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Absorption and Emission of Radiation by an Atomic Oscillator 
Milan Perkovac

Abstract 
The theory of absorption and emission of electromagnetic radiation by an oscilla-
tor consisting of the atomic nucleus and one electrically charged particle is de-
duced using classical electrodynamics. In the steady state of an atom, emission 
and absorption of electromagnetic radiation are equal, so the atom is stable. In 
order to include reactive effects of electromagnetic radiation in the motion equa-
tions, the Newton equation is modified by adding the radiative reaction force. 
This paper is an introduction to the derivation of the basic assumptions of quan-
tum mechanics. 
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1. INTRODUCTION 
In 1904 J.J. Thompson (1857–1939) proposed a sta-

tic model of the atom, and in 1911 E. Rutherford 
(1871–1937) proposed a dynamic model of the atom. 
It was hoped that any atomic phenomena could be 
explained by Newton’s mechanics and Maxwell’s 
electrodynamics. 

However, two big problems remained unsolved. 
According to Maxwell’s electrodynamics, each accel-
erated charged particle (such as an electron in Ruther-
ford’s model of the atom) inevitably emits electro-
magnetic radiation and therefore collapses into the 
nucleus. 

The other problem was the atom’s discrete spec-
trum, which was proved experimentally. The theories 
of Newton and Maxwell did not provide for such dis-
continuity. Theories that cannot explain experiments 
are rejected, and rightly so. 

Among other scientists, even the founders of mod-
ern physics, M. Planck(1,2),1 and A. Einstein,(3) tried to 
find satisfactory answers within the classical continu-
ity theories, but their attempts were futile. 

It was obvious that the classical theories did not 
contain a principal limitation that would prevent their 
application down to the level of the atom. One of the 
last efforts to apply the classical theories to the model 
of the atom was made by J.H. Jeans in the early 1900s. 
But all presented arguments could not prevent modern 
physics from developing in some other direction. 

However, the application of classical theories to the 
model of the atom is gaining ground again.(4–6) In this 
paper the problem of electromagnetic radiation and 
the atom’s instability is approached in terms of Max-
well’s electrodynamics and Newton’s and Coulomb’s 
laws. The problem of the atom’s discrete spectrum 
requires two more classical laws, the law of charge 
and the law of momentum conservation. The problem 
of the atom’s discrete spectrum is elaborated in an-
other paper by the same author.(7) 

2. EMISSION OF ELECTROMAGNETIC RADIA-
TION 

Emission of electromagnetic radiation results from 
electromagnetic fields emitted by accelerated electric 
charges(8) or generally from dynamic electric and 
magnetic fields (Poynting vector). We view the atom 
as a system consisting of a nucleus, with charge Q , 
and one particle, with charge q and mass m, moving 
in a circular orbit within a radius r at an angular ve-
locity Ω. This is Rutherford’s “planetary” model of 
the atom(9,10) (see Fig. 1). The distance of a particle 
from point x = 0 is 
 
 0 0

ˆ( , ) cos( ) cos( ),m mx t r t X tϕ ϕΩ = Ω + = Ω +  (1) 
 
and the distance of a particle from point y = 0 is 
 
 0 0

ˆ( , ) sin( ) sin( ),m my t r t Y tϕ ϕΩ = Ω + = Ω +  (2) 
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Figure 1. The particle of mass m and charge q rotating in a circle 
of radius r with velocity v and angular frequency Ω in the field 
of central charge Q (Rutherford’s “planetary” model of the 
atom). The radiative reaction force fR is, according to Wheeler 
and Feynman, 90° out of phase with the acceleration v� , which 
means that it is perpendicular to the radius vector r and opposite 
to the velocity v. This force contributes to the absorption of the 
radiant energy and does not allow an electron to be more accel-
erated and thus contributes to the stability of the atom. 
 
where 
 
 ˆ ˆX Y r+ =  (3) 
 
is the amplitude of forced harmonic motion and ϕ0m is 
a phase angle (which explains that at the moment t = 
−ϕ0m/Ω prior to the beginning of observation t = 0 
the distance x has reached its maximum value). The 
radius vector r of the electron moving in the plane is 
 
 0 0[cos( ) sin( ) ].m mr t tϕ ϕ= Ω + + Ω +r i j  (4) 
 

The total emitted power of electromagnetic radia-
tion, pE(t), of an electron in the atom is the sum of the 
momentary power of electromagnetic radiation pEx(t) 
and pEy(t) of two dipoles(11,12) at right angles to each 
other, along the x and y axes of Cartesian coordinates; 
i.e., 
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The result (7) is known as the Larmor formula for 
radiated power,(13) an invariant of the Lorentz trans-
formation.(14) The average power of one dipole in the 
x or y axis, ExP  or EyP , emitted in one electron rota-
tion cycle, is(15,16) 
 

 
2 2 4

3
0

.
12Ex Ey

q r
P P

cπε
Ω= =  (8) 

 
The total average power EP  is the sum of ExP  and 

EyP : 
 

