
Framework for Graphical User Interface Personalization in Interactive

Television

Tomislav Ćurin, Hrvoje Bašić, Mario Žagar

Faculty of Electrical Engineering and Computing, University of Zagreb, Croatia

 tomislav.curin@fer.hr ; hrvoje.basic@fer.hr; mario.zagar@fer.hr

Abstract. Along with the inevitable

digitalization of television, new interactive

services are becoming available. One of the vital

parts of such interactive applications are their

graphical user interfaces. This paper describes

the framework for more efficient development of

personalized graphical user interface for

interactive television applications based on the

MHP standard.

Keywords. Interactive television, MHP,

personalization, framework, graphical user
interface.

1. Introduction

The breakthrough of digital television

encourages the introduction of interactive
services and applications which can be
broadcasted along with the television program.
Numerous possible applications come to mind
when interactive television (iTV) is mentioned.
Electronic program guides, various information
services (i.e. super teletext, stock tickers), video-
on-demand, e-commerce and home banking,
gaming and applications synchronized to TV
content are some of the most typical examples.
The spectrum of possible services is not limited
to those, in the future it will be extended to many
others, some of them not yet conceivable today.
As every new opportunity brings new

challenges, it is also the case with interactive
applications. Among many concerns that arise is
the construction of the graphical user interface.
The user interface, as the part of the system that
is directly exposed to the user, is one of the key
elements in the application design, and its role is
even more important in iTV applications. An
application that seems to be too simple may be
considered boring, uninteresting, and too
business-like. This is why special attention has to
be focused on the pleasant appearance of the
application [9].

However, designing the user interface for
television is something that is quite different
from PC graphical user interface design. As
noted in [7], user interface development is more
complex for this type of platform when
compared to that for a desktop computer as many
constraints are set on the look and feel. The use
of complex graphical interfaces is limited
because television screens have low resolution
compared to PC monitors. Furthermore, some
colour combinations that look good on a PC
monitor don’t display well on a TV screen, and
certain backgrounds tend to display distorted and
unreadable [6]. The lack of input devices like a
mouse, and most of the times even a keyboard,
which are common tools in PC systems, just adds
to the complexity of the user interface design for
iTV applications. Developers can only rely on
the fact that the typical end user is equipped with
the remote control.
Another issue that comes along with iTV is

indispensable internationalization of the
applications. From the developer’s point of view
supporting one language (e.g. English) would be
preferred as it requires less work and is cheaper
to produce. From the users’ point of view,
however, the possibility to use menus in their
own language is a huge benefit [3].
Despite the tremendous potential, the uptake

of iTV by consumers is still relatively slow. To
ensure broad adoption, digital television will
have to take usability issues thoroughly into
account [1]. Personalization through adaptive
graphical interface and multilingual support are
some of the factors that would aid better
usability. Since the support for development of
the iTV applications is the area which has yet to
grow, implementation of these elements is
usually not an easy task at all. Therefore, our aim
was to create a framework that would support
simple realization of the mentioned elements.
This paper deals with the description of the
created framework, specifically designed for the

Multimedia Home Platform – MHP – which is
emerging as the internationally accepted standard
for interactive television.

2. Multimedia Home Platform

Over the past couple of years, the Digital

Video Broadcasting consortium (DVB), as the
leading standardization group in digital
television, has put lots of effort into creating an
open standard platform specification for
interactive digital TV and multimedia services.
Its aim was to standardise elements of the home
platform (set-top box, television etc.) that would
be the key to the success of interactive
multimedia applications in the future [2]. Such
Multimedia Home Platform – MHP – would
allow portability of interactive television content
and enable broadcasters and operators to provide
universal services for all compatible decoders,
ranging from low-end to high-end set top boxes
and integrated digital TV sets.
The technical specification of the MHP has

been developed against a comprehensive set of
commercial requirements that address the needs
of both commercial and public sector
broadcasters [5]. It was intended that MHP
would facilitate the development of an open,
horizontal market for vendors, authorities and
broadcasters. In the year 2000, DVB eventually
succeeded to complete the MHP specification.
MHP defines a generic interface between

interactive digital applications and the terminals
on which those applications execute. It consists
of a user terminal (PC, integrated TV, digital set-
top box, associated peripherals, in-home digital
network), a standard middleware, and a suite of
APIs that are capable of supporting a range of
services [2].

