
Distributing Web-based Content Management System - “FERweb”

Ivan Voras, Kristijan Zimmer, Mario Žagar
Faculty of Electrical Engineering & Computing, University of Zagreb,

Unska 3, 10000 Zagreb, Croatia
ivan.voras@fer.hr, kristijan.zimmer@fer.hr, mario.zagar@fer.hr

Abstract:. This work explores various ways of
distributing the FERweb CMS system (a web-
based Content Management System of the
University of Zagreb, Faculty of Electrical
engineering and computing)

Primary aim of this project is enhancing the
performance of the system, within the constraint
that the efforts must be based on existing
technologies used in the project and with
minimal impact on the existing code.

Keywords: web content management system,
distributed web applications, open source, PHP,
Apache, PostgreSQL

1. Introduction

The "FERweb system" is a colloquial name
for the custom-made web CMS (Content
Management System), developed at the
University of Zagreb, Faculty of Electrical
engineering and computing. The system [9] is the
result of over three years of development and it
has successfully been deployed as the Faculty's
web site (where it's used for collaboration and
coordination between students and the staff), the
Croatian Academic and Research Network
(CARNet) public web site and was sold to Pliva
d.d. (a leading pharmaceutical company) for
extended developing and customization as a part
of Knowledge management system.

The system is implemented using Apache 1.3
web server, PHP 4.3 programming language and
PostgreSQL 7.3 database server. Its main
characteristic is the concept of “portlets” -
modules (or “parts of a web page – portal”) that
behave as a distinct and independent subsystems.
The modules control their HTML [5]
representation using Smarty templates – so the
programming logic is separated from the
presentation. This modular approach allows for
much freedom in adding features to the CMS
system and also allows for applying various
micro-optimizations that exploit the isolation
between the modules.

A web application can roughly be described
as consisting of a front-end, the program logic
layer (also called business logic, just “logic”, or
“the web application”), and the database end (or
back end).

The system serves completely dynamic
HTML content, generated from database data via
PHP code. Images on the web page are static files
served from the filesystem. Database interface
code is implemented as a separate layer, allowing
for many optimisations in data access operations.
Business logic and presentation logic are
separated by the use of templating system
(Smarty Templates).

In production, the system is usually deployed
with PHP acceleration and object caching
software (eAccelerator), but which was disabled
in the test setup.

2. Why Distribute a System?

The FERweb system started as a research
project done by faculty staff and undergraduate
students, but has evolved in a self-supporting and
viable project, and thus surpassed its original
goals. In particular, increased attention had to be
given to how the system performs in situations
with large number of concurrent clients.

This work focuses on providing three benefits
to the system:

· increased performance,
· increased system reliability,
· added new functionality.

Of these, the first two are of the greatest
importance when deploying to a corporate
environment with high expectations for
concurrent access and where availability is of
critical importance.

3. On system performance quantification

For the purpose of this article, performance of a
web system will be defined with two values: the
number of completed transactions per second that

are served to the clients, and the number of
concurrent connections to the system that can be
active at the same time (e.g. are in the process of
being served). Since this is a web application,
performance is measured using the "siege"
program [6]. This program takes a list of web
addresses (URLs), and fetches each page in the
list with desired concurrency level and duration
of a test.

Performance measurements were conducted
under the following protocol:

· The "siege" program was used to perform
the requests, from a computer in the same
switched Ethernet network with enough
computing resources to sustain the request
load

· The list of URLs to fetch was created to
contain all the dynamic pages contained in
the system. The static elements were
present in the list only when specially
noted for the test

· All of the already present system
optimizations (such as the SQL cache)
were active, unless otherwise noted

· The tests were made 10 times in a row,
with pauses between them until all systems
involved were recovered from the load and
settled to "100% idle" state

· The concurrency level of the requests was
varied and reported with the results

· The average transactions/sec and
concurrency scores are reported

3.1. Initial performance

The reference performance measurements
were taken on the following server setup:

· Intel Pentium4, 3GHz (hyperthreading
disabled), 1GB RAM memory, single
10kRPM SCSI hard drive

· FreeBSD 5.2.1 operating System
· PostgreSQL 7.3.4 RDBMS
· Apache 1.3 web server
· PHP 4.3.5 programming language as

Apache module

The software setup was in the usual mode of
deployment, with all the components running on
the same system. The purpose of this benchmark
is to introduce the performance capabilities of the
system and serve as comparison with later
benchmark. This benchmark was conducted with
the URL list including static graphic files.

The "transactions/sec" and concurrency" data
is reported by the "siege" program and represent
the number of completed client requests per
second and the number of simultaneous active
connections to the server during the test,
respectively. CPU load is (very roughly) the
average number of processes simultaneously
running on the server in the last minute of the test
(the first of the three standard Unix "average
load" numbers) and is present here as a guideline
of server load only (CPU load is often not the
limiting factor of server performance).

