Predicate Abstraction in Protocol Verification

Edgar Pek, Nikola Bogunovié
Faculty of Electrical Engineering and Computing
Zagreb, Croatia
E-mail: {edgar.pek, nikola.bogunovic}@fer.hr

Abstract— This paper presents how predicate abstraction
can be applied to protocol verification. Predicate abstraction
is a method for automatic construction of abstract state
graph. Basic idea is to use n predicates ¢, ..., ¢, defined
on concrete state space to generate abstract state graph.
Model checking is a formal verification technique which has
been successfully applied to protocol verification. But model
checking can only be applied to finite state systems. Many
interesting systems are infinite state or number of states
is so large that verification becomes infeasible. Predicate
abstraction can be applied in verification of infinite state
systems (or large finite state systems). Abstract state graph
created by predicate abstraction can be used for verification
of safety properties using a model checker. We provide
simple examples of protocol verification using predicate
abstraction.

I. INTRODUCTION

Correct functioning is implicit requirement for any
system. Fulfilling that requirement is especially challeng-
ing for distributed software systems. Distributed software
systems should appear as a coherent system in spite of be-
ing designed from many autonomous computers [1]. The
crucial part of those systems is communication between
components.

Communication can be made successful only if there
are rules that should be followed by communicating enti-
ties. That rules are called protocols. Design of protocols
that operate correctly is notoriously difficult. The main
reason is that protocols must deal with asynchronous and
concurrent computation in a heterogeneous environment.

Proper functioning of software system has usually been
achieved using informal techniques such as simulation
and testing. But those techniques can only be used to
detect flaws. If we want to establish correctness, then
formal methods based on mathematical logic must be
employed.

In this paper we will be concerned with formal verifi-
cation. There are two main approaches in formal verifi-
cation: deductive and algorithmic verification. Deductive
verification is a methodology in which correctness of
the system is established using axioms and proof rules.
Traditionally, proofs have been constructed entirely by
hand. That process is very time consuming and error
prone. Besides that, it requires considerable expertise
in mathematics and logic. Over the time various tools
have been developed which provided certain degree of
automation. Those tools are known as theorem proving
systems. In spite of automation, inherent characteristic
of theorem proving is that usually requires considerable
human intervention. However, theorem proving is a very

powerful technique because we have all the methods of
logic and mathematics at our disposal. We can verify
any system we want, if provided with enough time and
computational power.

Second methodology - algorithmic verification, is in
large sense orthogonal to the previously described ap-
proach. The algorithmic verification methodology is best
known as model checking [5]. Model checking is a
technique for verification of finite state systems. The main
idea is to perform exhaustive search of a state space to
check whether specified correctness condition can be sat-
isfied. The major advantage of the model checking is that
verification can be carried out completely automatically.
The main disadvantage is restriction to verification of
finite state systems.

It is clear that model checking and theorem proving
techniques complement each other. But, actual method-
ologies that combine these two approaches are still open
research problems. In this article we will concentrate
on one promising approach called predicate abstraction.
Basic idea of our work has been to apply predicate
abstraction to the problem of infiniteness that appears as
main obstacle in protocol verification. We have concen-
trated on two aspects of the problem:

« infinite state space due to unbounded data types,

o real-time aspect.

Motivation for this work is related to our previous
work. In [2] we have demonstrated verification of five
mutual exclusion algorithms. All these algorithms were
two process versions with finite data types. Abstractions
used in that work had been obtained ad-hoc, without
formal justification. It must be mentioned that all mutual
exclusion algorithms are parameterized, which is the
source of infiniteness, and cannot be tackled with classical
predicate abstraction. So, we will not deal with it in this
work. In our work related to verification of Bounded Re-
transmission protocol [3] we have obtained some under-
approximations concerning both data types and timing
aspects. Similarly in [4], we performed verification of
the configuration in Logical Link Control and Adaptation
Protocol from Bluetooth protocol stack. In all our work
we have used only model checking [5] techniques based
on symbolic state space representation by Binary Decision
Diagrams [6].

Predicate abstraction has been introduced as a tech-
nique for reduction of an infinite state system to a finite
state in the work of Graf and Saidi [7]. In that work, a
finite state system is obtained as an over-approximation
of an infinite state system. They have defined a technique

for generation of an abstract state graph and computation
of an abstract reachable state space (invariants). Bounded
Retransmission Protocol had been chosen as a case study,
but only basic facts about actual verification were pro-
vided.