A

P

I

Resources

 System software

Applications ApplicationsApplications

Application

manager

Figure 1: MHP Layers

The architecture of an MHP set top box can
be considered in terms of three layers (Fig 1):

• Resources
• System software
• Applications

The resources layer is responsible for MPEG
processing, I/O devices, CPU, memory and
graphics system. System software layer accesses
available resources to provide an abstract view of
the platform to the applications. Implementations
include an application manager to control the
MHP and the applications running on it [11].
DVB has also decided to adopt Java

technology and to base MHP around DVB-J, a
subset of Java which includes a virtual machine
as defined in the Java Virtual Machine
specification and also provides extensions which
are suitable for interactive TV applications.
Standard Java authoring tools may be used to
design DVB-J set-top box applications.

2.1. Graphics on MHP

MHP graphics architecture is composed of
three different overlapping planes, from back to
front: background, video and graphics (Fig 2).
An application is provided with a contiguous

rectangular region of the graphics plane in which
it can draw, place video, interface elements and
graphics. Applications can also control video on
the video plane outside of the graphics plane, and
place still images, video drips or solid colour in
the background plane [2].

Viewer

Background planes

Video planes

Graphics planes

Figure 2: Illustration of the different types of
display planes [2]

Graphics API on the MHP comes with the
significant design constraints as Swing classes,
which are usually used for GUI design in Java
applications, are not included in the MHP
standard. The graphical user interface API
defined in MHP is based around a subset of Java
Abstract Window Toolkit (AWT) which includes
only graphics primitives and event handling. It
does not include heavyweight widgets such as
buttons and text fields. To aid user interface

design, MHP API also encompasses Home
Audio/Video Interoperability Level 2 User
Interface extension (HAVi), which allows Java
applications to determine the user interface
capabilities of its host display device, accept
input from the user, draw to the screen and play
audio clips [12]. HAVi includes ready-made
components specially designed for usage on TV
screens and also solves issues related to video
and graphics integration.
Although HAVi user interface

implementation should be the same on all set-top
boxes, the layout of the components is
sometimes very different with the different
receivers [9], and in our experience, on some
receivers not valid at all. This is a substantial
issue, especially as the broadcasters consider it
very important that they are able to precisely
control the look and feel of their applications and
services, and that if they cannot control the look
and feel of the resident widget set, they will not
use it [8]. In addition to compatibility obstacles,
an application using HAVi components typically
functions slower than an application with the
user interface components implemented using
the Java language [9].
Given the state of facts, we decided to build

our own GUI library of custom made widgets
using AWT primitives. However, HAVi was not
completely bypassed, and some fundamental
parts of it were utilized. We also decided to build
a framework along with the library which would
allow easy configuration of application look and
feel and support for multiple languages. In
addition, an essential requirement was that the
framework provides a possibility to alter the
graphical user interface during runtime, without
the need to recompile the application.

3. Framework description

The framework consists of two independent
parts, component interface – a GUI library which
contains a widget set for general usage, and the
skin interface, which provides mechanism for
implementation and distribution of custom look
and feel as well as multilanguage support.

3.1. Component interface

The idea to circumvent usage of HAVi and to
create application specific widgets is not a
novelty, quite opposite, it is probably the most
popular method for the applications to provide
their own look and feel [4]. However, this

approach has some drawbacks, most important,
such widgets typically cannot be reused in other
applications.
In our GUI library we have created a standard

widget set which can be extended at a later time
if needed. Applications can use the widget set to
draw graphical components on the screen as well
as to receive and to respond to user events from
interactive devices (e.g. remote control or
keyboard). Library implementation is based on
AWT and follows HAVi specification. Base
classes, AComponent and AContainer are derived
from HAVi HComponent and HContainer
classes. Component interface hierarchy is
presented in a diagram on Fig 3.

AComponent

InteractionText Input

AnSingleline

Entry

AnMultiline

Entry

AnButton

AnToggleBu

tton

AnTabbed

Button

AnListbox

AMessage

ALabel

AnMessage

ATimerLabel

AProgress

Bar

AContainer

AToggle

Group

ATabbed

Container

AColorButtons

Container

ASpinner AnSpinner

Figure 3. Component hierarchy

Following groups of widgets have been
developed:

• Text widgets
• Input widgets
• Action widgets
Text widgets can display text in one or

multiple lines. User interaction is needed only to
scroll text down or up if text dimensions exceed
the widget size. Input widgets provide means for
users to input text in one or multiple lines.
Action widgets are various types of buttons (e.g.
simple text button or toggle button), which allow
users to induce different types of actions.

In order to be consistent with the HAVi
specification for interaction states, components
are divided into two groups:

• Non-navigable components, which
cannot acquire focus and can only enter
two states: enabled or disabled.

• Navigable components can acquire
focus, and can have extended number of
states.