 
2 2 4

3
0

.
6E Ex Ey

q r
P P P

cπε
Ω= + =  (9) 

 
We view the atom as an electromechanical oscilla-

tory system. We assume that the atom has at least one 
stable state. Suppose the x and y components of the 
driving force f acting on the electron in an atom oscil-
late sinusoidally with amplitude F̂  at particular fre-
quency ω: 
 
 0

ˆ( , ) cos( ),x ff t F tω ω ϕ= +  (10) 
 
 0

ˆ( , ) sin( ),y ff t F tω ω ϕ= +  (11) 
 
 ( , ) ( , ) ( , ) ,x yt f t f tω ω ω= +f i j  (12) 
 

 2 2 ˆ| ( , ) | ,x yt f f Fω = + =f  (13) 

 
where ϕ0f is a phase angle (which explains that at the 
moment t = −ϕ0f /ω prior to the beginning of observa-
tion t = 0 the force fx reached its maximum value). A 
correct calculation must include the reaction of the elec-
tromagnetic radiation on the motion of the source.(17) 
So, besides the Coulomb force (qQ/4πε 0 r 2), which is 
actually the centripetal force (mv 2/r), and the other 
external forces, there is another force acting on an 
electron, i.e., the radiative reaction force.(18–20) Ac-
cording to J.A. Wheeler and R.A. Feynman, who take 
up the proposition put long ago (1922) by Tetrode(21) 
that the act of emission should be somehow associ-
ated with the presence of an absorber, this force is 
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3

3 ,R m
t

τ ∂=
∂

rf  (14) 

 
where τ is the characteristic time,(22),2 which will be 
defined later. Wheeler and Feynman made a rather 
general derivation of the law of radiative reaction. 
Consequently, expression (14) is generally accepted 
as correct for a slowly moving particle subjected to 
arbitrary acceleration. Hence the total force acting on 
the electron is the sum of the Coulomb force, other 
external forces, and the radiative reaction force. 

The mechanism of electromagnetic radiation is 
complex(23) and not sufficiently explained.(24) In this 
article we consider only one atom, so no statistical 
mechanics(25,26) can be applied. However, a question 
arises now of how to include the radiative reaction force 
in the equation of motion. There are two possibilities. 
 
a) The sum of the radiative reaction force fR and the 

external force fext is a single driving force f = fR + 
fext, and the equation of motion is 

 
 .R extm = +v f f�  (14a) 
 
b) The driving force is only the external force fext, and 

the equation of motion is the Abraham–Lorentz 
equation of motion 

 
 ( ) .extm τ− =v v f� ��  (14b) 
 
As is well known, the Abraham–Lorentz equation 
generated so-called runaway solutions,(27) so we opt 
for the first possibility. So the equation of motion 
based on Newton’s second law of motion, which in-
cludes the resistive force and the restoring force,(28–31) is 
 

 
2

02
ˆ cos( ),f

x x
m +b + kx  F t

t t
ω ϕ∂ ∂ = +

∂ ∂
 (15) 

 
or, after dividing by m and rearranging, 
 

 
2

2
0 02

ˆ
cos( ),f

x x F
+ x = t

t t m
ω ϕ∂ ∂Γ + Ω +

∂ ∂
 (16) 

 
where b  is the damping constant,(32) k is the spring 
constant,(33) 
 

 
b
m

Γ =  (17) 

is the decay constant,(34) also called the half-width or 
line breadth,(35) and 
 

 0

k
=

m
Ω  (18) 

 
is the angular frequency at which the simple harmonic 
oscillator oscillates, also called its natural fre-
quency(36) (to distinguish it from the angular fre-
quency ω at which it might be forced to oscillate in 
steady state by a driving force f). 

Using (1) and (2), we get 
 

0 0
ˆ ˆsin( ), cos( ),m m

x y
= X t = Y t

t t
ϕ ϕ∂ ∂− Ω Ω + Ω Ω +

∂ ∂
(19) 

 

 

2
2

02

2
2

02

ˆ cos( ),
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t
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∂
∂ − Ω Ω +
∂
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t
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ϕ
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∂
∂ − Ω Ω +
∂

 (21) 

 
Using (3), (4), (14), and (21), we get 

 
 3

0 0[sin( ) cos( ) ],R m mm r t tτ ϕ ϕ= Ω Ω + − Ω +f i j  (22) 
 
where the amplitude of the radiative reaction force is 
 
 3ˆ .RF m rτ= Ω  (23) 
 

The solution of differential equation (15) in the 
steady state is (1). So, from (1), (16), (19), and (20), 
we get 
 

 

2 2
0 0 0

2 2
0 0 0

0 0

ˆ [( )sin cos ]sin
ˆ [( ) cos sin ]cos

ˆ ˆ
sin sin cos cos 0.

m m

m m

f f

X t

X t

F F
t t

m m

ϕ ϕ

ϕ ϕ

ϕ ω ϕ ω

Ω − Ω − ΓΩ Ω

− Ω − Ω + ΓΩ Ω

� � � �
+ − =� � � �
� � � �

 (24) 

