

Adapting Paintable Architecture Concepts to Wireless Sensor Networks

Marin Orlić, Igor Čavrak, Mario Žagar

Faculty of Electrical Engineering and Computing, University of Zagreb, Croatia

marin.orlic@fer.hr ; igor.cavrak@fer.hr ; mario.zagar@fer.hr

Abstract. Amorphous computing promises a

novel approach with massively distributed

systems. Research in the field hasn’t yet

produced any formal methodology for design of

such system.

 Paintable computing architecture provides an

interesting testbed for process self-assembly and

together with wireless sensor networks, presents

a platform whose goal is to tightly integrate with

its environment. Such a platform could combine

the best of both technologies while running

applications composed of fragments resembling

classical software agents capable of mobility.

 This article presents an introduction to

changes that are necessary to have all these

similar computing approaches unite.

Keywords. Amorphous computing, wireless
sensor networks, neighbourhood data sharing,
paintable computing.

1. Introduction

The fact that, when properly connected, large
numbers of processing nodes – although simple
for themselves – produce results comparable to
much larger machines, permeates most of the
scientific and industrial projects in the last few
decades. Networking itself holds no inherent
limitation to the size of nodes – if there is no
need for nodes to interact with humans directly,
nodes of any practical size can be imagined –
from huge communications centres to
breadcrumb sized micro-units dispersed in any
conceivable environment.

The idea of amorphous computing emerged
from the possibility that some day a networking
node itself could be just a small speck capable of
autonomous functioning, and for thousands of
such nodes to perform complex tasks.

Amorphous computing is defined as the effort
to produce engineering principles and languages
that can be used to observe, control, organize,
and exploit the behaviour of programmable

multitudes. The objective of this research is to
create the system-architectural, algorithmic, and
technological foundations for exploiting
programmable materials [1]. Such materials can
be considered biological in the same sense that
biological organisms are formed from multitudes
of relatively simple cells running genetic
programs shared by the whole colony.

Our goal is to produce such a system by
combining two of such paradigms – paintable
computing with its biological inclination and
wireless sensor networks with their capability to
react to environmental events. Some ideas for
adaptation of paintable concepts to sensor
networks will be presented, with the goal of
making it simpler to run (mobile) agents on this
platform. We believe it is possible to adapt
paintable methodology to be used on slightly
different hardware of wireless sensor networks
(WSN). Hopefully this effort would help to
simplify programming and use of WSN in
complex applications.

This article will explain basic properties of
the paintable platform with respect to the
possibility of their implementation and
adaptation to WSN platform. Paintable
architecture cannot be directly implemented on
WSN; however some of the concepts presented
can be used to reduce programming complexity.
Neighbourhood abstraction used in paintable
could is a valuable framework for WSN
applications – every application running on
distributed sensors needs a method for neighbour
discovery and local data sharing. Paintable
design shows that it is possible to use localized
data to construct application scaffolding
throughout the entire particle ensemble.

Code mobility provides a different
perspective to application development, similar
to agency. Agents could perform sensor data-
aggregation and calculations locally. Instead of
using generic aggregation schemes, every
application creates specialized agents for this
task increasing overall efficiency.

27th Int. Conf. Information Technology Interfaces ITI 2005, June 20-23, 2005, Cavtat, Croatia

natasa.intra
Line

2. Paintable architectures

Basic principles of a paintable computer have

been presented in [5], following the idea that
advances in process technology will soon enable
production of autonomous computing elements
the size of sand grains. Such computing
elements, call them particles, could easily be
suspended in any medium, provided they are
resilient to environmental stress – even painted
on some surface (as the name of the architecture
suggests), rendering it to some extent intelligent.

Basic architecture of a paintable particle
described by [5] consists of a microprocessor
with some memory and wireless transceiver (or
some other kind of networking device) contained
in a single package and powered parasitically.
Once powered, particles boot and organize
themselves, forming complex structures and
performing complex tasks. Such a system
resembles biological systems, using multitudes
of unreliable elements in unknown arrangements
growing into precise forms and behaviours.