Another verification technique based on the predicate
abstraction had been proposed by Col6én and Uribe [8].
In their work predicate abstraction is done on transitions
rather then on state space. Although potentially more
efficient than techniques which abstract state space that
technique usually yields coarser abstraction. Their work
has been implemented in a tool STeP (Stanford Temporal
Prover), but version of the tool that supports predicate
abstraction is not available.

Predicate abstraction in terms of protocol verification
has been studied by David Dill’s group at Stanford.
They have verified various protocols using tool Mur¢~ .
Some results are reported in [9]. Most of the work is
described in context of various approaches to predicate
abstraction, and examples are in Mwur¢~ " input lan-
guage. That tool is also not available, and there is no
documentation about the language. So, we have not been
able to fully understand the provided examples.

We have found the work of Saidi and Shankar [10] and
review by Shankar [11] to be most useful for our purpose.
Also, the idea of predicate abstraction as syntactic trans-
formation (as in [12]) is used in our work.

The rest of paper is organised as follows. In Section II
predicate abstraction will be described based on the [10]
and [11]. Section III presents a verification of the Bakery
mutual exclusion algorithm for two processes. In Section
IV the Fischer mutual exclusion algorithm is used as a
case study for real time verification by predicate abstrac-
tion. Additional insights about real-time verification based
on predicate abstraction came from work by Méller, Ruef3
and Sorea [13]. Finally, in Section V we will give some
concluding remarks.

II. PREDICATE ABSTRACTION

Intuitively, predicate abstraction provides a mapping
from a concrete to an abstract system. Concrete system
is usually an infinite state or has extremely large number
of states. Abstract system is a finite state, where states
correspond to truth assignments to a set of predicates
(defined on the concrete system). Now, we will provide a
formal description of the predicate abstraction.

Predicate abstraction is a methodology which is based
on the abstract interpretation [14]. Abstract interpretation
is the framework for defining abstractions. It is based on
the Galois connection.

Definition 1 (Galois connection). Galois connection is a
pair («,) that defines a mapping between a concrete do-
main lattice P(Q) and an abstract domain lattice P(Q4).
Where o and ~ represent two monotonic functions such
that:

V(Py, Py) € P(Q)xP(QY) | a(Py) C Py & Py C (Po).

The domain of the abstraction function « is poset (i.e. a
partially ordered set) P(Q) = (5, =), where S represent

sets of concrete states, ordered by = (implication). Range
of o are boolean formulas built from boolean variables
Bi,Bs,...,Bg. Let X and Y represent a domain of ab-
straction («) and concretization (v) function respectively.
Functions v and « can be implicitly defined as:

1Y) =\/{X | a(X) =Y}, (1)

a(X) = \IV | X = (1)} @)

In abstract space each boolean variable B; represents
all concrete states that satisfy predicate ¢;. So, the con-
cretization function can be obtained simply by replacing
each abstract variable B; with a corresponding predicate
@i, and each abstract state variable with a corresponding
concrete state variable. Thus, simpler definition of the
function +y is:

YY) = Y[¢i(s)/Bi(absy)]. 3)

The computation of the abstraction function is much
more intricate. As it was mentioned in the Section I there
are various approaches to the problem. We will present a
method described in [10] and [11].

Based on the definition of abstraction function (2) we
can conclude the following. For any predicate P over
the concrete variables, the abstraction «(P) of P can be
computed as the conjunction of all boolean expressions
satisfying the condition:

P = (b). “

There are 22° distinct boolean functions in k variables
(computation of (4) for all functions becomes very ex-
pensive). This set of functions is known as a set of
test points. An abstraction is precise with respect to the
considered abstract lattice if the set of test points is the
entire set of boolean expressions that form an abstract
lattice. Smaller set of test points can be used, but equation
(4) must still be valid. All those smaller sets represent
over-approximations (coarser approximations). The first
example of predicate abstraction [7] used the lattice of
monomials' as the abstract lattice.

Saidi and Shankar [10] provided a method for com-
putation of the abstraction function without the loss of
precision which is more efficient (i.e. it requires fewer
number of tests). To accomplish the goal they have chosen
appropriate sub-lattice and test points (see Theorem 1).

