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Abstract. Amorphous computing promises a 

novel approach with massively distributed 

systems. Research in the field hasn’t yet 

produced any formal methodology for design of 

such system.  

 Paintable computing architecture provides an 

interesting testbed for process self-assembly and 

together with wireless sensor networks, presents 

a platform whose goal is to tightly integrate with 

its environment. Such a platform could combine 

the best of both technologies while running 

applications composed of fragments resembling 

classical software agents capable of mobility. 

 This article presents an introduction to 

changes that are necessary to have all these 

similar computing approaches unite. 

 
Keywords. Amorphous computing, wireless 
sensor networks, neighbourhood data sharing, 
paintable computing. 
 
1. Introduction 
 

The fact that, when properly connected, large 
numbers of processing nodes – although simple 
for themselves – produce results comparable to 
much larger machines, permeates most of the 
scientific and industrial projects in the last few 
decades. Networking itself holds no inherent 
limitation to the size of nodes – if there is no 
need for nodes to interact with humans directly, 
nodes of any practical size can be imagined – 
from huge communications centres to 
breadcrumb sized micro-units dispersed in any 
conceivable environment. 

The idea of amorphous computing emerged 
from the possibility that some day a networking 
node itself could be just a small speck capable of 
autonomous functioning, and for thousands of 
such nodes to perform complex tasks. 

Amorphous computing is defined as the effort 
to produce engineering principles and languages 
that can be used to observe, control, organize, 
and exploit the behaviour of programmable 

multitudes. The objective of this research is to 
create the system-architectural, algorithmic, and 
technological foundations for exploiting 
programmable materials [1]. Such materials can 
be considered biological in the same sense that 
biological organisms are formed from multitudes 
of relatively simple cells running genetic 
programs shared by the whole colony. 

Our goal is to produce such a system by 
combining two of such paradigms – paintable 
computing with its biological inclination and 
wireless sensor networks with their capability to 
react to environmental events. Some ideas for 
adaptation of paintable concepts to sensor 
networks will be presented, with the goal of 
making it simpler to run (mobile) agents on this 
platform. We believe it is possible to adapt 
paintable methodology to be used on slightly 
different hardware of wireless sensor networks 
(WSN). Hopefully this effort would help to 
simplify programming and use of WSN in 
complex applications. 

This article will explain basic properties of 
the paintable platform with respect to the 
possibility of their implementation and 
adaptation to WSN platform. Paintable 
architecture cannot be directly implemented on 
WSN; however some of the concepts presented 
can be used to reduce programming complexity. 
Neighbourhood abstraction used in paintable 
could is a valuable framework for WSN 
applications – every application running on 
distributed sensors needs a method for neighbour 
discovery and local data sharing. Paintable 
design shows that it is possible to use localized 
data to construct application scaffolding 
throughout the entire particle ensemble. 

Code mobility provides a different 
perspective to application development, similar 
to agency. Agents could perform sensor data-
aggregation and calculations locally. Instead of 
using generic aggregation schemes, every 
application creates specialized agents for this 
task increasing overall efficiency. 
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2. Paintable architectures 

 
Basic principles of a paintable computer have 

been presented in [5], following the idea that 
advances in process technology will soon enable 
production of autonomous computing elements 
the size of sand grains. Such computing 
elements, call them particles, could easily be 
suspended in any medium, provided they are 
resilient to environmental stress – even painted 
on some surface (as the name of the architecture 
suggests), rendering it to some extent intelligent. 

Basic architecture of a paintable particle 
described by [5] consists of a microprocessor 
with some memory and wireless transceiver (or 
some other kind of networking device) contained 
in a single package and powered parasitically. 
Once powered, particles boot and organize 
themselves, forming complex structures and 
performing complex tasks. Such a system 
resembles biological systems, using multitudes 
of unreliable elements in unknown arrangements 
growing into precise forms and behaviours. 

