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Abstract:.  This work explores various  ways of
distributing  the  FERweb  CMS system  (a  web-
based  Content  Management  System  of  the
University  of  Zagreb,  Faculty  of  Electrical
engineering and computing) 

Primary aim of this project is enhancing the
performance of the system, within the constraint
that  the  efforts  must  be  based  on  existing
technologies  used  in  the  project  and  with
minimal impact on the existing code.
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1. Introduction

The "FERweb system" is  a colloquial  name
for  the  custom-made  web  CMS  (Content
Management  System),  developed  at  the
University  of  Zagreb,  Faculty  of  Electrical
engineering and computing. The system [9] is the
result of over three years of development and it
has successfully  been deployed as the Faculty's
web  site  (where it's  used for  collaboration and
coordination between students and the staff), the
Croatian  Academic  and  Research  Network
(CARNet) public web site and was sold to Pliva
d.d.  (a  leading  pharmaceutical  company)  for
extended developing and customization as a part
of Knowledge management system.

The system is implemented using Apache 1.3
web server, PHP 4.3 programming language and
PostgreSQL  7.3  database  server.  Its  main
characteristic  is  the  concept  of  “portlets”  -
modules (or “parts of a web page – portal”) that
behave as a distinct and independent subsystems.
The  modules  control  their  HTML  [5]
representation  using  Smarty templates –  so  the
programming  logic  is  separated  from  the
presentation.  This modular  approach allows for
much  freedom in  adding  features  to  the  CMS
system  and  also  allows  for  applying  various
micro-optimizations  that  exploit  the  isolation
between the modules.

A web application can roughly be described
as  consisting  of a front-end, the  program logic
layer (also called business logic, just “logic”, or
“the web application”), and the database end (or
back end).

The  system  serves  completely  dynamic
HTML content, generated from database data via
PHP code. Images on the web page are static files
served  from  the  filesystem.  Database  interface
code is implemented as a separate layer, allowing
for many optimisations in data access operations.
Business  logic  and  presentation  logic  are
separated  by  the  use  of  templating  system
(Smarty Templates).

In production, the system is usually deployed
with  PHP  acceleration  and  object  caching
software (eAccelerator),  but which was disabled
in the test setup. 

2. Why Distribute a System?

The  FERweb  system  started  as  a  research
project done by  faculty staff  and undergraduate
students, but has evolved in a self-supporting and
viable  project,  and  thus  surpassed  its  original
goals. In particular, increased attention had to be
given to how the system performs in situations
with large number of concurrent clients.

This work focuses on providing three benefits
to the system: 

· increased performance,
· increased system reliability, 
· added new functionality.

Of  these,  the  first  two  are  of  the  greatest
importance  when  deploying  to  a  corporate
environment  with  high  expectations  for
concurrent access  and  where  availability  is  of
critical importance. 

3. On system performance quantification

For the purpose of this article, performance of a
web system will be defined with two values: the
number of completed transactions per second that



are  served  to  the  clients,  and  the  number  of
concurrent connections to the system that can be
active at the same time (e.g. are in the process of
being  served).  Since  this  is  a  web  application,
performance  is  measured  using  the  "siege"
program [6].  This  program takes a  list  of  web
addresses  (URLs),  and fetches each page in the
list with desired concurrency level and duration
of a test.

Performance  measurements  were  conducted
under the following protocol:

· The "siege" program was used to perform
the requests, from a computer in the same
switched  Ethernet  network  with  enough
computing resources to sustain the request
load

· The list of URLs to fetch was created to
contain all the dynamic pages contained in
the  system.  The  static  elements  were
present  in  the  list  only  when  specially
noted for the test

· All  of  the  already  present  system
optimizations  (such  as  the  SQL  cache)
were active, unless otherwise noted

· The tests  were made 10 times  in a row,
with pauses between them until all systems
involved were recovered from the load and
settled to "100% idle" state

· The concurrency level of the requests was
varied and reported with the results

· The  average  transactions/sec  and
concurrency scores are reported

3.1. Initial performance

The  reference  performance  measurements
were taken on the following server setup:

· Intel  Pentium4,  3GHz  (hyperthreading
disabled),  1GB  RAM  memory,  single
10kRPM SCSI hard drive

· FreeBSD 5.2.1 operating System
· PostgreSQL 7.3.4 RDBMS
· Apache 1.3 web server
· PHP  4.3.5  programming  language  as

Apache module

The software setup was in the usual mode of
deployment, with all the components running on
the same system. The purpose of this benchmark
is to introduce the performance capabilities of the
system  and  serve  as  comparison  with  later
benchmark. This benchmark was conducted with
the URL list including static graphic files.