Theorem 1 (Sub-lattice and test points). Ler B =
{Bi1,...,Bx} be a set of boolean variables, and let
Ba be the boolean algebra defined by the structure
(B, A\, V,~,true, false). Let Dp be the subset of Ba
containing only literals and disjunctions of literals. To
compute the most precise image by o of any set of
concrete states P (given as a predicate), it is sufficient
to consider as a set of test points, the set Dp instead of
the whole set B4 of boolean expressions. That is, testing

P = ~(b) &)

"Monomial is a conjunction of b;’s where b; can be either B; or
—B;. Each b; can appear exactly once.

for all boolean expressions in B 4 is equivalent to test this
implication only for b in Dp. So, 2% tests can be reduced
to at most 3¥ — 1 tests.

Proof: Proof is based on the fact that each boolean
expression can be written in a conjunctive normal form
(CNF) as di A ... Ad;, where d; represent disjunction of
literals. So, proof of implication (5) for each element b can
be decomposed in proofs for d;’s. Thus, by testing only
elements in D we can cover all boolean truth functions.

On the grounds of the above theorem the computation
of precise abstraction is reduced from 22" to 3k —1 (recall
that k is the number of boolean variables representing
predicates). Moreover, actual number of tests can be
reduced because some of the tests for the elements d; €
Dp become redundant (e.g. because of subsumption). In
the following example we will illustrate the above theory.

a) Example: Suppose that we want to abstract a
formula x = y, which for example appears in a transition
relation of a protocol. Variables x and y are integers. First,
we must define predicates on the concrete space:

¢1ECI)‘>O
p2=y>0

Furthermore, let a and b represent boolean variables in
the abstract lattice.

According to (3) concretization function is defined with
~v(a) =2 >0 and v(b) =y > 0.

Based on the theorem 1 we create disjunctions d; and
for each d; test if x = y = v(d;) is provable.

TABLE I
DISJUNCTS d; AS TEST POINTS
L di [Fa=y=>~(d)
Fr=y=>x>0
-a Hx=y=>x %0
b He=y=y>0

—b Fr=y=>y #0

aVb Frx=y=>x2>0Vy>0
aV —b Fz=y=>a2>0Vy#0
-a Vb Fz=y=>x2#0Vy>0
—aV-b | He=y=x2f0Vy 0

Based on the results shown in the table I we can create
the abstraction of the atomic formula z = y:

alz=y) = (aV-b)A(—aAD). (6)

If we enumerate disjunctions in order of increasing
length (as it was done in table I) then we can reduce
the number of tests. If the test fails on a disjunction d;
but succeeds on the disjunction d; V g then we can skip
tests for:

1) the disjunction d; V —q, because if this test suc-
ceeded the d; would have also succeeded, and so
this test can be eliminated,

2) any disjunction that extends d; V g, since these are
weaker approximations, and therefore subsumed by
di \Y q.

Also, it is not necessary to consider any literals ¢ where

~v(q) and p share no variables since ¢ is irrelevant and
cannot contribute to the success of the test.

For instance, the last test —a V —b in the table I could
be eliminated because a V —b succeeded while —b didn’t.

In this section we have shown theory behind predicate
abstraction. In the following two sections we will apply
the theory on the two examples of mutual exclusion.

II1. BAKERY MUTUAL EXCLUSION EXAMPLE

In this section we will demonstrate predicate abstrac-
tion of the two process Bakery mutual exclusion protocol.
This example will show how predicate abstraction can
be used to tackle problem of infinite state space due to
unbounded data types. First, we will provide description
of the protocol, then results of predicate abstraction. The
results of predicate abstraction have been verified by a
symbolic model checker called NuSMV [15].

A. Two process Bakery mutual exclusion protocol

Protocol 1 Bakery mutual exclusion protocol

var yi,ys: integer;

initially 41 =y =0

P1 :

while true do
[0 : <noncritical section>;
{1: Y1 Z:y2+1;
[2: await yo =0 V 11 < yo;
13 : <critical section>;
4: yp:=0;

end while

P2 .

while true do
m0 : <noncritical section>;
ml: ys:=y1 +1;
m2: await y; =0 V yo < y1;
m3: <critical section>;
md: yy :=0;

end while

From the above description it can be noted that protocol
cannot be verified using finite state techniques. The main
reason is that the variables y; and y» are unbounded. Note
that, even if actual implementation is considered, state
space is very large for only two variables.