Table 1 lists typical characteristics of a single 
particle. Systems with such specification can 
easily be constructed even today, with main 
restraints being the communication (network) 
and power subsystems. Communication 
subsystem’s effect on power usage is drastic – 
unlike in larger systems, most of the power on 
small devices like WSN is used for 
communications, with CPU power usage an 
order of magnitude smaller. 
 Theoretical paintable implementation has no 
issues with power – ideally it should power itself 
by harnessing environmental power, giving it 
unlimited life span with respect to power. In 
contrast, existing battery-powered devices life 
span is in range of months. 
 

Table 1. Typical characteristics of a paintable 
particle 

Subsystem Specification Comment 

Processor 
‘486-class at 
~50MHz 

 

Memory 
50-100K words 
RAM + OS in 
ROM 

Code/data 
storage 

I/O 
Wireless, duplex at 
>100Kbps 

Broadcast 

Power Environmental 

Harvests 
power from 
immediate 
environment 

 

Essential properties of paintable making it 
interesting for adaptation are [6]: 

• self-assembly of unreliable (and cheap) 
computing elements – particles, solving 
issues plaguing complex systems like: 

o fault tolerance, 
o adaptive topology, 
o complex system combinatorics, 
o clock asynchrony between particles. 

• relatively simple particle OS (or toolkit), 
• program model based on relatively simple 

process fragments (called pfrags) capable 
of mobility between particles 

Pfrags are described as autonomous, mobile 
program entities capable of sensing and reacting 
to their environment [5], a definition that closely 
resembles that of a software agent. 

Particle memory is segmented into areas – 
pfrags run entirely from RAM memory and 
contain all necessary buffer memory inside their 
payload (pfrags are mobile entities). I/O space of 
the particle is memory-mapped into pages, with 
local HomePage acting as a proxy for 
communication with neighbouring particles. All 
data entered into local HomePage is mirrored to 
all nearby particles where it appears in their I/O 
space. This mirroring process is done by the 
networking subsystem. Pfrags are allowed to 
communicate data to other particles only through 
posts in their local HomePage, thus simplifying 
the system complexity from developers’ 
standpoint. 

Particles have no ROM for static pfrag 
storage – all pfrags in the system must enter 
through I/O portals, external devices 
masquerading as particles. Paintable is therefore 
completely dynamic, the only static code is the 
OS and any embedded OS toolkit functions 
needed for basic particle functioning. 

Paintable is designed to handle inherent 
unreliability of particles themselves, implying 
very large number of particles. The dynamicity 
of the system makes it dependant on I/O portals 
loading the application fragments into the 
ensemble. Network usage during application 
deployment is therefore very high until the 
ensemble reaches the stable phase and pfrags 
stop migrating between particles. Even with very 
limited networking abilities, it is conceivable that 
particle’s neighbourhood size can be a problem. 
HomePage mirroring requires a lot of memory, 
effectively reducing either the amount of data 
that can be shared, or the maximum 
neighbourhood size. The adaptation capacity and 
fault tolerance can increase resource usage and 



greatly reduce the possibility for its usage for 
complex applications. 
 
3. Wireless sensor networks 
 

Wireless sensor networks (WSN) are a 
propulsive field within pervasive computing, 
following the idea that distributed sensing 
environments can increase sensing reliability and 
responsiveness using local computing power 0. 

WSN follows the same basic principle as 
paintable – sensors (motes) are (randomly) 
distributed nodes capable of only simple 
computing tasks, but unlike particles, motes are 
equipped with one or many sensors. This 
orientation to sensing guided basic construction 
principles for motes.  outlines typical 
characteristics for a WSN mote. 

One of key differences between mote and 
particle architectures is that motes provide plenty 
of ROM space, to be used for static program 
storage,  and scarce RAM resources. 
Unlike pfrags which are completely dynamic, 
motes allow only for static programs stored in 
ROM (some motes allow this code to be changed 
over the network).  