Reference performance

0

50

100

150

200

250

300

350

400

0 50 100 150 200 250 300 350 400

Requests/sec

A
c

h
ie

v
e

d
 p

e
rf

o
rm

a
n

c
e

Trans/sec AVG Conc. AVG CPU load AVG

Figure 1. Reference performance

On this and subsequent graphs of the same
type, the X axis represents number of concurrent
requests attempted by the benchmark program,
and the Y axis is used to show completed
transactions/sec, achieved connection
concurrency and CPU load. Measurement points
are linearly interpolated for better visualisation.
This graph is representative for this type of
measurements, and shows that to achieve optimal
performance a substantial number of concurrent
requests is required, and that the performance
curve has a characteristic maximum that depends
on the saturation parameters of the whole system.

Graphical representation of the data reveals
that the optimal performance for this test is with a
concurrency level of 150-200 transactions/sec.
After that number comes a decline in
performance, up to the point where not all
requests can be satisfied within the timeout time,
in which case they are aborted.

To gain on conciseness and to shorten the
total time it takes to finish the tests, further tests
were made for concurrency levels of 50, 100, 200,
300, 400 and, where applicable, 500 and 600
simultaneous connections to the server.

3.2. On System Reliability

Measuring system reliability is a much more
complex task than measuring performance, and
the complexity grows with the size and
complexity of the system itself, as special
attention must be given to each of the components
that make such a system. This work will not
attempt to measure reliability, but will rather
describe the expected effects particular
components have on the system reliability.

4. Distributing the front-end

The front end encapsulates everything on the
virtual data-path from the web client (browser) to
the HTTP request handler, and every other
network resource that is used to make the contact
to the actual core of the system ("business logic").

Various parts include:

· The network infrastructure (network access
devices, packet switching and routing
equipment [1]).

· The Domain Name Service (DNS) used to
look up the common name-IP address
mapping of the web site

· The HyperText Transfer Protocol (HTTP)
request handler [2]

In the traditional, standard architecture of web
application services, the DNS service is handled
by a separate (often distant) computer system
which is completely unrelated to the web
application. In such architecture, a single
computer (server) often hosts all other
components of a web application system: the web
server, the business-logic code, and the database
server. By taking charge of the DNS service, and
separating the HTTP request handler from the
other components, performance can be highly
increased.

4.1. DNS Load Balancing

This is a method of distributing HTTP
requests to multiple web servers. The DNS server
is configured to respond to name-to-address
queries with one IP address from a predefined
list, either in round-robin, or a server load-aware
fashion. Thus, the task of responding to HTTP
requests is distributed between multiple web
servers. To make this work, the instances of web
application distributed on the servers must have
some way of sharing internal state. This method
offers great performance increase: the number of
concurrently served requests per second almost

linearly increases as more servers are added to the
setup.

To support this setup, the web application
needs to be able to:

· Share user session data between the
instances of the web application

· Share database backend between the
instances of the web application

The first goal is easily solved by specifying
that the session data should be placed on a
network-shared file system (e.g. NFS), or by
using a specialized session server daemon, such
as "memcached". In such a setup, multiple web
application instances are accessing the same
session information (since session data is of
comparatively small size, a single session server
usually suffices).

Even though no actual implementation of the
DNS load balancing has been made (due to the
lack of proper equipment), the aforementioned
components of such a solution were built during
the course of this work.

DNS load balancing is one common way of
increasing reliability by redundancy of web
servers. Even though the simple implementation
introduces a single point of failure in the form of
the DNS server, more complex solutions
distribute the DNS server itself. Session data
servers are essentially a form of database, and
appropriate solutions are available and discussed
later.

4.2. Request Proxy

Most of web traffic is generated by "average"
users with Internet access in their homes. Such
access is nowadays still mostly implemented with
56kbit/s modems or ISDN adapters. On traditional
web system architecture, the path this average
home user's HTTP request takes can be
represented by the following diagram:

Web client

Internet service provider

Modem Various network equipment Web server

Figure 2. Network path of a HTTP request

Such low-bandwidth connections carry a
often-overlooked and potentially disastrous
paradox: while it is true that a network server
ideally should be able to serve slow connections
better than fast connections because requests can

be served completely while many others are still
arriving, the real-life situation can often be quite
the opposite.