B. Predicate abstraction of Bakery protocol

As it has been shown in Section II, the first step in
predicate abstraction is definition of the predicates. In
this example we check only the basic property of mutual
exclusion, expressed as: both processes cannot be in the
critical section at the same time. Temporal logic formula
(expressed in Computation Tree Logic - see e.g. [5]) for
this property can be written as:

AG =(Pl.pc =13 N P2.pc=m3). (7

Usually, a temporal logic formula helps us to define a
suitable set of predicates. In this simple example, the
set of predicates is easily determined by looking at the

condition which guards critical section (I2 and m?2).
Based on this we propose the following set of predicates:

pr=1y1=0
p2=y2=0
d3 =y1 < Y2

Boolean variables that represent the abstract lattice are:
Bi, B, B3. Concretization function v is defined with
Y(B1) = (y1 = 0), ¥(B2) = (y2 = 0) and ¥(Bs) =
(y1 < y2). Now the abstraction function must be defined.
Let us consider transition defined as y; = ys + 1,
for which we can compute the abstraction function as
described in the example provided in Section II.

TABLE II
ABSTRACTION OF y1 := y2 + 1

| d; | oy = y2+1:>'y(di)
B Fyir:=y2+1=y1 =0
-B1 Fyir:=y2+1=y1 #0
Bs Fyir:=y2+1=y2=0
—Bs Fyir=y2+1= 32 #0
B1V B3 Fyii=y2+1= (y1 =0Vys =0)
B1 VB3 subsumed
-B1V B3 subsumed
—B1V —Bsg | subsumed

Based on the results in the table II, the abstraction of
transition y; 1= yo + 1 is:

a(y1 =Y + 1) = By A Bs. (8)

Equation (8) is equivalent to following assignments:
By := 0 and B3 := 0. Note, that we don’t need to
consider variable B5 since it is not affected with transition
relation. Similarly, we have abstracted all other transi-
tions. The abstracted version of Bakery mutual exclusion
protocol is shown as Protocol 2.

Protocol 2 Abstraction of Bakery mutual exclusion pro-
tocol
var By, By, Bs: boolean;
initially B1 = Bo =1,B3 =0
P1 :
while true do
{0 : <noncritical section>;
[1: By:=0, B3:=0;
[2: await B, V Bs;
[3: <critical section>;
4 : Bl = 1, Bg = _‘Bg;
end while
P2 .
while true do
m0 : <noncritical section>;
ml: By :=0, Bsg:=1;
m2: await B1 V _‘Bg;
m3 : <critical section>;
m4d: By:=1, B3:=0;
end while

We have translated the obtained version of the
Bakery mutual exclusion protocol into the NuSMV

input language. Using NuSMV engine for sym-
bolic model checking with BDD’s, mutual exclu-
sion (7) property has been successfully verified.
NuSMV files can be found on the web page:
http://fmg.zemris.fer.hr/Predicate Abstraction/Bakery/.

IV. FISCHER MUTUAL EXCLUSION EXAMPLE

This section will provide predicate abstraction of the
Fischer’s real-time mutual exclusion protocol. In this ex-
ample predicate abstraction will be used to abstract a real-
time system to a finite state system, which is amenable
to model checking. The source of infiniteness in this
example is caused by real-time aspects of the protocol.
As in the previous section, we give a protocol description
first and then results of the predicate abstraction.

A. Two process Fischer mutual exclusion protocol

Fischer’s mutual exclusion protocol (shown as Proto-
col 3) assumes uniform positive bounds on time each
process can wait before executing its next statement: an
enabled transition must wait at least L and at most U
before being taken. If 2L > U the protocol guarantees
that both processes are never in their critical sections
simultaneously.

Protocol 3 Fischer’s mutual exclusion protocol

var z : {0,1,2};
initially =z = 0
P1 :

while true do
10 : await x = 0;
1: z:=1;
12 : skip;
[3: await z = 1;
l4 : <critical section>;
5: z:=0
end while
PQ :
while true do
m0 : await z = 0;
ml: x:=2;
m?2 : skip;
m3: await z = 2;
m4 : <critical section>;
mb: x:=0
end while

Note that in Fischer’s real time mutual exclusion proto-
col we don’t have to deal with unboundness of data types
(variable x has a finite domain).

B. Predicate abstraction of Fischer’s protocol

Besides theory provided in Section II, we will use
insights from the work of Mboller, Ruefl and Sorea [13]
as well as from Colon and Uribe [8].