The "transactions/sec" and concurrency" data
is reported by the "siege" program and represent
the  number  of  completed  client  requests  per
second and  the  number  of  simultaneous  active
connections  to  the  server  during  the  test,
respectively.  CPU  load  is  (very  roughly)  the
average  number  of  processes  simultaneously
running on the server in the last minute of the test
(the  first  of  the  three  standard Unix  "average
load" numbers) and is present here as a guideline
of server  load only (CPU load is  often not the
limiting factor of server performance).

Reference performance
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Figure 1. Reference performance

On this  and subsequent  graphs  of  the  same
type, the X axis represents number of concurrent
requests  attempted  by  the  benchmark program,
and  the  Y  axis  is  used  to  show  completed
transactions/sec,  achieved  connection
concurrency and CPU load. Measurement points
are linearly interpolated for better visualisation.
This  graph  is  representative  for  this  type  of
measurements, and shows that to achieve optimal
performance a substantial  number of concurrent
requests  is  required,  and  that  the  performance
curve has a characteristic maximum that depends
on the saturation parameters of the whole system.

Graphical  representation of  the  data reveals
that the optimal performance for this test is with a
concurrency  level  of  150-200  transactions/sec.
After  that  number  comes  a  decline  in
performance,  up  to  the  point  where  not  all
requests can be satisfied within the timeout time,
in which case they are aborted. 

To gain on  conciseness  and  to  shorten the
total time it takes to finish the tests, further tests
were made for concurrency levels of 50, 100, 200,
300,  400  and,  where  applicable,  500  and  600
simultaneous connections to the server.

3.2. On System Reliability



Measuring system reliability  is a much more
complex task  than measuring  performance,  and
the  complexity  grows  with  the  size  and
complexity  of  the  system  itself,  as  special
attention must be given to each of the components
that  make  such  a  system.  This  work  will  not
attempt  to  measure  reliability,  but  will  rather
describe  the  expected  effects  particular
components have on the system reliability.

4. Distributing the front-end

The front end encapsulates everything on the
virtual data-path from the web client (browser) to
the  HTTP  request  handler,  and  every  other
network resource that is used to make the contact
to the actual core of the system ("business logic").

Various parts include:

· The network infrastructure (network access
devices,  packet  switching  and  routing
equipment [1]). 

· The Domain Name Service (DNS) used to
look  up  the  common  name-IP  address
mapping of the web site

· The HyperText Transfer Protocol (HTTP)
request handler [2]

In the traditional, standard architecture of web
application services, the DNS service is handled
by  a  separate  (often  distant)  computer  system
which  is  completely  unrelated  to  the  web
application.  In  such  architecture,  a  single
computer  (server)  often  hosts  all  other
components of a web application system: the web
server, the business-logic code, and the database
server. By taking charge of the DNS service, and
separating  the  HTTP  request  handler  from the
other  components,  performance  can  be  highly
increased.

4.1. DNS Load Balancing

This  is  a  method  of  distributing  HTTP
requests to multiple web servers. The DNS server
is  configured  to  respond  to  name-to-address
queries  with  one IP address  from a predefined
list, either in round-robin, or a server load-aware
fashion. Thus, the task of  responding  to HTTP
requests  is  distributed  between  multiple  web
servers. To make this work, the instances of web
application distributed on the servers must have
some way of sharing internal state. This method
offers great performance increase: the number of
concurrently  served requests  per second almost

linearly increases as more servers are added to the
setup.

To  support  this  setup,  the  web  application
needs to be able to:

· Share  user  session  data  between  the
instances of the web application

· Share  database  backend  between  the
instances of the web application

The first goal is easily solved by specifying
that  the  session  data  should  be  placed  on  a
network-shared  file  system  (e.g.  NFS),  or  by
using a specialized session server daemon, such
as "memcached". In such a setup,  multiple web
application  instances  are  accessing  the  same
session  information  (since  session  data  is  of
comparatively small size, a single session server
usually suffices).

Even though no actual implementation of the
DNS load balancing has been made (due to the
lack  of  proper  equipment),  the  aforementioned
components of such a solution were built during
the course of this work.

DNS load balancing is one common way of
increasing  reliability  by  redundancy  of  web
servers.  Even though the simple implementation
introduces a single point of failure in the form of
the  DNS  server,  more  complex  solutions
distribute  the  DNS  server  itself.  Session  data
servers  are  essentially  a  form of  database,  and
appropriate solutions are available and discussed
later.