Table 1 lists typical characteristics of a single
particle. Systems with such specification can
easily be constructed even today, with main
restraints being the communication (network)
and power subsystems. Communication
subsystem’s effect on power usage is drastic –
unlike in larger systems, most of the power on
small devices like WSN is used for
communications, with CPU power usage an
order of magnitude smaller.
 Theoretical paintable implementation has no
issues with power – ideally it should power itself
by harnessing environmental power, giving it
unlimited life span with respect to power. In
contrast, existing battery-powered devices life
span is in range of months.

Table 1. Typical characteristics of a paintable
particle

Subsystem Specification Comment

Processor
‘486-class at
~50MHz

Memory
50-100K words
RAM + OS in
ROM

Code/data
storage

I/O
Wireless, duplex at
>100Kbps

Broadcast

Power Environmental

Harvests
power from
immediate
environment

Essential properties of paintable making it
interesting for adaptation are [6]:

• self-assembly of unreliable (and cheap)
computing elements – particles, solving
issues plaguing complex systems like:

o fault tolerance,
o adaptive topology,
o complex system combinatorics,
o clock asynchrony between particles.

• relatively simple particle OS (or toolkit),
• program model based on relatively simple

process fragments (called pfrags) capable
of mobility between particles

Pfrags are described as autonomous, mobile
program entities capable of sensing and reacting
to their environment [5], a definition that closely
resembles that of a software agent.

Particle memory is segmented into areas –
pfrags run entirely from RAM memory and
contain all necessary buffer memory inside their
payload (pfrags are mobile entities). I/O space of
the particle is memory-mapped into pages, with
local HomePage acting as a proxy for
communication with neighbouring particles. All
data entered into local HomePage is mirrored to
all nearby particles where it appears in their I/O
space. This mirroring process is done by the
networking subsystem. Pfrags are allowed to
communicate data to other particles only through
posts in their local HomePage, thus simplifying
the system complexity from developers’
standpoint.

Particles have no ROM for static pfrag
storage – all pfrags in the system must enter
through I/O portals, external devices
masquerading as particles. Paintable is therefore
completely dynamic, the only static code is the
OS and any embedded OS toolkit functions
needed for basic particle functioning.

Paintable is designed to handle inherent
unreliability of particles themselves, implying
very large number of particles. The dynamicity
of the system makes it dependant on I/O portals
loading the application fragments into the
ensemble. Network usage during application
deployment is therefore very high until the
ensemble reaches the stable phase and pfrags
stop migrating between particles. Even with very
limited networking abilities, it is conceivable that
particle’s neighbourhood size can be a problem.
HomePage mirroring requires a lot of memory,
effectively reducing either the amount of data
that can be shared, or the maximum
neighbourhood size. The adaptation capacity and
fault tolerance can increase resource usage and

greatly reduce the possibility for its usage for
complex applications.

3. Wireless sensor networks

Wireless sensor networks (WSN) are a
propulsive field within pervasive computing,
following the idea that distributed sensing
environments can increase sensing reliability and
responsiveness using local computing power 0.

WSN follows the same basic principle as
paintable – sensors (motes) are (randomly)
distributed nodes capable of only simple
computing tasks, but unlike particles, motes are
equipped with one or many sensors. This
orientation to sensing guided basic construction
principles for motes. outlines typical
characteristics for a WSN mote.

One of key differences between mote and
particle architectures is that motes provide plenty
of ROM space, to be used for static program
storage, and scarce RAM resources.
Unlike pfrags which are completely dynamic,
motes allow only for static programs stored in
ROM (some motes allow this code to be changed
over the network).

Typical mote operating system is TinyOS,
although some motes run on Linux. TinyOS is
statically linked to program code and uploaded to
motes’ ROM memory. Program execution is
split-phase – TinyOS supports sequentially
executed code fragments called tasks, used for
long running computations. All tasks are
statically defined at compile time and posted for
execution when needed. Active tasks are
scheduled for execution on a FIFO basis.
Running task cannot be pre-empted by another
task, only interrupted by events (e.g. receipt of
data from the network or timers). To simulate
blocking I/O behaviour, an application should
use state machines to schedule appropriate tasks
for execution. Scheduling of multiple jobs
(threads) is also application-managed.