 
The electron oscillates in the steady state of the 

atom at a particular frequency ω of the driving force f, 
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even if this frequency is different from the natural 
frequency Ω0 of the undamped oscillations.(37) So, in 
the case of steady state, 
 
 ,ωΩ =  (25) 
 
and (24) becomes 
 
 

 

2 2
0 0 0

0

2 2
0 0 0
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ˆ [( )sin cos ]

ˆ
sin sin

ˆ [( ) cos sin ]

ˆ
cos cos 0.

m m
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m m
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X
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X

F
t

m
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ϕ ω

ω ϕ ω ϕ

ϕ ω

�
− Ω − Γ�

�

�
+ �

�

�
− − Ω + Γ�
�

�
+ =�

�

 (26) 

 
 
Equation (26) is valid for every value of t only when 
the coefficients of the linearly independent time-
functions sin ωt and cos ωt each equal zero. So, for 
amplitude X̂ , we get 
 

 
2 2 2 2 2

0

ˆ
ˆ ,

( )

F
X

m ω ω
=

− Ω + Γ
 (27) 

 
and, for a phase (ϕ0m − ϕ0f),(38,39) 
 

 0 0 2 2
0

tan( ) ,m f

ωϕ ϕ
ω

Γ− =
− Ω

 (28) 

 
where (ϕ0m − ϕ0f) is the phase angle between the driv-
ing force fx(ω, t) and the distance x(ω, t) [or the phase 
angle between the driving force fy(ω, t) and the dis-
tance y(ω, t)], i.e., the phase angle between the driv-
ing force f and the radius vector r. 

If we substitute r in (8) for X̂  from (27), then the 
average power (8) of one dipole in an x or y axis, ExP  
or EyP , emitted in one cycle of electron rotation in 
steady state (Ω = ω), is (see Figs. 2 and 3) 
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3 2 2 2 2 2 2
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c m
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πε ω ω
=

− Ω + Γ
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Figure 2. The total average power EP  emitted in one cycle of 
particle rotation and the total average power AP  absorbed in one 
cycle of particle rotation, versus the frequency of external force 
�; the natural frequency of a particle is Ω0 and the width of an 
oscillator is Γ. 
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and the total average emitted power is 
 

 
2 4 2

2 3 2 2 2 2 2
0 0

4

2 2 2 2 2
0

ˆ

6 ( )

,
( )

E Ex Ey

E

P P P

q F
m c

P

ω
πε ω ω

ω
ω ω∞

= +

=
− Ω + Γ

=
− Ω + Γ

 (31) 

 
where 
 

 
2 2

2 3
0

ˆ

6E

F q
P

m cπε∞ =  (32) 

 
is the average power emitted in one cycle of electron 
rotation if the frequency ω of the external force is 
approaching ∞, i.e., ω → ∞. 

3. ABSORPTION OF ELECTROMAGNETIC RA-
DIATION 

Absorption of electromagnetic radiation(40) of one 
dipole in the x axis results from the work of fxdx = 
fxvxdt = fx∂x/∂tdt = pxdt done on the charge q by the  
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Figure 3. Detail of Fig. 2. 

 
driving force fx: 
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So, in the same system of an atom as the one men-
tioned above, the average power AxP  absorbed in one 
cycle of driving force fx with frequency ω [because of 
(25) we can also take the integral to t2 = 2π/Ω instead 
of t2 = 2π/ω], using (27) and (33), in steady state (Ω = 
ω), is 
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The solution3 of this equation is 

 

 
2

0 02 2 2 2 2
0

ˆ
sin( ).

2 ( )
Ax m f

F
P

m

ω ϕ ϕ
ω ω

= − −
− Ω + Γ

 (35) 

 
Using (28) and sin(ϕ0m − ϕ0f) = tan(ϕ0m − ϕ0f)/[1 + 
tan2(ϕ0m − ϕ0f)]1/2, we get 
 

 
2 2

2 2 2 2 2
0

ˆ
.

2 ( )Ax

F
P

m
ω

ω ω
Γ= −

− Ω + Γ
 (36) 

Also, the average power AyP  absorbed in one cycle 
of the driving force fy is like AxP  in (36): 
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ω ω
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The total average absorbed power in one cycle of 

electron rotation is the sum of AxP  and AyP :(41) 
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The sum of the total emitted and absorbed average 

powers, P  (overall electromagnetic spectrum, if not 
only ω but other components of frequency in the Fou-
rier series of driving forces are present), in the steady 
state (ω = Ω), is zero (see Fig. 3): 
 
 0A EP P P= + =  (39) 
 
(by the steady state, i.e., by ω = Ω). By using (31), 
(38), and (39), we get 
 

 
2 2

3
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,
6

q
mcπε

ΩΓ =  (40) 

 
and, by using (32) and (40), (38) is 
 

 
2 2

2 2 2 2 2
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.
( )A EP P

ω
ω ω∞

Ω= −
− Ω + Γ

 (41) 

 

