type hierarchy and the associated special at-
tribute xsi:type attribute are used where the content
model of an element depends on the value of an
attribute. The special attribute always has the same
name irrespective of the meaning it represents. It is
also in a special namespace defined by WXS, and
the xsi prefix will have to be bound to it whenever
a query needs to access it.

XSLT [10] is the already mentioned infoset-processing
language, which employs an XML syntax for its source
code. The syntax is designed with the requirement on
the source code to be readable and writable as pure
text. This is achieved by employing a language-specific
concrete syntax at the lower level of detail (e.g., for XPath
expressions). This reduces the power of infoset-oriented
source code manipulation and prevents the formalization
of these parts of the syntax with a schema language.

o:XML [11] is an object-oriented programming language
based on an XML syntax. It leverages XML in two
ways: it introduces the “XML fragment” (a subtree of
the infoset) as a basic data type and uses the infoset to
hold the program description. Having XML fragments
as data types makes it much easier than in conven-
tional languages to manipulate complex data structures.
o:XML allows XSLT-style (pattern-oriented) and DOM-
style (object-oriented) infoset manipulation. The project
employs the concept of orthogonal extensions to imple-
ment frameworks for embedded documentation and unit
tests. What the language lacks from Jezix’s point of view
is a full representation of the AST in the source code
infoset. For the same reasons as XSLT, it reverts to a
language-specific syntax at the lower level of detail.

Superx++ [12] is also an object-oriented language uti-
lizing an XML syntax for source code. Its interesting



property is that it models the working memory as an
infoset, too, which should allow easy memory inspection
(querying), object serialization etc. It employs a language-
specific syntax for expressions. Instead of XPath, a pro-
prietary language is used that is less expressive and has
a different syntax. This is a shortcoming for a developer
already familiar with XPath. The current syntax formal-
ization in WXS is very lax, allowing arbitrary content for
many elements.

XML-Encoded Source or XES [13] is an XML syntax
for the encoding of the source code of multiple program-
ming languages. Its generality is based on the similar-
ity of programming languages’ concrete syntaxes. Since
different languages use the same syntactic constructs to
denote different concepts, the meaning of constructs in
XES is language-dependent. The syntax is formalized in
WXS and, in spite of the claims to generality, it is tightly
bound to the Java’s concrete syntax.

Source Markup Language, srcML [5] uses XML tags
to mark up the source code of the C++ programming
language. Every detail of the standard source code is pre-
served and the tags are used to overlay a partial concrete
syntax tree on top it. The tree is partial because, for
example, it leaves expressions unparsed. This approach
allows some benefits of XML to be leveraged without
losing any aspects of the standard source code.

VII. SYNTAX COMPARISON

A. The proposed syntax

The most involving part of the Jezix project was the
development of an infoset syntax for the Java program-
ming language and its formalization in WXS. Many of
the features of the syntax are described implicitly in this
paper as the lack of the shortcomings identified above in
the other syntaxes. Some key features are also evident
from the XQuery code presented in this section.

All the features of WXS were carefully studied in order
to determine how they can be employed to maximize
the schema definition’s strictness. In particular, a fea-
ture of WXS that goes beyond the expressiveness of a
CFG, uniqueness constraints, was employed to enforce
the uniqueness of some identifiers, such as the names
of attributes and method parameters. Another important
addition to the strictness of the standard syntax’s EBNF
are the constraints on the combining of expressions ac-
cording to their result type. For example, the schema
allows addition, but not a reference type cast, to be an
operand of multiplication. In the EBNF it is the other
way round, due to operator precedence.

In order to demonstrate the reasons why Jezix’s syntax
is superior to the existing alternatives, several query-
ing tasks were defined and their solutions developed in
XQuery for the Jezix syntax and for two of the most
similar and well-designed publicly available syntaxes. The
tasks were defined to be both realistic (have a practical
relevance) and focus on the identified deficiencies of the
alternatives. A query that would have a simpler solution

for an alternative syntax was not found. The only iden-
tified examples are queries where constructs are selected
by how they look when written down in the standard Java
source code format. This kind of query is irrelevant in the
context where standard source code is replaced by XML.
The solutions to two of the tasks used for comparison are
presented here.