The component’s visual presentation on the
screen is tightly related to its state. Every
framework component must have an associated
class which implements rendering methods for
fill, border and text effect. Following default
classes are implemented: FillEffect, BorderEffect
and TextEffect. FillEffect determines background
fill method, BorderEffect renders border if one is
needed, and TextEffect is used to set text
preferences. When necessary, paint method in
one of these classes can be overridden in order to
implement a specific component look. Once
defined, effect class can be reused on every other
component with the same number of states.
In order to respond to events, components

keep their internal list of registered event
listeners. When events occur, a component
notifies all listeners about it. The event model
follows that of HAVi’s, with some extensions.
Since actions in MHP environment (e.g. local
data loading, downloading from a broadcast
stream, navigating through the application) are
often quite slow, we found it convenient to
provide a mechanism for indication to the user
that an event is being processed. For that
purpose, apart from the standard HAVi events,
we introduced a new event, called
ProgressEvent, which conveys progress of an
action. Components registered as progress
listeners are notified about action progress: its
start, change and stop. The component can,
depending on its type, display progress status or
perform any other action as needed.
Lastly, several helper classes have also been

implemented. Mainly container classes, they
implement appropriate grouping of toggle
buttons (e.g. toggle group or tabbed container).

3.2. Skin interface

One of the most valuable capabilities of the

Swing toolkit is its pluggable look and feel
architecture, which allows seamless changes in
the application appearance and the way an
application interacts with the user (i.e skin). This
can occur without modifying or recompiling the

application and it can be invoked
programmatically during any single JVM session
[10]. However, as already noted, Swing is not
incorporated in the MHP specification, so
unfortunately this feature cannot be utilized.
HAVi user interface contained in the MHP

standard includes HLook interface, which defines
the mechanism by which the content for the
particular state of the widget can be rendered
[12]. This should allow easy construction of
many presentation styles. However, it is very
inconvenient to define new look class for
different component types. Also, HAVi lacks
support for non-programming modifications of
user interface. The possibility to define skin
through a property file was one of the main
objectives of this framework. Besides that, strong
arguments for avoiding HAVi were already
mentioned compatibility problems.
In our framework implementation, the skin

interface is used to load visual properties of the
application. Attributes of the widgets contained
in the application can be defined in the property
file and loaded using Java Reflection API. It is
possible to define every widget property which
can be accessed through the setter method.
Main features of the skin interface are:

• Loading of images and sounds
• Splitting larger images into smaller

chunks (loading sequence of images)
• Multiple language support
• Possibility to define data arrays

Components with visual identity defined in
the property file which contains skin data are
created in several stages:

• Properties loading. Properties from
the configuration file are loaded into
the properties table.

• Property objects creation. Property
objects are created by iterating
through the values contained in the
properties table from the first step.

• Widgets creation. Visual component
objects are instantiated, and their
visual characteristics are specified
using property objects from the
previous stage.

• Widgets usage. Finally, component
can be used in the code and added to
the application’s graphics plane.

An application can also load a still
background image specified in the configuration
file and place it in the background plane as
defined in the MHP specification [1].

Lastly, multilanguage interface was a
considerably simpler task to accomplish as MHP
includes ResourceBundle class of the Java API
which provides means to detach translatable text
and localizable objects from the source code.
Therefore only a wrapper class had to be realized
for retrieving and formatting of localized data.
One problem that remained is that text size of the
expressions can vary among the different
languages. Therefore, all the widgets have
additional boolean property called resizeToText.
Setting this flag to true will instruct widget to
automatically change its size and position on the
screen depending on the calculated text length.

4. Prototype application

A prototype of the message client application
was built using the described framework.
Properties of all widgets used in the application
were defined and loaded using the framework.

Figure 4. Prototype application

The layout of the application’s main screen
was divided into four logical sections (Fig 4). A
section that contains image buttons (SMS, MMS
or E-mail) grouped into single radio button group
was placed in the left part of the screen. By
selecting one of these buttons, the user can select
desired message type. A list box containing
messages kept in the current inbox was placed at
the screen centre. After selecting message type,
the user can scroll through the inbox list, select
and read a message. Action buttons for deleting
the message or creating a new one are positioned
in the lower central section. Finally, at the
bottom of the screen, there is a static container
with coloured and text labels representing red,
green, blue and yellow buttons of the remote
control. Those buttons are used for navigation
through other application screens.

By specifying a new property file and
defining a few new images, we achieved an
entirely different application look and feel
without any code modifications. As it can be
seen on Fig 5, sections and all widgets had their
screen position altered. Beside position changes
all widgets have a different appearance. In
addition, the background image was modified,
and the application language was set from
English to Croatian.