4. PARAMETERS OF AN ATOMIC OSCILLA-
TOR 

We observe an electron on one stationary circular 
orbit. The centrifugal and centripetal forces of the 
electron in this orbit are in equilibrium. If there is any 
small disturbance in such a system, the electron be-
comes exposed to additional radial oscillations with a 
small amplitude near the stationary circular orbit, i.e., 
near the equilibrium position. Such an amplitude is 
smaller than the radius of an electron orbit. So there is 
one electromechanical oscillator with a restoring 
force and parameters such as the spring constant 
(force constant), natural frequency, damping constant, 
half-width, and characteristic time. Although we do 
not know the size of the electron, we will determine 
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all these parameters. In this article it is not necessary 
to know the size of the electron nor the size of the 
nucleus. We assume that the size of the electron and 
the size of the nucleus are much smaller than the dis-
tance between them. 
(a) Spring constant and natural frequency 

The next three relations (all resulting from the same 
equation v = Ωr) are valid for the uniform circular 
motions of an electron on the radius r with angular 
frequency Ω and linear velocity v: 
 

 ( , ) ,
v

r vΩ =
Ω

 (42) 

 
 

 ( , ) ,
v

v r
r

Ω =  (43) 

 
 
 ( , ) .v r rΩ = Ω  (44) 
 

We assume that f∆ is the sum of all radial forces act-
ing on the electron near the equilibrium position. The 
equilibrium position is on the circle of radius r. If the 
electron is moved either to one side or to the other 
side away from the equilibrium position, the force f∆ 
returns it to the equilibrium position. This force is 
called the restoring force.(42) The small magnitude of 
the restoring force df∆ is found to be directly propor-
tional to the distance dr (dr being the dislocation of 
the electron from the equilibrium position on the ra-
dius r): 
 
 .df kdr∆ = −  (45) 
 
We assume that in a near-equilibrium position three 
radial forces are acting on the electron: 
 

 
2

centripetal (radial) force,d

mv
F

r
= =  (46) 

 

 2
0

,Coulomb s law (force),
4C

qQ
F

rπε
= =  (47) 

 
and the restoring force f∆. Thus we can write 
 

 
2

2
0

0,
4

mv qQ
f

r rπε∆ + + =  (48) 

or, using (44), 
 

 2
2

0

0.
4

qQ
f m r

rπε∆ + Ω + =  (49) 

 
The differential of the force f∆(Ω, r) is 
 

 [ ( , )] ,
f f

d f r dr d
r
∆ ∆

∆
∂ ∂� � � �Ω = + Ω� � � �∂ ∂Ω� � � �

 (50) 

 
i.e., using (49) 
 

( )2
3

0

[ ( , )] 2 .
2

qQ
d f r m dr m r d

rπε∆

� �
Ω = − Ω + + − Ω Ω� �

� �
(51) 

 
The differential dΩ of angular frequency Ω according 
to (43) is 
 

 2

1
( , ) .

v
d v r dv dr dv dr

v r r r
∂Ω ∂Ω� � � �Ω = + = −� � � �∂ ∂� � � �

 (52) 

 
The absolute value of the linear velocity v in steady 

state is constant, so 
 
 0.dv =  (53) 
 
From (51), by using (43), (52), and (53), we get 
 

 2
3 2

0

[ ( , )] 2 ,
2

qQ v
d f r m m r dr

r rπε∆

� �
Ω = − Ω + + Ω� �

� �
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i.e., 
 

 2
3

0

[ ( , )] .
2

qQ
d f r m dr

rπε∆

� �
Ω = Ω +� �

� �
 (55) 

 
In compliance with (45), the restoring force is df∆ = 
−kdr and, if we set this equal to (55), we get the 
spring constant k: 
 

 2
3

0

.
2

qQ
k m

rπε
= − Ω −  (56) 

 
So the natural frequency, (18), of an electron moving 
in circular atomic orbits is 
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0 3
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k qQ
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Ω = = −Ω −  (57) 

 
In the equilibrium state f∆ = 0 and, according to (48), 
we have 
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2
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mv qQ
r rπε

= −  (58) 

 
Because of (43) (i.e., v/r = Ω), from (58) it follows 
that 
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3

0

.
4

qQ
mrπε

Ω = −  (59) 

 
So, from (57) and using (59), we get 
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0 3 3

0 0

.
2 4

qQ qQ
mr mrπε πε

Ω = −Ω − = − = Ω  (60) 

 
(b) A half-width and damping constant 

Relation (60) means that absorption and emission 
are equal in case of the condition Ω = Ω0. Any circu-
lar motion satisfies this condition. So, according to 
(40), Γ is also 
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q
mcπε
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and, according to (41), AP  is also 
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Finally, in the equilibrium state (Ω = Ω0), from (56) 

and (60), we get 
 

 3
0

,
4

qQ
k

rπε
= −  (63) 

 
or the force constant(43) is also 
 
 2 2

0 .k m m= Ω = Ω  (64) 
 