B. Query task 1

Task: find all occurrences of expressions satisfying the
following pattern:

_ && _ && _ && ( _ || _ ) && ...

that is, a conditional and expression with four or more
operands where the fourth operand is a conditional or
expression with exactly two operands. For each matching
expression, return this fourth operand. For example, for
the equivalent of this source code:

boolean a,b,c,d,e,f,g,h,i,j,k,l,m,n,o;
...
a = b && c && d && ( e || f );
a = b && c && d && ( g || h ) && i;
a = b && c && d && ( j || k || l ) && m;
a = b && c && d && n | o;

this is what should be returned in case of the Jezix syntax:
<and-operations>
<op4>
<conditional-or>
<variable-access name="e"/>
<variable-access name="f"/>

</conditional-or>
<conditional-or>
<variable-access name="g"/>
<variable-access name="h"/>

</conditional-or>
</op4>

</and-operations>

Solution for Jezix
declare default element namespace
"http://tel.fer.hr/jezix/java";

<and-operations> {
for $op4 in document( "Task1.jxj" )
//conditional-and/*[4]
/self::conditional-or[ count(*)=2 ]

return <op4>{$op4}</op4>
} </and-operations>

The text of the query corresponds closely with the
description of the task. The main work is performed
by the XPath expression that selects all conditional and
expressions in the first step and then the fourth operand
of each of them. In the third step it selects only those
operands that are conditional or expressions and have
exactly two operands. The development of this query
required about ten minutes.

Solution for Badros’s JavaML
<and-operations> {
for $op4 in document( "Task1.jmlb" )
//binary-expr[ @op="&amp;&amp;" ]
[not(exists(binary-expr[@op="&amp;&amp;"]))]
/parent::binary-expr[ @op="&amp;&amp;" ]
/parent::binary-expr[ @op="&amp;&amp;" ]
/*[2]/self::paren/binary-expr[ @op="||" ]
[ not(exists(binary-expr[@op="||"])) ]

return <op4>{$op4}</op4>



} </and-operations>

This query is quite a bit more complicated and much
harder to understand. This is primarily due to the use
of binary operations. The query has to descend through
the nesting levels to reach the fourth operand and has to
do additional checking at every level. It also has to deal
with parentheses. The development of this query required
about two hours.

Solution for Mamas’s JavaML
<and-operations> {

for $op4 in document( "Task1.jmlm" )
//ConditionalAndExpression/
InclusiveOrExpression[4]

let $parExp := $op4/*/*/*/*/*/*/*/*/*
/UnaryExpressionNotPlusMinus/PostfixExpression
/*/PrimaryPrefix/Expression
where

count( $op4/* ) = 1 and
count( $op4/*/* ) = 1 and
count( $op4/*/*/* ) = 1 and
count( $op4/*/*/*/* ) = 1 and
count( $op4/*/*/*/*/* ) = 1 and
count( $op4/*/*/*/*/*/* ) = 1 and
count( $op4/*/*/*/*/*/*/* ) = 1 and
count( $op4/*/*/*/*/*/*/*/* ) = 1 and
count( $op4/*/*/*/*/*/*/*/*/* ) = 1 and
exists( $parExp ) and
count( $parExp/* ) = 1 and
count( $parExp/*/* ) = 1 and
count( $parExp/*/*/* ) = 2

return <op4>{$parExp/*/*}</op4>
} </and-operations>

In this case the query is very long and extremely
redundant. This is due to the excessive nesting levels
required for every expression in this syntax. The element
names are also unnecessarily long, redundantly repeating
the word Expression. This query took about three hours
to develop.

C. Query task 2

Task: find all classes/interfaces mentioned in the source
code document and return a sorted list of them with
separated package name, containing types, and local type
name. For example, for the equivalent of this Java code
(note that java.util.Arrays does not refer to a type):

package jezix.srctest;
class TypeTest {

TypeTest() {
Class c = java.util.List.class;
Nested java = new Nested();
int j = java.util.Arrays.i;
int k =

jezix.srctest.TypeTest.Nested.n;
}
static class Nested {

TypeTest util;
static int n;

}
TypeTest Arrays;
int i;

}

this is what should be returned:

<reference-types>
<reference-type package="java.lang"

name="Class"/>
<reference-type package="java.util"

name="List"/>
<reference-type package="jezix.srctest"
enclosing="TypeTest" name="Nested"/>