Figure 5. Prototype application - modified

The possibility to make such look and feel
changes during application runtime opens up a
path for a scenario where the user is allowed to
select among several predefined skins and
immediately see the results of his selection. User
selection can then be stored in the database on
the server side of the application as the user’s
personalized choice and loaded as the preferred
skin each time she or he logs in. Extending the
application with a new user interface should then
be a simple task of two steps:

• define a new skin in a configuration
file and prepare it for broadcast

• update the database on the server side
with information about the skin

5. Conclusion

The need for the described framework

emerged as a consequence of the important
demand to provide users with the way to
customize application to their own needs.
Methods of application customization include
prespecified adaptive graphical user interface
and multilingual support, which is beneficial in
an interactive television environment. Fulfilling
these requirements would encourage wider
adoption of interactive television services among
potential users. We believe that these elements

could be efficiently realized with the proposed
framework. There are, however, many other
advantages of the framework from the
developer’s perspective as well.
Visual identity of an application that utilizes

the framework is separated from the other parts
of the application (as it is defined in the
properties file), which in turn makes it possible
to change application appearance during runtime.
That is quite valuable to the user, who can select
the preferred look and feel and promptly see the
results of his or her choice. It is of even more
value to the developer, who does not need to
make code modifications each time he or she
wants to adjust application GUI.
Moreover, reusability was one of our main

objectives, so none of the widgets contained in
the library has application specific features and
can be used in any other application. Reusability
approach in the way the components are being
defined in the skin interface has significantly
reduced application’s memory footprint. All of
the mentioned benefits are of great importance
during the development and testing phase in a
set-top box environment, which is typically
limited in memory and processor speed. Finally,
it is worth noticing that the widget library,
implemented as part of the framework, can be
easily extended with other widgets, either
general purpose or application specific.
The planned framework extension is usage of

XML file instead of Java property file. This
would provide easier skin definition and better
portability, but the drawback of this solution
would be the larger burden on the set-top box
resources as parsing of an XML file is a process
that takes more memory and processor time.
Possible workaround to this problem would be to
create a tool which would pre-compile XML file
into a format specially prepared for the
application (e.g. binary file). Other possible
extensions are related to the widget library which
could be extended with some commonly used
graphical components, namely horizontal and
vertical tickers, and virtual keyboard. Finally, an
IDE (e.g. Eclipse) plugin for visual editing of
GUI and automatic creation of a skin property
file would be an extension potentially of a great
benefit, although its development would
probably be a challenging task.

6. References

[1] Ardissono L, Kobsa A, Maybury MT,
editors. Personalized Digital Television:

Targeting Programs to Individual Viewers
(Human-Computer Interaction Series Vol.
6). New York: Springer; 2004

[2] Digital Video Broadcasting (DVB);
Multimedia Home Platform (MHP)
Specification 1.0.3. DVB; 2000.
http://www.mhp.org/index.php?id=216
[02/28/2005]

[3] Fernström J. Commercial Graphical User
Interface for Digital TV, Master Thesis in
Human Computer Interaction. Stockholm:
Centre for User Oriented IT Design, 2004;
http://cid.nada.kth.se/pdf/252.pdf
[02/28/2005]

[4] Morris S. Graphics APIs.
http://www.mhp-
interactive.org/tutorial/mhp/graphics.shtml
[02/28/2005]

[5] Newell JC. The DVB MHP Internet Access
Profile. BBC; 2002.
http://www.bbc.co.uk/rd/pubs/whp/whp-pdf-
files/WHP018.pdf [02/28/2005]

[6] O’Driscoll, G. The Essential Guide to Digital
Set-top Boxes and Interactive TV. Upper
Saddle River, NJ: Prentice Hall; 2000.

[7] Peng C. Digital Television Applications,
Doctoral Dissertation, Helsinki University of
Technology, Espoo, Finland, 2002.
http://lib.hut.fi/Diss/2002/isbn9512261723/
[02/28/2005]

[8] Peng C, Vourimaa P: Development of Java
User Interface For Digital Television
Proceedings of the 8th WSCG International
Conference on Computer Graphics,
Visualization and Interactive Digital Media,
2000 Feb 5-9, Plzen, Czech Republic. p.
120-125.

[9] Rinnetmäki M, Heikkinen M, Kosonen I,
Saarijärvi M, Pöyhtäri A, Nykänen P,
Saikanmäki A. A Guide for Digital TV
Service Producers. ArvID; 2004.
http://www.arvid.tv/java/Index?oid=84
[02/28/2005]

[10] Robinson M, Vorobiev P. Swing 2nd
edition. Greenwich: Manning Publications
Company; 2003.

[11] Smith-Chaigneau A. DVB-MHP - A
Snapshot. DVB Project Office, 2001.
http://www.broadcastpapers.com
[02/28/2005]

[12] The HAVi Specification, Specification of
the Home Audio/Video Interoperability
(HAVi) Architecture, Chapter 8 – Level 2
User Interface; version 1.1; 2001.
http://www.havi.org [02/28/2005]