In the steady state (ω = Ω = Ω0, ω ≠ 0, Γ ≠ 0), accord-
ing to (28), tan(ϕ0m − ϕ0f) = ∞, i.e., 
 

 0 0 .
2m f

πϕ ϕ− =  (65) 

 
The radius vector r and the driving force f are at right 
angles to each other (see Fig. 1). Using (10), (11), and 
(12), and by ω = Ω and ϕ0f  = ϕ0m − π/2, the driving 
force f is 
 
 0 0F̂[sin( ) cos( ) ] . m mt tϕ ϕ= Ω + − Ω +f i j  (66) 
 
A comparison of the radiative reaction force (22) and 
the driving force (66) shows that the driving force f 
and the radiative reaction force fR in the steady state 
are two parallel forces. If there are no other external 
forces, the radiative reaction force is the only acting 
force.(44) So we get 
 
 3ˆ ˆ

RF F m r .τ= = Ω  (67) 
 
Using (3), (27), and ω = Ω = Ω0, we get(45) 
 
 2 ,τΓ = Ω  (68) 
 
and, using (40) and (68), 
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q
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τ
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According to (17) and (68), 
 
 2.b mτ= Ω  (70) 
 
Using (60), we can show (61) in the steady state as 
 

 
2 3

0

1
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6 2
Q q

m crπε
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(c) Oscillator energy and frequency 

The total energy of a harmonic oscillator is(46,47) 

 
 

 2 2 2 2 21 1 1ˆ ˆ ,
2 2 2

E m X m Y kr= Ω = Ω =  (72) 



Milan Perkovac 
 
 

 169

and, using (58) and (63), we get 
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0

1
.

2 8
qQ

E mv
rπε

= = −  (73) 

 
Now we have all the parameters of the atom as an 

electromechanical oscillator. We can now discuss 
other interesting relations. 

We can quite freely select any of the states in an 
atom as the state of reference. All the variables in that 
state will be written with an underlined symbol. The 
period of one cycle of an electron is 
 

 
2 1

.T
π

ν
= =

Ω
 (74) 

 
According to (60) and (74), 
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1
.

( / )r r
ν
ν
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The product of the period T and energy E of an os-

cillator we call the mechanical action and denote as å 
= ET. According to (60), (72), (73), and (74), we get 
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.
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qQ mr
å ET r m rmv

ππ π
ε

−= = Ω = =  (76) 

 
If we divide (76) by mv, we get πr = å/mv, the ac-

tion/momentum of the particle. It resembles de 
Broglie’s basic postulate for the matter wave,(48) λ = 
h/mv, where h is Planck’s constant. Since an electron 
moves in circles, according to de Broglie’s hypothe-
sis, the electron wave must be a circular standing 
wave with 2πr = nλ, and å should be nh/2. But for 
our consideration here we do not need the matter 
wave or Planck’s constant. 

For the state of reference we have, from (76), 
 

 
0

.
4

qQ mr
å ET rmv

π π
ε

−= = =  (77) 

 
If we select the state of reference in one atom, then å 
is the referent mechanical action for that atom. It is 
the value of the fixed amount; i.e., it is a constant for 
that atom. 

We denote the quotient of two mechanical actions 
as κå and, according to (76) and (77), it is 

 å

å ET r
=

å ET r
κ = =  (78) 

 
or 
 

 2 ,å

r
r

κ=  (79) 

 
where κå is any positive real number. Obviously in 
any state of reference κå  = (r/r)1/2 = 1. This means 
that κå is a natural number and always equals one. 
From (75) and (79) we get 
 

 3 ,
å

νν
κ

=  (80) 

 
and, from (78), 
 
 ,åET å åκ= =  (81) 
 
and (76) becomes 
 
 årmv å.π κ=  (82) 
 
Expression (82) resembles Bohr’s quantum condi-
tion(49) (2πrmv = nh). κå is a real number that can also 
be any natural number n. The referent mechanical 
action å is a constant, as h is in Bohr’s condition. But 
we cannot affirm now that κå is a natural number. 
This affirmation is confirmed in Ref. 7, where elec-
tromagnetic properties of the atom are included. 

Equations (74), (80), and (81) give 
 

 2 .å
å

å
E å

νκ ν
κ

= =  (83) 

 
The relation (83), E = κååν, resembles Planck’s quan-
tum hypothesis(50) (E = nhν), which is very important 
for quantum physics. There was a lot of discussion on 
how to explain in terms of physics the meaning of 
some quantities in the relation E = nhν. However, in 
our relation (83) all of the quantities are completely 
clear in terms of physics. The basic physical differ-
ence between Planck’s relation E = nhν and (83) is 
the meaning of frequency ν. According to Planck’s 
relation E = nhν, the frequency ν means the fre-
quency of an electromagnetic wave νem. In relation 
(83), E = κååν, the frequency ν means the frequency 
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of mechanical rotation of an electron in the atomic 
orbit. 