</reference-types>

Solution for Jezix
declare default element namespace

"http://tel.fer.hr/jezix/java";
<reference-types> {

for $type in document("Task2.jxj")
//reference-type

let
$enclosing := string-join(
$type/enclosing-type/@name,"."),

$localName := $type/@name
order by $type/@package,$enclosing,$localName
return <reference-type
package = "{$type/@package}"
enclosing = "{$enclosing}"
type = "{$localName}"/>

} </reference-types>

The main work (finding the required elements) is done
by this trivially simple XPath expression:

document("Task2.jxj")//reference-type

The rest of the query deals with output formatting. The
query required about half an hour, spent almost entirely
in the search for a concise solution for output formatting.

Solutions for the JavaMLs
The solutions for both JavaMLs are quite similar so

they are commented on together. The primary reason for
the huge complexity of these solutions to a very simple
task is that the JavaML syntaxes prescribe many different
ways of referring to a type, depending on the context.
Much of the complexity is also due to the use of keywords
where identifiers are normally found and to the use of
unparsed type names. In addition to being so complex, the
queries do not fully satisfy the requirements because it is
impossible to determine which parts of a composite type
name refer to a package, and which to enclosing types.
This is why instead of the two attributes, package and
enclosing, there is only one: package-and-enclosing.
The queries took about seven hours each to develop.

Function common to both solutions
declare function local:parseName(
$typeName as xs:string ) as xs:string* {

let $names := tokenize( $typeName, "\." )
return (string-join(
$names[ not(position()=last()) ], "." ),
$names[ last() ] )

}

Solution for Badros’s JavaML
declare function local:isKeyword(
$name as xs:string ) as xs:boolean {

$name="void" or $name="byte" or $name="char" or
$name="short" or $name="int" or $name="long" or
$name="float" or $name="double"

}
declare function local:isInScope(
$varRef as element() ) as xs:boolean {

let $declsInScope := $varRef/ancestor::*/field |
$varRef/ancestor::catch/formal-argument |
$varRef/ancestor::*/formal-arguments/

formal-argument |
$varRef/ancestor::*/loop/init/local-variable |



( $varRef/preceding::* intersect
( $varRef/ancestor::*/local-variable ) )

return exists(
$declsInScope[ @name = $varRef/@name ] )

}
<reference-types> {

let $root := document( "Task2.jmlb" )/*
for $typeName in

$root//superclass/@name |
$root//implement/@interface |
$root//throws/@exception |
$root//import[ not(ends-with(@module,"*")) ]

/@module |
$root//type[ not(ends-with(@name,"[]")) ]

[ not( @primitive = "true" ) ]/@name |
$root//var-ref

[ not( ends-with( @name, "[]" ) ) ]
[ not( local:isKeyword( @name ) ) ]
[ not( local:isInScope( . ) ) ]/@name

let $parsedName := local:parseName( $typeName )
order by $parsedName[1], $parsedName[2]
return <reference-type

package-and-enclosing="{ $parsedName[1] }"
type="{ $parsedName[2] }" />

} </reference-types>

Solution for Mamas’s JavaML
declare function local:isInScope(
$name as element() ) as xs:boolean {

let $declsInScope :=
$name/ancestor::Block[

exists( parent::TryStatement ) ]
/preceding-sibling::FormalParameter[1]
/VariableDeclaratorId |

( $name/ancestor::*/FieldDeclaration |
$name/ancestor::MethodDeclaration

/MethodDeclarator |
$name/ancestor::ConstructorDeclaration |
$name/ancestor::ForStatement/ForInit

/LocalVariableDeclaration |
$name/preceding::* intersect
$name/ancestor::*/LocalVariableDeclaration

)/*/VariableDeclaratorId
return exists( $declsInScope[

@Identifier = $name/@Identifier ] )
}
let $root := document( "Task2.jmlm" )/*
return <reference-types> {

for $nameEl in $root//Name[
exists(

parent::ConstructorDeclaration |
parent::MethodDeclaration |
parent::UnmodifiedClassDeclaration |
parent::AllocationExpression ) or

exists( parent::ImportDeclaration ) and
not( ends-with( @Identifier, "*" ) ) or

exists( parent::Type ) and
not( @Identifier = "void" ) or

exists( parent::PrimaryPrefix ) and
not( local:isInScope( . ) ) ]

let $parsedName :=
local:parseName( $nameEl/@Identifier )

order by $parsedName[1], $parsedName[2]
return <reference-type

package-and-enclosing="{ $parsedName[1] }"
type="{ $parsedName[2] }" />

} </reference-types>

D. Comparison summary

Table I summarizes the results of comparison presented
above:

• Time is the approximate time in minutes required to
develop the solution.