Typical mote operating system is TinyOS, 
although some motes run on Linux. TinyOS is 
statically linked to program code and uploaded to 
motes’ ROM memory. Program execution is 
split-phase – TinyOS supports sequentially 
executed code fragments called tasks, used for 
long running computations. All tasks are 
statically defined at compile time and posted for 
execution when needed. Active tasks are 
scheduled for execution on a FIFO basis. 
Running task cannot be pre-empted by another 
task, only interrupted by events (e.g. receipt of 
data from the network or timers). To simulate 
blocking I/O behaviour, an application should 
use state machines to schedule appropriate tasks 
for execution. Scheduling of multiple jobs 
(threads) is also application-managed. 
 

Table 2. Typical characteristics of a WSN 
mote 

Subsystem Minimal 
Typical (Intel 

iMote 2003) 

Processor Atmel at 4MHz 
ARM 7TDMI at 
12-48MHz 

Memory 
8K ROM, 0.5K 
SRAM 

512K ROM, 64K 
SRAM  

I/O RF, 10Kbps 
USB, GPIO, I2C, 
Bluetooth 

Power battery battery 

4. Adaptation of paintable concepts to 

wireless sensor networks 
 

Paintable concept is an interesting experiment 
in amorphous architectures, but inappropriate for 
implementation regarding currently available 
hardware platforms. 

Key software concept embodied in paintable 
architecture is that of dynamic, mobile programs 
(process fragments) streamed into the particle 
assembly through I/O portals. This is very 
difficult to implement directly on WSN platform. 
Motes do not allow dynamic code or partial 
changes to ROM contents. Avoiding this 
limitation could allow implementation of simple 
mobile agents running on WSN. Since I/O 
portals are impractical for systems running 
autonomously without human supervision, all 
necessary software would have to be preloaded 
on (at least some of) the motes and executed 
when the need arises. Identification of necessary 
pfrags to be preloaded on motes is therefore 
important, even more so if code mobility proves 
to be too expensive. 

HomePage paradigm presented in paintable 
requires mirroring of entire HomePage contents 
from one particle to another which greatly 
simplifies the platform conceptually. Actual 
implementation of such an idea requires, 
however, several modifications – for instance, 
neighbourhood size should probably be limited 
in compile time due to the nature of TinyOS. 
System designers must make a choice between 
large number of neighbours or large amount of 
data in HomePage. Mirroring and 
synchronization of entire HomePage structures to 
and from neighbouring particles presents a large 
networking overhead, and severely damages 
performance in the long run, energy-wise. This is 
not a problem for paintable, with particles that 
are powered from the environment, but a major 
issue with WSN platform. Since most 
applications need to share only a subset of data 
between neighbouring particles, a modified 
version of HomePage with additional 
functionality allowing pfrags to mark data for 
sharing provides an increase in functionality. 

Additionally, in case that the whole 
particle/mote ensemble runs multiple 
applications, or different modules of the 
application, with ensemble nodes dedicated to 
providing different functionality, the volume of 
mirrored data can be further reduced. Given that 
all neighbourhood communication is broadcast, 
network usage is already nearly minimal. If 



HomePage module is further extended to allow 
applications to pick only relevant data from the 
entire broadcast dataset, cluttering memory with 
unnecessary data is avoided. 

Basic modifications necessary for successful 
adaptation can be identified as follows: 

• adapt software environment available on 
motes to allow dynamicity in code 
execution and some kind of code mobility, 

• identify necessary pfrags and adapt them 
to WSN platform. 

• adapt networking subsystem of WSN 
platform to provide neighbourhood 
integration similar to HomePage concept, 
but with integrated data sharing and 
filtering capabilities to increase memory 
usage efficiency. 

 
Mentioned modifications will be discussed in 

detail in the following chapters. 
 