At the state of reference (where κå = 1), according 
to (83), we have 
 
 .E åν=  (84) 
 
Notwithstanding the similarity between (84) and Ein-
stein’s photon equation(51) (E = hνem), we note that ν 
is not the frequency of electromagnetic oscillations in 
a vacuum νem (the frequency of light) but the fre-
quency of mechanical rotation of an electron in the 
atom’s state of reference, and this is a significant dif-
ference. The physical connection between these two 
frequencies demands a detailed electromagnetic 
analysis, which is made in Ref. 7. 

E3/ν2, according to (60), (63), (72), and (74), can be 
shown as 
 

 
23

2
0

.
2 4

E m qQ
ν ε

� �
= � �

� �
 (85) 

 
For a definite system (where q and Q are determinate 
and fixed) E3/ν2 is constant. We can show (85) as 
 

 
2

3

0

.
2 4
m qQ

E ν
ε

� �
= � �

� �
 (86) 

 
Setting E = κååν from (83) equal to (86), we get 
 

 
2 2 2

3 3 2 3 3
0 0

.
2 4 32å å

m qQ mq Q
å å

ν
κ ε ε κ

� �
= =� �

� �
 (87) 

 
If we put (87) in (86), we get 
 
 

 
2 2

2 2 2
0

.
32 å

mq Q
E

åε κ
=  (88) 

 
 
The greatest ionization potential of hydrogen(52,53) 

( 1
1H ) is Vi = 13.5978 V. We select that state as the 

state of reference of the hydrogen atom. The total 
energy of a harmonic oscillator in that state is E = eVi 
= 2.1786 × 10−18 J. So, according to (88), we can now 
calculate the mechanical action å in the state of refer-
ence (κå = 1, |q| = |Q| = e): 

 34

0

| |
3.3139 10  J s.

4 2
qQ m

å
Eε

−= = × ⋅  (89) 

 
The greatest ionization potentials of 4

2 He+ , 7
3Li++ , 

9
4 Be ,+++  and 11

5 B++++  are 54.41 V, 122.414 V, 217.605 
V, and 339.965 V, respectively. If we select these 
states as the states of reference and calculate the me-
chanical actions according to (89), we get the same 
result for all of the elements: å = 3.3139 × 10−34 J ⋅ s 
(see Table I). It seems that the mechanical action in 
such states of reference is constant for all elements. 
Still it does not mean that å is a fundamental constant, 
because å depends on our free choice. In different 
states of reference å has a different value. 

Setting E = mv2/2 and E = −qQ/8πε0r, both ex-
pressed from (73), separately equal to (88), we get 
 

 
04 å å

qQ v
v

åε κ κ
−= =  (90) 

 
and 
 

 
2 2

204
.å

å

å
r r

mqQ
ε κ κ
π

= − =  (91) 

 
Setting (83) equal to (88) and using (84), we get 
 

 23 .E å νν=  (92) 
 
Using (87) and (88) for the frequency difference and 
the energy difference of any two stationary states 
characterized by κå and κå′ (κå′ > κå), we get 
 

2 2

2 3 3 3 3 3
0

1 1 1 1
32 å å å å

mq Q
å

ν ν ν ν
ε κ κ κ κ

� � � �′∆ = − = − = −� � � �′ ′� � � �
 (93) 

 
and 
 

2 2

2 2 2 2 2 2
0

1 1 1 1
.

32 å å å å

mq Q
E E E E

åε κ κ κ κ
� � � �′∆ = − = − = −� � � �′ ′� � � �

(94) 

 
Equations (93) and (94) remind us of the well-known 
Bohr expression of the atomic radiant frequency(54) 
and the radiant energy.(55) But there is a fundamental 
difference between the frequencies ν of the circular 
motion of the electron and the frequency of radiated 
electromagnetic energy νem by Bohr. The explanation 
of this difference is the subject of another article.(7) 
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Table I: The Quantity of Oscillators Based on the Hydrogen Atom 
 

Symbol 
 

Vi(H) = 13.5978V* (Ref. 
53) 

(experimental) 

1
1H  

 
κå = 1 

1
1H  

 
κå = 2 

1
1H  

 
κå = 3 

1
1H  

 
κå = 4 

4 +
2 He  

 
κå = 1 

7 ++
3 Li  

 
κå = 1 

9 +++
4 Be  

 
κå = 1 

1 ++++
5Be  

 
κå = 1 

 

Unit 

Z Atomic number 1 1 1 1 2 3 4 5 1 
Vi Ionization potential 

(calculated, 1H experi-
mental) 

13.5978* 3.39948 1.510885 0.849873 54.41 122.414 217.605 339.965 V 

r r = |qQ|/8πε0|qVi|;4 q = -
e; Q = Ze 5.29e−11 2.12e−10 4.77e−10 8.47e−10 2.65e−11 1.76e−11 1.32e−11 1.06e−11 m 

τ τ = q2/6πε0mc3 6.27e−24 6.27e−24 6.27e−24 6.27e−24 6.27e−24 6.27e−24 6.27e−24 6.27e−24 s/rad 
Ω Ω = Ω0 = 