Table 2. Typical characteristics of a WSN
mote

Subsystem Minimal
Typical (Intel

iMote 2003)

Processor Atmel at 4MHz
ARM 7TDMI at
12-48MHz

Memory
8K ROM, 0.5K
SRAM

512K ROM, 64K
SRAM

I/O RF, 10Kbps
USB, GPIO, I2C,
Bluetooth

Power battery battery

4. Adaptation of paintable concepts to

wireless sensor networks

Paintable concept is an interesting experiment
in amorphous architectures, but inappropriate for
implementation regarding currently available
hardware platforms.

Key software concept embodied in paintable
architecture is that of dynamic, mobile programs
(process fragments) streamed into the particle
assembly through I/O portals. This is very
difficult to implement directly on WSN platform.
Motes do not allow dynamic code or partial
changes to ROM contents. Avoiding this
limitation could allow implementation of simple
mobile agents running on WSN. Since I/O
portals are impractical for systems running
autonomously without human supervision, all
necessary software would have to be preloaded
on (at least some of) the motes and executed
when the need arises. Identification of necessary
pfrags to be preloaded on motes is therefore
important, even more so if code mobility proves
to be too expensive.

HomePage paradigm presented in paintable
requires mirroring of entire HomePage contents
from one particle to another which greatly
simplifies the platform conceptually. Actual
implementation of such an idea requires,
however, several modifications – for instance,
neighbourhood size should probably be limited
in compile time due to the nature of TinyOS.
System designers must make a choice between
large number of neighbours or large amount of
data in HomePage. Mirroring and
synchronization of entire HomePage structures to
and from neighbouring particles presents a large
networking overhead, and severely damages
performance in the long run, energy-wise. This is
not a problem for paintable, with particles that
are powered from the environment, but a major
issue with WSN platform. Since most
applications need to share only a subset of data
between neighbouring particles, a modified
version of HomePage with additional
functionality allowing pfrags to mark data for
sharing provides an increase in functionality.

Additionally, in case that the whole
particle/mote ensemble runs multiple
applications, or different modules of the
application, with ensemble nodes dedicated to
providing different functionality, the volume of
mirrored data can be further reduced. Given that
all neighbourhood communication is broadcast,
network usage is already nearly minimal. If

HomePage module is further extended to allow
applications to pick only relevant data from the
entire broadcast dataset, cluttering memory with
unnecessary data is avoided.

Basic modifications necessary for successful
adaptation can be identified as follows:

• adapt software environment available on
motes to allow dynamicity in code
execution and some kind of code mobility,

• identify necessary pfrags and adapt them
to WSN platform.

• adapt networking subsystem of WSN
platform to provide neighbourhood
integration similar to HomePage concept,
but with integrated data sharing and
filtering capabilities to increase memory
usage efficiency.

Mentioned modifications will be discussed in

detail in the following chapters.

5. Software environment modifications

Process fragments (agents) running on motes
need to have some method of communication,
both locally (within a single mote) and with other
fragments situated on nearby motes. In the case
of communicating small amount of data (e.g. to
announce agent presence), the metaphor of
HomePage used in paintable is very appropriate.
To implement HomePage behaviour on WSN
motes, broadcast network capability is required,
and supported by TinyOS. Such broadcasts need
to be localized – the size of the neighbourhood is
limited by available local memory, since
HomePage data from all neighbouring motes
needs to be mirrored locally. Such behaviour is
not desirable if larger amounts of data need to be
transferred between agents, thus requiring
additional messaging systems other than
HomePage mirroring. HomePage posts can still
be used to provide framework for agent
synchronization. To provide uniform messaging,
HomePage post creation can simply be extended
to allow agents to prohibit mirroring for that
post, declaring the post private instead of shared.

Code mobility and dynamic execution of
agents could be performed in two ways,
depending on the type of system environment. In
case the system environment is static (in-the-
field scenario), no new agents can be introduced
into the system – I/O portals of some sort are
used solely to gather data collected by the system
and monitor and manage its performance. An

open, dynamic environment would typically be
used in ‘friendlier’ environments.