To model real-time systems it is necessary to augment
classical state transition systems with a finite set of real
valued clocks. The clocks proceed at a uniform rate and
constrain the times at which transition may occur. Those

transition systems are called timed automata. A formal
definition of timed automata can be found in [13].

As it has been mentioned in the previous section,
one of the main problems with predicate abstraction is
to define appropriate set of predicates. In the case of
timed automata it was shown in [13] that the set of
abstraction predicates expressive enough to distinguish
between any two clock regions determines a strongly
preserving abstraction. The set is called basis.

The main technical problem in the definition of the
abstraction is to guarantee fairness in the abstract model;
that is, to prevent delay steps to be abstracted into self-
loops on the abstract system. In the work of [13] that
problem is addressed by introducing restricted delay steps,
while in [8] there is a notion of time progress condition (in
the context of clocked transition systems). For our purpose
both approaches are equivalent. The only important thing
is to restrict progress of time.

First, we define the basis for the Fischer’s protocol.

®:={c; =0,c2=0,c1 <L,co <L,

©
c1>L,co>L,cy <U,co <U}

Where, ¢ and ¢, represent first resp. second process clock
variables.

We don’t have to use all predicates from the basis,
but rather we can incrementally add predicates until
abstraction is fine enough. That process is known as a
stepwise refinement.

In our example, two predicates from the basis set ¢ (9)
have been initially chosen:

¢pr=c1 > L
Ppo=co>L

Based on those two predicates we get the abstract version
of the Fischer’s mutual exclusion protocol. The procedure
for obtaining the concretization and the abstraction func-
tion is same as in Section III.

The abstraction of the Fischer’s mutual exclusion proto-
col (Protocol 4) must be augmented with a tick transition.
The abstraction of the tick transition just changes vari-
ables By and Bs. Variables can be non-deterministically
changed only when B; and Bs are false.

As in previous section, the protocol has been
described and verified using the NuSMV system.
NuSMYV input files for that example are available from:
http://fmg.zemris.fer.hr/Predicate Abstraction/Fischer/.

V. CONCLUSION

In this work we have presented how predicate abstrac-
tion can be applied to protocol verification. Predicate
abstraction is a methodology that combines two orthog-
onal verification approaches: theorem proving and model
checking. It relates powerful decision procedures from
theorem proving and automatic property checking on a
finite model from model checking.

The first problem when applying predicate abstraction
is defining appropriate set of predicates. Currently, there
is no proper formal procedure that would provide a
suitable set of predicates for a given protocol description.

Protocol 4 Abstraction of Fischer’s mutual exclusion
protocol
var z : {0,1,2}; B1, B2 : boolean;
initially z = 0, B1 = B2 = false
P1 .
while true do
10 : await (By Az =0);

1: z:=1;
(2 : await Bj;
[3: await Bj;

14 : await z = 1;
15 : <critical section>;
6: x:=0
end while
P2 .
while true do
m0 : await (Ba A x = 0);
ml: x:=2;
m2: await Bs;
m3 : await Bs;
m4 : await x = 2;
mb : <critical section>;
mb6: x:=0
end while

However, useful predicates can be obtained from a model
described with guarded commands. In that case, guards
are usually chosen as predicates. Besides that, property
being verified provides us with predicates that can be
useful. The process of finding good predicates still relies
on experience and domain knowledge.

The second issue in predicate abstraction is the creation
of abstraction. Abstraction can be created on various
levels. The first work [7] on predicate abstraction created
abstraction as a state graph. The approach described
in [12] considered abstraction on syntactic level. Our
approach is similar to the second approach, because
other techniques (symbolic model checking, partial-order
reduction) can be applied to the obtained abstraction.
Besides that, we must choose the appropriate abstract
lattice which must be expressive enough, but also should
not generate to much validity checks. Validity checks,
done by theorem prover, are the most expensive part in a
computation of abstraction.

From the aspects of properties that can be verified we
have been concerned only with properties expressible as
temporal logic formulas without existential quantification
over paths. These properties mostly fall in the class of
safety properties.