5. Software environment modifications 
 

Process fragments (agents) running on motes 
need to have some method of communication, 
both locally (within a single mote) and with other 
fragments situated on nearby motes. In the case 
of communicating small amount of data (e.g. to 
announce agent presence), the metaphor of 
HomePage used in paintable is very appropriate. 
To implement HomePage behaviour on WSN 
motes, broadcast network capability is required, 
and supported by TinyOS. Such broadcasts need 
to be localized – the size of the neighbourhood is 
limited by available local memory, since 
HomePage data from all neighbouring motes 
needs to be mirrored locally. Such behaviour is 
not desirable if larger amounts of data need to be 
transferred between agents, thus requiring 
additional messaging systems other than 
HomePage mirroring. HomePage posts can still 
be used to provide framework for agent 
synchronization. To provide uniform messaging, 
HomePage post creation can simply be extended 
to allow agents to prohibit mirroring for that 
post, declaring the post private instead of shared. 

Code mobility and dynamic execution of 
agents could be performed in two ways, 
depending on the type of system environment. In 
case the system environment is static (in-the-
field scenario), no new agents can be introduced 
into the system – I/O portals of some sort are 
used solely to gather data collected by the system 
and monitor and manage its performance. An 

open, dynamic environment would typically be 
used in ‘friendlier’ environments. 
 

5.1. Static environment scenario 
 

Static environment scenario could use motes 
with preloaded native-code agents of all types, 
and activate them when needed. Activation 
messages would then be the equivalent of mobile 
agent transfer and contain the agent state (in case 
of strong migration) or just activation requests 
(in case of weak migration), but no code, to 
reduce communications overhead. After 
activation message is received, platform would 
prepare the agent for execution, load its instance 
data and execute it. Forcing all motes to have 
every agent in the system preloaded in ROM 
poses a possible overhead in case an agent will 
eventually be executed on just a fraction of the 
whole mote ensemble. This can be reduced if 
motes with different combinations of preloaded 
agents are intermixed in sufficiently dense 
deployments to allow redundancy of motes with 
particular agents preloaded and mobility between 
these motes.  
 

5.2. Dynamic environment scenario 
 

Dynamic environment supports dynamic 
introduction of agents into the system, requiring 
some sort of virtual machine. A sophisticated 
virtual machine could perform its own 
scheduling, blocking operations, manage access 
to shared memory (HomePage) and data 
exchange between agents. Virtual machine 
approach leverages code mobility (smaller 
programs) with higher CPU usage while 
interpreting pseudo-instructions and slower 
execution. Smaller programs allow for energy 
savings when the system needs to be 
reprogrammed (an agent migrates to a new 
mote). Maté virtual machine (or virtual machine 
toolkit) [2]  supports code mobility and is proven 
to be energy efficient when used with code that 
is invocated infrequently. Maté follows basic 
TinyOS structure, having execution contexts that 
run code capsules. Simplifying development, 
split-phase operations (command/event pairs in 
TinyOS) are replaced with blocking operations 
(just send instead of send/sendDone 
command/event pair). Different VM 
implementations based on Maté exists, and some 
support multi-agent scenarios (Agilla [3] 
supports up to 4 agents on a single mote). VM 
code is compact and easily transferred over the 



network, but motes still need to periodically 
exchange code version information over the 
network to synchronize the distributed code-
base. Complex applications pose a significant 
energy overhead when implemented entirely 
using any kind of virtual machine. 
 
6. Framework design 

 
 Sample agent support framework in closed 
environment is outlined in Fig. 1. 