• Length is the length of the XQuery code in charac-
ters (optional whitespace was not counted).

TABLE I
SUMMARIZED RESULTS OF COMPARISON

Solution Time Length
Jezix 1 10 215
Badros 1 120 323
Mamas 1 180 622
Jezix 2 30 377
Badros 2 420 1362
Mamas 2 420 1373

VIII. CONCLUSION

The key benefits that the application of XML to pro-
gramming language source code can bring are better
support for task automation and for orthogonal extensions.
In order to fully leverage these potentials, the document’s
infoset should correspond with the AST of the source
code. There are several XML syntaxes for the Java
programming language that use this approach, but their
design suffers from various deficiencies. Their main origin
is in the fact that they are influenced by Java’s concrete
syntax, which makes them describe some meanings in a
complicated, roundabout way. This can have very negative
effects on the form of queries that have to access these
meanings. As a part of the Jezix project, a new syntax was
designed that avoids these deficiencies and its superiority
was demonstrated by comparing it with two of the most
relevant publicly available syntaxes. The comparison was
made by specifying several querying tasks and developing
a solution in XQuery for the three syntaxes. Queries for
the Jezix syntax are shorter, more readable and required
significantly less effort to develop.

REFERENCES

[1] H. Simic and M. Topolnik, “Prospects of encoding Java in
XML,” in Proceedings of ConTEL 2003, June 2003, pp. 635–641.

[2] E. Armstrong, “Encoding source code in XML, a strategic
analysis,”
http://www.treelight.com/software/encodingSource.html, 2000.

[3] G. J. Badros, “JavaML: a markup language for Java source
code,” in Proceedings of the 9th international World Wide Web
conference on Computer networks. North-Holland Publishing
Co., 2000, pp. 159–177.

[4] Y. Zou and K. Kontogiannis, “Towards a portable XML-based
source code representation,” in Proceedings of XML Technologies
and Software Engineering (XSE2001), 2001.

[5] M. L. Collard, J. I. Maletic, and A. Marcus, “Source code files as
structured documents,” in Proceedings of the 10th International
Workshop on Program Comprehension (IWPC’02), 2002.

[6] N. Chomsky, “On certain formal properties of grammars,”
Information and Control, vol. 2, pp. 137–167, 1959.

[7] “Extensible Markup Language (XML) Version 1.1,”
http://www.w3.org/TR/2004/REC-xml11-20040204/, World Wide
Web Consortium, 2004.

[8] “XQuery 1.0 and XPath 2.0 Data Model,”
http://www.w3.org/TR/xpath-datamodel/, World Wide Web
Consortium.

[9] “XML Syntax for XQuery 1.0 (XQueryX),”
http://www.w3.org/TR/2003/WD-xqueryx-20031219, World Wide
Web Consortium, 2003.

[10] “XSL Transformations (XSLT) Version 1.0,”
http://www.w3.org/TR/xslt, World Wide Web Consortium, 1999.

[11] M. Klang, “XML and the art of code maintenance,” in
Proceedings of Extreme Markup Languages 2003, 2003.

[12] “Superx++, XML-based OO Programming,”
http://xplusplus.sourceforge.net.

[13] “XML-encoded Source,”
http://www.euclideanspace.com/software/language/xes/index.htm.


	Introduction
	Overview of source code and XML
	The key benefits of XML
	Task automation
	Orthogonal extensions

	Human interface issues with XML
	Requirements on the syntax
	Query-friendliness
	Strict WXS definition

	Related work
	Syntaxes used for comparison
	Other syntaxes with similar goals

	Syntax comparison
	The proposed syntax
	Query task 1
	Query task 2
	Comparison summary

	Conclusion
	References