4.2. Request Proxy

Most of web traffic is generated by "average"
users  with Internet access  in their homes. Such
access is nowadays still mostly implemented with
56kbit/s modems or ISDN adapters. On traditional
web  system  architecture,  the  path  this  average
home  user's  HTTP  request  takes  can  be
represented by the following diagram:

Web client

Internet service provider

Modem Various network equipment Web server

Figure 2. Network path of a HTTP request

Such  low-bandwidth  connections  carry  a
often-overlooked  and  potentially  disastrous
paradox: while  it  is  true  that  a  network server
ideally should be able to serve slow connections
better than fast connections because requests can



be served completely while many others are still
arriving, the real-life situation can often be quite
the opposite.

Slow  connections  cause  "slow  requests"  -
while the web application program can serve an
average request in 0.05s, the fact that the request
comes from a  56kbit/s  line  means  that  (for  an
average page size  of  38K) it  takes  almost  5.5s
until the page is transmitted to the client. During
that time, the instance (a fork or a thread) of the
web server  process  that is  doing the serving  is
doing  nothing  but  waiting  for  the  notification
about the end of transfer. Such instances are only
consuming  valuable  system  resources:  kernel
structures (file descriptors, sockets, etc.), memory
and  database  connections.  Resulting  resource
starvation  can  cause  the  server  to  become
unresponsive although the  number of connected
clients is fairly low.

The  most  efficient  solution  is  to  setup  a
buffering proxy server on a fast network in front
of  the  actual  web  server.  The purpose  of  this
proxy is to act as a mediator between slow clients
and the web servers,  buffering the data coming
from the server before forwarding it to the clients.
Web server sees only fast requests with responses
that are quickly transmitted away. Such a proxy
server can be implemented on two layers: 

· as a generic TCP proxy (on the transport
layer), with a comparatively simple task of
routing TCP connections and data, or

· as  a  specialized  HTTP  proxy  (on  the
application layer),  which can analyze and
cache the data across the requests (so that a
request  is  served  without  accessing  the
actual web server). 

Since  FERweb  system  is  an  explicitly
dynamic system, with each request served from
the  database,  HTTP  caching  is  of  limited
usefulness, so only the effects of a generic TCP
proxy were further explored.

For the purpose of this work, a simple proxy
server program has been made. It was written in
Python  language  and  uses  threading  and
synchronization objects  to handle high amounts
of network traffic. It separates the web server and
the remote network client by providing a memory
buffer which backlogs data coming from the web
server  process.  The  buffer  accepts  data  at  the
speed the web server generates it, and streams it
to the client  at  the rate it  can accept  data.  The
connection to the web server process is closed as
soon the  data  is  generated, so  the  process  can

serve other requests  while the proxy is  sending
the data in its own pace.

4.2.1. Benchmark setup and results

To simulate slow connections, network traffic
shaping was employed, using "ipfw" (IP firewall)
and  "dummynet"  (traffic  limiter)  from  the
FreeBSD  operating  system.  Traffic  shaper
parameters were: 56kbit/s bit rate, 75ms latency,
5 queue slots and 1024 buckets.

Three  computer systems  were  employed in
the test: the web server, an intermediate machine
with  traffic  shaping  enabled,  and  a  client
computer  on  which  the  benchmark  program
(siege) was run (also without traffic shaping).

The available physical memory on the server
was capped to 512MB in order to better observe
resource  starvation.  The  list  of  test  URLs
contained  only  dynamic  pages,  without  static
content (as these take comparatively insignificant
resources  to  transfer  and  would  skew  the
measurements),  so  these  results  are  not
comparable  with  the  ones  from  the  initial
performance benchmark.

The  difference is  quite  dramatic,  and  best
seen when graphed:

Performance comparison: with and without buffering proxy
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Figure 3. Performance with and without a
buffering network proxy

Without a buffering proxy to offload sending
data  to  the  slow  clients,  the  “knee”  of  the
performance curve is  situated at  100 completed
transactions/sec.  Observations  made on the web
server  using  system  monitoring  utilities  have
shown the system was severely in shortage of free
memory,  and  excessive  memory  swapping  was
present. Adding buffering proxy moved the knee
to  about  30  transactions/sec  which  resulted  in
peak performance that is about 400% better than
in the first case. This clearly indicates that adding
a buffering proxy on the same machine as the web



server  yields  better  utilization  of  the  available
hardware even if it means less free memory for
the web  server. With  memory dedicated to the
buffers,  less  web  server  instances  are spawned
which  has  the  ultimate  result  of  lowering  the
memory requirements.

4.3. Separating Static from Dynamic
Content in the CMS

Previous results have opened possibilities for
further research. Analysis  of the requests  to the
server  showed  that,  although  requests  for
dynamic content make for only 4% in numbers,
they take up to 500% more in process time.