(−qQ/4πε0mr3)1/2 
4.13e+16 5.16e+15 1.53e+15 6.45e+14 1.65e+17 3.72e+17 6.61e+17 1.03e+18 rad/s 

T T = 2π/Ω 1.52e−16 1.22e−15 4.11e−15 9.74e−15 3.80e−17 1.69e−17 9.50e−18 6.06e−18 s 
ν ν = 1/T 6.57e+15 8.22e+14 2.43e+14 1.03e+14 2.63e+16 5.92e+16 1.05e+17 1.64e+17 Hz 
Γ Γ = τΩ2 1.07e+10 1.67e+08 1.47e+07 2.61e+06 1.71e+11 8.67e+11 2.74e+12 6.69e+12 rad/s 
b b = mτΩ2 9.74e−21 1.52e−22 1.34e−23 2.38e−24 1.56e−19 7.90e−19 2.50e−18 6.09e−18 kg/s 
k k = −qQ/4πε0r

3 = mΩ2 1.55e+03 2.43e+01 2.13e+00 3.79e−01 2.49e+04 1.26e+05 3.98e+05 9.73e+05 kg/s2 

E E = mΩ2r2/2 = kr2/2 = 
mv2/2 2.18e−18 5.45e−19 2.42e−19 1.36e−19 8.72e−18 1.96e−17 3.49e−17 5.45e−17 J 

RF̂  RF̂  = mτΩ3r 2.13e−14 1.66e−16 9.74e−18 1.30e−18 6.83e−13 5.18e−12 2.18e−11 6.67e−11 N 

FC FC = |qQ|/4πε0r
2 8.23e−08 5.14e−09 1.02e−09 3.21e−10 1.32e−06 6.67e−06 2.11e−05 5.15e−05 N 

EP ∞  
EP ∞  = 2ˆ

RF q2/6πε0c
3m2 3.12e−21 1.91e−25 6.53e−28 1.16e−29 3.20e−18 1.85e−16 3.28e−15 3.06e−14 W 

EP , 

AP  
EP  = − AP  = 2ˆ

RF /mΓ 
4.66e−08 1.82e−10 7.10e−12 7.11e−13 2.99e−06 3.40e−05 1.91e−04 7.29e−04 W 

Γ Γ = EP /2E 1.07e+10 1.67e+08 1.47e+07 2.61e+06 1.71e+11 8.67e+11 2.74e+12 6.69e+12 rad/s 

p p = mv = RF̂ /Γ 1.99e−24 9.96e−25 6.64e−25 4.98e−25 3.99e−24 5.98e−24 7.97e−24 9.96e−24 kg ⋅ m/s 

å å = ET = r2mΩ/2 = 
(−qQπmr/4ε0)

1/2 
3.31e−34 6.63e−34 9.94e−34 1.33e−33 3.31e−34 3.31e−34 3.31e−34 3.31e−34 J ⋅ s 

å å = E T = 
(−qQπmr/4ε0)

1/2 3.31e−34 3.31e−34 3.31e−34 3.31e−34 3.31e−34 3.31e−34 3.31e−34 3.31e−34 J ⋅ s 

κå κå = ET/E T 1.00000 2.00000 3.00000 4.00000 1.00000 1.00000 1.00000 1.00000 1 
å å = κåE T = πrmv = κåå 3.31e−34 6.63e−34 9.94e−34 1.33e−33 3.31e−34 3.31e−34 3.31e−34 3.31e−34 J ⋅ s 

E 
E = å(νν2)1/3 = κååν = 

åν/κå
2 = 

mq2Q2/(32ε0
2κå

2å2) 
2.18e−18 5.45e−19 2.42e−19 1.36e−19 8.72e−18 1.96e−17 3.49e−17 5.45e−17 J 

E3/ν2 E3/ν2 = m(qQ/4ε0)
2/2 2.39e−85 2.39e−85 2.39e−85 2.39e−85 9.57e−85 2.15e−84 3.83e−84 5.98e−84 J3 ⋅ s2 

ν ν = mq2Q2/(32ε0
2κå

3å3) 
= ν/κå

3 
6.57e+15 8.22e+14 2.43e+14 1.03e+14 2.63e+16 5.92e+16 1.05e+17 1.64e+17 1/s 

v v = −qQ/(4ε0κåå) = v/κå 2.19e+06 1.09e+06 7.29e+05 5.47e+05 4.38e+06 6.56e+06 8.75e+06 1.09e+07 m/s 
r r = −4ε0κå

2å2/(πmqQ) = 
κå

2r 
5.29e−11 2.12e−10 4.77e−10 8.47e−10 2.65e−11 1.76e−11 1.32e−11 1.06e−11 m 

The experimental value of the ionization potential calculated from spectroscopic data of hydrogen, 1
1 ( 1)H

åκ = , is(53) Vi = 13.5978 V. The ionization 
potentials of 1

1 ( 2)H
åκ = , 1

1 ( 3)H
åκ = , 1

1 ( 4)H
åκ = , 4 +

2 ( 1)He
åκ = , 7 ++

3 ( 1)Li
åκ = , 9 +++

4 ( 1)Be
åκ = , and 11 ++++

5 ( 1)Be
åκ =  are calculated here in such a way that the 

quotient of mechanical actions of each atom, κå = ET/E T, becomes a natural number. Without additional criteria, κå can theoretically be any rational 
number. 