 

  
 

   

Figure 1. Agent support framework 

 
Modules like AgentManagerM, AgentM and 

HomePageM are defined. AgentManagerM 
module provides services required for agent 
activation and migration (agent code is 
preloaded). AgentManager posts agent’s update 
commands for execution on each timer event. 
AgentM functions as an interface for 
communication with each agent. HomePageM 
module provides toolkit functions (just a subset 
is shown) to support posting items on 
HomePage, and allows agents to register post 
names to be mirrored from the neighbouring 
nodes. When an item is created or updated, 
HomePage posts a task to synchronize that 
item’s data with neighbours if item is marked as 
public and signals an event. Upon data receipt, 
neighbouring particles pick interesting posts 
(depending on current agent configuration of that 
node) and mirror them. This approach reduces 
the memory needed for HomePage storage, and 
increases the network efficiency, since only 
shared posts are broadcast. Neighbourhood 
(mirrored HomePage array) size is limited in 
compile time. 

7. Selection of necessary process 

fragments 
 

The introduction to paintable architecture in 
[5] describes several elementary pfrag 
components useful for construction of complex 
systems over paintable. Table 3 summarizes 
some of them. 

Not all of these sample components will be 
necessary for crafting a particular system, but 
their presence provides a basic framework for 
implementing a wide range of complex 
applications. In addition to listed components, a 
family of messaging components will also need 
to be defined, to allow message-based 
communication between agents.  
 

Table 3. Examples of self assembly on 
paintable [6] 

Component 
Uses 

pfrags 
Description 

Gradient 1 
Estimates the shortest 
distance back to a fixed 
anchor point. 

Diffusion 1 

Accepts a data packet as a 
payload, seeks to position 
itself to minimize disparity in 
local density. 

MultiGrad 1 
Virtual pfrag emulates 
multiple Gradients. 

Channel 3 
Defines a bidirectional 
communication channel 
between two anchor points 

Coordinate 5 
Constructs 2D coordinate 
system from 2 anchor points. 

 
Motes are easily addressable, however the 

location of particular mobile agent need not be 
constant after the message is sent. To facilitate 
tracking, each agent could emanate a gradient 
field (using MultiGrad component present on all 
motes). In case of a larger number of agents this 
would however require too much memory to 
track agents’ field strengths and overload the 
motes. 
 
8. Related work 
 

Paintable architectures haven’t been used 
solely in simulated experiments of self-assembly. 
Although forming of complex structures requires 
large number of particles, some interesting 
applications can be tested even with relatively 
small particle count. Concepts like localization 
(particle ability to determine its own position 



within the assembly) and clock synchronization 
over the assembly were demonstrated with 
pushpin platform [6]. A sample implementation 
of paintable architecture, pushpin particles 
receive power and connectivity through layers of 
conductive materials in testbed’s surface. 

Pushpin ensemble implements a modified 
version of paintable platform, addressing some 
of the issues outlined in this article. 

Complexity and lack of formal methods for 
analysis of amorphous systems increase the need 
for actual hardware, real-world implementations. 
Tested in real implementations, knowledge of 
applied heuristic methods will eventually assist 
to form formal methods, enabling engineering of 
complex adaptive amorphous systems, just like 
any other technical system. We hope that the 
effort to adapt the architecture to easily available 
hardware is the step in the right direction. 
 
9. Future work 
 

Future work will be directed to solving 
problems outlined above to assist with an actual 
implementation of mobile agents on wireless 
sensor platform using neighbourhood abstraction 
through HomePage. Issues of concern will be: 

• implementation of HomePage-like concept 
on mote architectures (blackboard-like 
neighbourhood shared memory), 

• implementation of agent hosting 
framework, as described in static 
environment scenario section, 

• adaptation of basic self-assembly pfrag 
toolkit (similar to those sample pfrags 
noted above) to TinyOS platform. 

With extensive use of neighbourhood for 
reflective data storage and inter-process 
communication, pushpin is an interesting testbed. 
Practical implementations of its concepts are 
necessarily limited in resources, and some 
modifications are required. WSN platform is 
designed with many constraints in mind, some of 
them severely complicating application 
development. A framework providing facilities 
similar to those on paintable would allow 
theoretical benefits of paintable to be tested on 
real-world platform and compared with existing 
applications 
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