Slow connections cause "slow requests" -
while the web application program can serve an
average request in 0.05s, the fact that the request
comes from a 56kbit/s line means that (for an
average page size of 38K) it takes almost 5.5s
until the page is transmitted to the client. During
that time, the instance (a fork or a thread) of the
web server process that is doing the serving is
doing nothing but waiting for the notification
about the end of transfer. Such instances are only
consuming valuable system resources: kernel
structures (file descriptors, sockets, etc.), memory
and database connections. Resulting resource
starvation can cause the server to become
unresponsive although the number of connected
clients is fairly low.

The most efficient solution is to setup a
buffering proxy server on a fast network in front
of the actual web server. The purpose of this
proxy is to act as a mediator between slow clients
and the web servers, buffering the data coming
from the server before forwarding it to the clients.
Web server sees only fast requests with responses
that are quickly transmitted away. Such a proxy
server can be implemented on two layers:

· as a generic TCP proxy (on the transport
layer), with a comparatively simple task of
routing TCP connections and data, or

· as a specialized HTTP proxy (on the
application layer), which can analyze and
cache the data across the requests (so that a
request is served without accessing the
actual web server).

Since FERweb system is an explicitly
dynamic system, with each request served from
the database, HTTP caching is of limited
usefulness, so only the effects of a generic TCP
proxy were further explored.

For the purpose of this work, a simple proxy
server program has been made. It was written in
Python language and uses threading and
synchronization objects to handle high amounts
of network traffic. It separates the web server and
the remote network client by providing a memory
buffer which backlogs data coming from the web
server process. The buffer accepts data at the
speed the web server generates it, and streams it
to the client at the rate it can accept data. The
connection to the web server process is closed as
soon the data is generated, so the process can

serve other requests while the proxy is sending
the data in its own pace.

4.2.1. Benchmark setup and results

To simulate slow connections, network traffic
shaping was employed, using "ipfw" (IP firewall)
and "dummynet" (traffic limiter) from the
FreeBSD operating system. Traffic shaper
parameters were: 56kbit/s bit rate, 75ms latency,
5 queue slots and 1024 buckets.

Three computer systems were employed in
the test: the web server, an intermediate machine
with traffic shaping enabled, and a client
computer on which the benchmark program
(siege) was run (also without traffic shaping).

The available physical memory on the server
was capped to 512MB in order to better observe
resource starvation. The list of test URLs
contained only dynamic pages, without static
content (as these take comparatively insignificant
resources to transfer and would skew the
measurements), so these results are not
comparable with the ones from the initial
performance benchmark.

The difference is quite dramatic, and best
seen when graphed:

Performance comparison: with and without buffering proxy

0

5

10

15

20

25

30

0 50 100 150 200 250 300 350 400 450

Requests/sec

A
c

h
ie

v
e

d
 p

e
rf

o
rm

a
n

c
e

Prox y on: Trans/sec AVG Prox y off: trans/sec AVG

Figure 3. Performance with and without a
buffering network proxy

Without a buffering proxy to offload sending
data to the slow clients, the “knee” of the
performance curve is situated at 100 completed
transactions/sec. Observations made on the web
server using system monitoring utilities have
shown the system was severely in shortage of free
memory, and excessive memory swapping was
present. Adding buffering proxy moved the knee
to about 30 transactions/sec which resulted in
peak performance that is about 400% better than
in the first case. This clearly indicates that adding
a buffering proxy on the same machine as the web

server yields better utilization of the available
hardware even if it means less free memory for
the web server. With memory dedicated to the
buffers, less web server instances are spawned
which has the ultimate result of lowering the
memory requirements.

4.3. Separating Static from Dynamic
Content in the CMS

Previous results have opened possibilities for
further research. Analysis of the requests to the
server showed that, although requests for
dynamic content make for only 4% in numbers,
they take up to 500% more in process time.

In the light of these facts a new setup was
made, similar to the original setup, but with a
separate, lightweight web server configured for
serving static images. This was implemented by
setting up “Tiny Turbo Throttling HTTP Daemon
v1.25” (THTTPD) server [7] on the same server,
but on a separate network port, and modifying the
CMS application to support it. New results show
a significant increase in performance achieved by
such separation.

Performance with separate image server process

0

50

100

150

200

250

300

350

400

450

500

0 100 200 300 400 500 600

Requests/sec

A
c

h
ie

v
e

d
 p

e
rf

o
rm

a
n

c
e

Trans/sec AVG Conc. AVG CPU load AVG

Figure 4. Performance achieved with separate
web server for static content

Since these measurements were taken in the
same conditions as the reference performance
measurements (meaning with mixed static and
dynamic content), the graph in Figure 4 is
comparable to the initial performance graph in
Figure 1. Though the performance in low
requests/sec region is slightly worse, the knee of
the performance curve has moved from 200
requests/sec to about 400 requests/sec (indicating
increased scalability), and the peak number of
served requests has increased by about 11%.