In the light  of these facts  a new setup was
made,  similar  to  the original setup,  but  with  a
separate, lightweight  web  server  configured for
serving static images. This was implemented by
setting up “Tiny Turbo Throttling HTTP Daemon
v1.25” (THTTPD) server [7] on the same server,
but on a separate network port, and modifying the
CMS application to support it. New results show
a significant increase in performance achieved by
such separation.

Performance with separate image server process
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Figure 4. Performance achieved with separate
web server for static content

Since these measurements were taken in the
same  conditions  as  the  reference  performance
measurements  (meaning  with  mixed  static  and
dynamic  content),  the  graph  in  Figure  4  is
comparable  to  the  initial  performance  graph  in
Figure  1.  Though  the  performance  in  low
requests/sec region is slightly worse, the knee of
the  performance  curve  has  moved  from  200
requests/sec to about 400 requests/sec (indicating
increased scalability),  and  the  peak  number  of
served requests has increased by about 11%.

5. Distributing the Database

The  most  common method  of  speeding  up
database processing is distributing the database to
multiple  servers.  Web  servers  can  access  the
databases  either  through  a  special  load
balancing/distributing  system  or  directly  (with
load balancing information kept on each server)
as shown in Figure 5:

Web Client

HTTP request

Web server

Database server

Database server

Database server

Replication
controller

Figure 5. A web application utilising multiple
database servers

As is the case with distributing the web servers
via DNS load balancing, distributing the database
yields  both  performance increase  and improved
reliability by introducing redundancy.

The  database  (PostgreSQL  7.3)  was
distributed using the PgCluster program package
[8],  which  offers  synchronous  multi-master
replication. PgCluster project at the time was still
in  development  stage  and  not  ready  for
production usage, but the available features were
enough to setup a replication system and conduct
measurements.  The  scheme  in  which  the  web
servers directly access the database backends (as
described in the above diagram) was employed,
which  required  modifications  to  the  database
access code of the system (web servers pick one
of configured database replicas as the default for
the duration of the web transaction in a random
fashion; each replica has an associated “weight”
value that affects its chance of being chosen, so
the faster servers can achieve higher utilization).

Since  the  focus  here  is  on  the  dynamic
content generation,  benchmarks  were conducted
with a list of dynamic URLs only.

Three setups were considered. The first setup
included the database on the same system as the
web  server,  and  with  database-based
optimizations  (such  as  caching  of  the  SQL
queries) turned off. Without the standard database
optimizations,  and  with  the  database  server
consuming the resources from the web server, the
system was clearly under performing.

The second setup is similar to the first one,
except  that the  database  server application was
moved to a separate server.

Finally, in the third setup, the database was
replicated on two separate servers, while the web
server runs on the original one.



Performance in various database distribution cases
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Figure 6. Performance of web application
utilising multiple database servers

Results  show  that  performance  of  a  web
application can be improved by distributing  the
database load almost linearly, which is why it is a
popular  and  well  understood  [4]  method
nowadays. The effect of moving the database to a
separate server had favourable influence on the
performance,  but  the  advantage  is  not  large,
especially  while  the  number  of  clients  is
relatively  low.  Introducing  another  database
server almost doubles the performance.

This  method  is  also  popular  because  it
impacts the reliability favourably. Since the data
of any application is usually much more important
than the application code, in some cases database
distribution is used as a sort of “live backup”. In
case  of  failure  of  one  of  the  servers  in  a
replication cluster, the data is still safe and viable
on  other  servers,  and  hot-synchronization  is
usually much  more  convenient than  restoration
from a full backup archive.

6. Conclusion

This  work  resulted  in  numerous
enhancements  to  the  existing  FERweb  system.
Several  benchmarks  were  conducted  to
demonstrate and  explore effects  of  distributing
various parts of the web application to different
computer systems. The efforts in improving the
overall performance of the system have been very
successful.  It  was  shown that various  strategies
by  themselves  can  have  a  huge  performance
impact while minimizing the impact on existing
application code – in every case  discussed,  the
changes to the application were minimal, and then
only to the basic low-level components.

The web application system was extended to
support several additional facilities:

· A  separate  image  server  system.  The
benefits should be at least those measured
in this work, which are doubled scalability
(with  respect  to  achieved  connection
concurrency)  and  about  11% increase  in
peak transactions/sec.

· A load balancing DNS server and multiple
web server systems, which should yield in
linear  increase  of  most  aspects  of
performance.  A  session  server  is  needed
for  sharing  user  state  data  between  web
server systems.

· Buffering proxy servers in front of actual
systems serving dynamic web content help
performance up to 400% in situations with
many slow clients.

· Multiple  database  servers  containing  live
replicas of the CMS data.

The  performance  improvements  gained  from
modifications  are a necessity  for deployment of
any web system in heavy-duty environments.
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