5.1. Static environment scenario

Static environment scenario could use motes
with preloaded native-code agents of all types,
and activate them when needed. Activation
messages would then be the equivalent of mobile
agent transfer and contain the agent state (in case
of strong migration) or just activation requests
(in case of weak migration), but no code, to
reduce communications overhead. After
activation message is received, platform would
prepare the agent for execution, load its instance
data and execute it. Forcing all motes to have
every agent in the system preloaded in ROM
poses a possible overhead in case an agent will
eventually be executed on just a fraction of the
whole mote ensemble. This can be reduced if
motes with different combinations of preloaded
agents are intermixed in sufficiently dense
deployments to allow redundancy of motes with
particular agents preloaded and mobility between
these motes.

5.2. Dynamic environment scenario

Dynamic environment supports dynamic
introduction of agents into the system, requiring
some sort of virtual machine. A sophisticated
virtual machine could perform its own
scheduling, blocking operations, manage access
to shared memory (HomePage) and data
exchange between agents. Virtual machine
approach leverages code mobility (smaller
programs) with higher CPU usage while
interpreting pseudo-instructions and slower
execution. Smaller programs allow for energy
savings when the system needs to be
reprogrammed (an agent migrates to a new
mote). Maté virtual machine (or virtual machine
toolkit) [2] supports code mobility and is proven
to be energy efficient when used with code that
is invocated infrequently. Maté follows basic
TinyOS structure, having execution contexts that
run code capsules. Simplifying development,
split-phase operations (command/event pairs in
TinyOS) are replaced with blocking operations
(just send instead of send/sendDone
command/event pair). Different VM
implementations based on Maté exists, and some
support multi-agent scenarios (Agilla [3]
supports up to 4 agents on a single mote). VM
code is compact and easily transferred over the

network, but motes still need to periodically
exchange code version information over the
network to synchronize the distributed code-
base. Complex applications pose a significant
energy overhead when implemented entirely
using any kind of virtual machine.

6. Framework design

 Sample agent support framework in closed
environment is outlined in Fig. 1.

Figure 1. Agent support framework

Modules like AgentManagerM, AgentM and

HomePageM are defined. AgentManagerM
module provides services required for agent
activation and migration (agent code is
preloaded). AgentManager posts agent’s update
commands for execution on each timer event.
AgentM functions as an interface for
communication with each agent. HomePageM
module provides toolkit functions (just a subset
is shown) to support posting items on
HomePage, and allows agents to register post
names to be mirrored from the neighbouring
nodes. When an item is created or updated,
HomePage posts a task to synchronize that
item’s data with neighbours if item is marked as
public and signals an event. Upon data receipt,
neighbouring particles pick interesting posts
(depending on current agent configuration of that
node) and mirror them. This approach reduces
the memory needed for HomePage storage, and
increases the network efficiency, since only
shared posts are broadcast. Neighbourhood
(mirrored HomePage array) size is limited in
compile time.

7. Selection of necessary process

fragments

The introduction to paintable architecture in
[5] describes several elementary pfrag
components useful for construction of complex
systems over paintable. Table 3 summarizes
some of them.

Not all of these sample components will be
necessary for crafting a particular system, but
their presence provides a basic framework for
implementing a wide range of complex
applications. In addition to listed components, a
family of messaging components will also need
to be defined, to allow message-based
communication between agents.

Table 3. Examples of self assembly on
paintable [6]

Component
Uses

pfrags
Description

Gradient 1
Estimates the shortest
distance back to a fixed
anchor point.

Diffusion 1

Accepts a data packet as a
payload, seeks to position
itself to minimize disparity in
local density.

MultiGrad 1
Virtual pfrag emulates
multiple Gradients.

Channel 3
Defines a bidirectional
communication channel
between two anchor points

Coordinate 5
Constructs 2D coordinate
system from 2 anchor points.