 
The energy ∆E in (94) and the energy of the elec-

tromagnetic wave 
 

 
2

( ) 2 2 2 2

1 1
8em

mc
E

n nπ γ∆
� �≈ −� �′� �

 (95) 

 
in Ref. 7 are identical (the atom-structure coefficient γ 
is nearly constant; n and n′ are positive integers). So 

mq2Q2/32ε0
2å2 = mc2/8π 2γ 2, and we get 

 

 0
0

| | 1
| |,

2 2e

å qQ
å Z qQ

c
π π

γ ε
= = =  (96) 

 
where Z0 = 1/ε0c = 376.7303 Ω. We call å/γ the ele-
mentary action and denote it as åe. In the case of hy-
drogen (|qQ| = e2) this action is minimal, åe = 0.1519 



Absorption and Emission of Radiation by an Atomic Oscillator 
 
 

 172

× 10−34 J ⋅ s. It is 21.81 times less than the referent 
mechanical action å according to (89), and 43.62 
times less than the Planck constant h. The elementary 
action åe = 1/2πZ0e2 is a universal physical constant. 
 
5. CONCLUSION 

An electric charge emits electromagnetic energy 
whenever it is accelerating. Thus an electron that ro-
tates around the nucleus, with a constant centripetal 
acceleration, constantly emits electromagnetic energy. 
Consequently, its energy should diminish gradually. 
This would lead to a gradual reduction in the dimen-
sions of its orbit so that the electron would finally fall 
into the nucleus.(56) 

However, at the same time there is a process in the 
atom working in the opposite direction. Generally, an 
electron in the atom is also absorbing electromagnetic 
radiation. Indeed, it is the radiative reaction force that 
by emission of electromagnetic radiation in a steady 
state contributes to the absorption of electromagnetic 

radiation in the atom. This means that in the atom’s 
steady state this absorption is equal to the emission of 
electromagnetic radiation, and the atom remains stable. 

In this article the atom is treated as an electrome-
chanical oscillator. All the parameters of this oscilla-
tor are determinate: characteristic time τ, damping con-
stant b, spring constant k, half-width Γ, and natural fre-
quency Ω0. Emission of electromagnetic radiation in the 
atom’s steady state was a fundamental argument against 
applying classical electrodynamics to it. According to 
this article, such objections no longer hold ground. 

On the basis of mechanical considerations, this arti-
cle lays the foundations for a deduction of Planck’s 
quantum hypothesis, Einstein’s photon equation, 
Bohr’s quantum condition, and de Broglie’s hypothe-
sis, whereas the details of quantization are given by 
the same author in another article(7) by including the 
others’ electromagnetic consideration. 
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Résumé 
La théorie de l’absorption et de l’émission de la radiation électromagnétique 
d’un oscillateur composé du noyau atomique et d’une particule électriquement 
chargée est déduite en utilisant l’électrodynamique classique. En état stationnaire 
d’un atome, l’émission et l’absorption de la radiation électromagnétique sont 
égales, donc, l’atome est stable. Afin d’intégrer les effets réactifs de la radiation 
dans l’équation du mouvement, l’équation de Newton est modifiée en ajoutant la 
force de réaction radiative. L’article présente une introduction à la déduction des 
propositions de base de la mécanique quantique. 

 
 
Endnotes 
1 “The question as to whether the rays of light are 

quantized or the quantum effect originates only in-
side the matter is indeed just the first and toughest 
dilemma the whole quantum theory is faced with 
and the answer to that question is still to direct its 
further development.” (In the original: “ … In der 
Tat ist die Frage, ob die Lichtstrahlen selber 
gequantelt sind, oder ob die Quantenwirkung nur 
in der Materie stattfindet, wohl das erste und 
schwerste Dilemma, vor das die ganze Quanten-
theorie gestellt ist und dessen Beantwortung ihr 
erst die weitere Entwicklung weisen wird.” Lecture 
“Das Wesen des Lichts,” 28 October 1919.) 

2 “It is useful to note that the longest characteristic 
time τ (τ = e2/6πε0mc3) for charged particles is for 
electrons and that its value is τ  = 6.26 × 10−24 sec. 
 

This is of the order of time taken for light to travel 
10−15 m. Only for phenomena involving such dis-
tances or times will we expect radiative effects to 
play a crucial role.”(22) This statement shows us 
that classical analyses are used with systems for 
which mass m approaches the electron mass and 
charge q approaches the electron charge e. 

3 The results and the figures in the text are generated 
by Wolfram Research, Mathematica, courtesy of 
Systemcom, Zagreb, Croatia. 

4 The radii of the orbits of hydrogen are computed 
by means of the ionization potential(57) Vi accord-
ing to the relativistic formula 
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