5. Distributing the Database

The most common method of speeding up
database processing is distributing the database to
multiple servers. Web servers can access the
databases either through a special load
balancing/distributing system or directly (with
load balancing information kept on each server)
as shown in Figure 5:

Web Client

HTTP request

Web server

Database server

Database server

Database server

Replication
controller

Figure 5. A web application utilising multiple
database servers

As is the case with distributing the web servers
via DNS load balancing, distributing the database
yields both performance increase and improved
reliability by introducing redundancy.

The database (PostgreSQL 7.3) was
distributed using the PgCluster program package
[8], which offers synchronous multi-master
replication. PgCluster project at the time was still
in development stage and not ready for
production usage, but the available features were
enough to setup a replication system and conduct
measurements. The scheme in which the web
servers directly access the database backends (as
described in the above diagram) was employed,
which required modifications to the database
access code of the system (web servers pick one
of configured database replicas as the default for
the duration of the web transaction in a random
fashion; each replica has an associated “weight”
value that affects its chance of being chosen, so
the faster servers can achieve higher utilization).

Since the focus here is on the dynamic
content generation, benchmarks were conducted
with a list of dynamic URLs only.

Three setups were considered. The first setup
included the database on the same system as the
web server, and with database-based
optimizations (such as caching of the SQL
queries) turned off. Without the standard database
optimizations, and with the database server
consuming the resources from the web server, the
system was clearly under performing.

The second setup is similar to the first one,
except that the database server application was
moved to a separate server.

Finally, in the third setup, the database was
replicated on two separate servers, while the web
server runs on the original one.

Performance in various database distribution cases

0

5

10

15

20

25

0 100 200 300 400

Requests/sec

A
c

h
ie

v
e

d
 p

e
rf

o
rm

a
n

c
e

Trans./sec #1 Trans./sec #2 Trans./sec #3

Figure 6. Performance of web application
utilising multiple database servers

Results show that performance of a web
application can be improved by distributing the
database load almost linearly, which is why it is a
popular and well understood [4] method
nowadays. The effect of moving the database to a
separate server had favourable influence on the
performance, but the advantage is not large,
especially while the number of clients is
relatively low. Introducing another database
server almost doubles the performance.

This method is also popular because it
impacts the reliability favourably. Since the data
of any application is usually much more important
than the application code, in some cases database
distribution is used as a sort of “live backup”. In
case of failure of one of the servers in a
replication cluster, the data is still safe and viable
on other servers, and hot-synchronization is
usually much more convenient than restoration
from a full backup archive.

6. Conclusion

This work resulted in numerous
enhancements to the existing FERweb system.
Several benchmarks were conducted to
demonstrate and explore effects of distributing
various parts of the web application to different
computer systems. The efforts in improving the
overall performance of the system have been very
successful. It was shown that various strategies
by themselves can have a huge performance
impact while minimizing the impact on existing
application code – in every case discussed, the
changes to the application were minimal, and then
only to the basic low-level components.

The web application system was extended to
support several additional facilities:

· A separate image server system. The
benefits should be at least those measured
in this work, which are doubled scalability
(with respect to achieved connection
concurrency) and about 11% increase in
peak transactions/sec.

· A load balancing DNS server and multiple
web server systems, which should yield in
linear increase of most aspects of
performance. A session server is needed
for sharing user state data between web
server systems.

· Buffering proxy servers in front of actual
systems serving dynamic web content help
performance up to 400% in situations with
many slow clients.

· Multiple database servers containing live
replicas of the CMS data.

The performance improvements gained from
modifications are a necessity for deployment of
any web system in heavy-duty environments.

7. Acknowledgements

We would like to thank our friends and
colleagues that have supported us all along and
helped us create this work.

8. References

[1] Andrew S. Tanenbaum: “Computer
Networks”, Third Edition, Prentice-Hall
1996.

[2] RFC Document #2616: “Hypertext Transfer
Protocol - HTTP/1.1”

[3] The World Wide Web Consortium (W3C) :
“Extensible Markup Language”,
http://www.w3.org/XML/

[4] Bettina Kemme: Database Replication for
Clusters of Workstations, Swiss Federal
Institute of Technology,
http://citeseer.ist.psu.edu/kemme00database.h
tml

[5] The World Wide Web Consortium (W3C) :
HTML 4.01 specification,
http://www.w3.org/TR/html4

[6] Siege benchmark program:
http://www.joedog.org/siege/

[7] Tiny Turbo Throttling HTTPD server:
http://www.acme.com/software/thttpd/

[8] PgCluster:
http://pgfoundry.org/projects/pgcluster/

[9] FERweb system description:
http://www.fer.hr/webtech