Two examples have demonstrated how predicate ab-
straction can be used to reduce an infinite to a finite
system. In the first example it has been shown how the
Bakery mutual exclusion protocol can be abstracted to a
finite state protocol. The main source of infiniteness in this
example has been unbounded data types. The results have
shown that predicate abstraction is just the right approach
for that class of systems. The second example has demon-
strated more subtle source of infiniteness, related to real-

time aspects of the Fischer’s mutual exclusion protocol.
Predicate abstraction can be successfully applied to this
kind of systems, but some rules must be followed. First,
one must choose a set of predicates which is expressive
enough to distinguish between two clock regions. Second,
progress of time must be restricted by some conditions to
ensure fairness.

The main problem that we will try to tackle in our
further work is infiniteness due to parameterization. Most
protocols are parameterized, so this is very important
issue. One of the ideas is to use quantified predicates in
the process of predicate abstraction. The main problem is
how to relate different instances of the same protocol.

REFERENCES

[1] A. S. Tanenbaum and M. van Steen, Distributed Systems: Prin-
ciples and Paradigms. Upper Saddle River, NJ: Prentice Hall,
2002.

[2] N. Bogunovi¢ and E. Pek, “Verification of mutual exclusion
algorithms with SMV system,” in Proceedings of IEEE Region
8 Eurocon 2003: Computer as a Tool, B. Zajc and M. Tkalcié,
Eds., vol. II. IEEE, September 2003., pp. 12-25.

[3] E. Pek and N. Bogunovi¢, “Formal verification of communication
protocols in distributed systems,” in MIPRO 2003, Proceedings
of the Joint Conferences Computers in technical systems and
Intelligent systems, B. Leo and R. Slobodan, Eds., May 2003.,
pp. 44-49.

[4] ——, “Formal verification of logical link control and adaptation
protocol,” in Proceedings of the 12th IEEE Mediterranean Elec-
trotechnical Conference, MELECON 200, M. Maja, P. Branimir,
T. Zeljko, and B. Ze]jko, Eds., May 2004., pp. 583-586.

[5] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking.
Cambridge, Massachusetts: The MIT Press, 1999.

(6]

(7]

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

K.L. McMillan, “Symbolic Model Checking: An Approach to the
State Explosion Problem,” Ph.D. dissertation, School of Computer
Science, Carnegie Mellon University, Pittsburgh, PA, May 1992,
CMU-CS-92-131.

S. Graf and H. Saidi, “Construction of abstract state graphs with
pvs,” in CAV ’97: Proceedings of the 9th International Conference
on Computer Aided Verification. Springer-Verlag, 1997, pp. 72—
83.

M. Colén and T. E. Uribe, “Generating finite-state abstractions
of reactive systems using decision procedures,” in CAV ’'98:
Proceedings of the 10th International Conference on Computer
Aided Verification. ~ Springer-Verlag, 1998, pp. 293-304.

S. Das, D. L. Dill, and S. Park, “Experience with predicate
abstraction,” in 1/th International Conference on Computer-Aided
Verification. Springer-Verlag, July 1999.

H. Saidi and N. Shankar, “Abstract and model check while
you prove,” in CAV ’99: Proceedings of the 11th International
Conference on Computer Aided Verification. Springer-Verlag,
1999, pp. 443-454.

N. Shankar, “Automated verification using deduction, exploration,
and abstraction,” pp. 333-351, 2003.

S. Bensalem, Y. Lakhnech, and S. Owre, “Computing abstractions
of infinite state systems compositionally and automatically,” in
CAV ’98: Proceedings of the 10th International Conference on
Computer Aided Verification. ~ Springer-Verlag, 1998, pp. 319—
331.

M. O. Moller, H. RueB, and M. Sorea, “Predicate abstraction
for dense real-time systems,” Electronic Notes in Theoretical
Computer Science, vol. 65, no. 6, 2002, full version available
as Technical Report BRICS-RS-01-44, Department of Computer
Science, University of Aarhus, Denmark.

P. Cousot and R. Cousot, “Abstract intrepretation: a unified lat-
tice model for static analysis of programs by construction or
approximation of fixpoints,” in Conference Record of the 4th
ACM Symposium on Principles of Programming Languages, Los
Angeles, CA, Jan. 1977, pp. 238-252.

R. Cavada, A. Cimatti, E. Olivetti, M. Pistore, and M. Roveri,
NuSMV 2.1 User Manual, 2002. [Online]. Available: http:
/Mmusmv.irst.itc.itYNuSMV/userman/v21/nusmv.pdf

S. Das, “Predicate Abstraction,” Ph.D. dissertation, Department of
Computer Science, Stanford University, Stanford, CA, December
2003.