Motes are easily addressable, however the

location of particular mobile agent need not be
constant after the message is sent. To facilitate
tracking, each agent could emanate a gradient
field (using MultiGrad component present on all
motes). In case of a larger number of agents this
would however require too much memory to
track agents’ field strengths and overload the
motes.

8. Related work

Paintable architectures haven’t been used
solely in simulated experiments of self-assembly.
Although forming of complex structures requires
large number of particles, some interesting
applications can be tested even with relatively
small particle count. Concepts like localization
(particle ability to determine its own position

within the assembly) and clock synchronization
over the assembly were demonstrated with
pushpin platform [6]. A sample implementation
of paintable architecture, pushpin particles
receive power and connectivity through layers of
conductive materials in testbed’s surface.

Pushpin ensemble implements a modified
version of paintable platform, addressing some
of the issues outlined in this article.

Complexity and lack of formal methods for
analysis of amorphous systems increase the need
for actual hardware, real-world implementations.
Tested in real implementations, knowledge of
applied heuristic methods will eventually assist
to form formal methods, enabling engineering of
complex adaptive amorphous systems, just like
any other technical system. We hope that the
effort to adapt the architecture to easily available
hardware is the step in the right direction.

9. Future work

Future work will be directed to solving
problems outlined above to assist with an actual
implementation of mobile agents on wireless
sensor platform using neighbourhood abstraction
through HomePage. Issues of concern will be:

• implementation of HomePage-like concept
on mote architectures (blackboard-like
neighbourhood shared memory),

• implementation of agent hosting
framework, as described in static
environment scenario section,

• adaptation of basic self-assembly pfrag
toolkit (similar to those sample pfrags
noted above) to TinyOS platform.

With extensive use of neighbourhood for
reflective data storage and inter-process
communication, pushpin is an interesting testbed.
Practical implementations of its concepts are
necessarily limited in resources, and some
modifications are required. WSN platform is
designed with many constraints in mind, some of
them severely complicating application
development. A framework providing facilities
similar to those on paintable would allow
theoretical benefits of paintable to be tested on
real-world platform and compared with existing
applications

10. References

[1] Abelson H, Allen D, Coore D, Hanson C,

Rauch E, Sussman GJ, Weiss R, Homsy

G, Knight TF, Nagpal, R. Amorphous
Computing. Communications of the ACM,
vol. 43, 2000: p. 74-82.

[2] Levis P, Culler D. Maté: A Tiny Virtual

Machine for Sensor Networks.
Proceedings of 10th International
Conference on Architectural Support for
Programming Languages and Operating
Systems, October 2002; San Jose,
California.

[3] Fok C-L, Gruia-Catalin R, Lu C. Mobile

Agent Middleware for Sensor Networks:
An Application Case Study. Proceedings
of 4th International Conference on
Information Processing in Sensor
Networks; April 2005, Los Angeles,
California.

[4] Kahn JM, Katz RH, Pister KSJ. Next

Century Challenges: Mobile Networking
for “Smart Dust”. Proceedings of the 5th
annual ACM/IEEE international
conference on Mobile computing and
networking; 1999; Seattle, Washington,
United States; 1999. p. 271 – 278.

[5] Butera W. Programming a Paintable

Computer. PhD thesis: Massachusetts
Institute of Technology; February 2002.

[6] Paradiso, J, Lifton J, Broxton M. Pushpin

Computing. Responsive Environments
Group, MIT Media Lab. Massachusetts
Institute of Technology.
http://web.media.mit.edu/~lifton/Pushpin
[02/20/05]

[7] Lifton J, Seetharam D, Broxton M,

Paradiso J. Pushpin Computing System
Overview: A Platform for Distributed,
Embedded, Ubiquitous Sensor Networks.
In: Mattern F, Naghshineh M, editors.
Pervasive Computing, First International
Conference, Pervasive 2002, Proceedings;
2002 August 26-28, 2002; Zürich,
Switzerland; 2002. p. 139-151.

[8] Pottie GJ, Kaiser WJ. Wireless Integrated

Network Sensors. Communications of the
ACM, vol. 43, 2000: p. 51-58.

	Text12: Student Paper

