
BDD complexity analysis of multiplier circuits

I. Grudenic and N. Bogunovic
Department of Electronics, Microelectronics, Computer and Intelligent Systems

Faculty of electrical engineering and computing, University of Zagreb
Unska 3, Zagreb, Croatia

Phone: 01-6129-999 int. 548 Fax: 01-6129-653 E-mail: igor.grudenic@fer.hr

Abstract – The equivalence of Boolean functions is an
important issue in hardware design. In order to check the
equivalence of two combinatorial circuits SAT solvers and
BDD based algorithms are used. For complex hardware
designs efficient BDD manipulation algorithms must be
employed. There is a number of industrial combinatorial
circuitry for which BDD representation explodes
exponentially in the number of inputs. An example of such a
circuitry is multiplier that is known to have no efficient BDD
representation regardless of the employed variable ordering.
In this paper we analyze some important properties of the
BDD representation of multipliers, as well as the complexity
of the involved computations.

I. INTRODUCTION

The growth of the integrated circuits components (in the
number of elements per chip) makes these designs more
error prone. In order to minimize design flaws efficient
formal verification methods must be used.

In the verification of combinatorial (stateless) circuits
equivalence checking is the most important formal
verification algorithm. Many equivalence checking
algorithms [1][2] rely on the Binary Decision Diagrams
(BDDs) as its central data structure. Binary decisions
diagrams are known to be efficient in representing
common patterns, like digital adders, in combinatorial
circuit design.

Since BDDs represent logical function the
representation cannot be efficient for all the functions
because Boolean function representation is known to be
NP complete. Multiplier is an important example of
combinatorial circuitry with no efficient BDD
representation. It is proved in [3] that at least one of the
multiplier outputs has its BDD representation exponential
in the number of the operand bits. This is true regardless of
the variable ordering used while creating BDD outputs.
Even more, if each of the outputs is presented using
different variable ordering (which is not feasible for
computation) the size of at least one of the output would
be exponential in the number of variables.

In this paper we analyze some important properties of
multiplier BDD representation such as: the size of the
representation, computation issues and variable ordering.
In section II we define BDDs and its basic properties.
Multiplier circuit is described in section III. The size of the
multiplier BDD representation and complexity of the
computation involved are outlined in section IV. Different
variable orderings and their effect on the BDD properties
of the multipliers are discussed in section V.

II. BDD DEFINITION

BDD is a directed acyclic graph used to represent

Boolean functions. The nodes in the graph correspond to
Boolean variables, while the arcs define evaluation of the
variables. The paths in the graph therefore stand for
different interpretations of the Boolean function. The sinks
of the graph are equivalents of true and false value of the
function. BDDs for the outputs of the full adder are given
in Fig. 1.

The lower bit of the result, presented by the left BDD,
evaluates to true if the odd number of inputs evaluates to
true. The right BDD represents the higher bit of the results
which is evaluated to true if any pair of the inputs
evaluates to true.

BDDs are canonical, which is very important for
equivalence checking, if the following three conditions are
satisfied:

1. variable ordering is the same for all the functions,
2. there is no isomorphic subgraphs in the diagram
3. node collapses if both arcs are pointing to the same

child
The basis for the efficient BDD manipulation is the

following recursive expression:

where f and g are BDDs representing functions f and g.
The cofactors xf and xf are defined as:

),...,,0,,...,(111 niix xxxxff
i

+−=
),...,,1,,...,(111 niix xxxxff

i +−=

and can be easily obtained from BDD f if the xi is the top
variable.

() ()xxxx gopfxgopfxgopf ⋅+⋅=

x

z

y y

z

1 0

x

y y

z

1 0

1 0

1

1 1

1

1

1
1

1

0

00

0 0

0

0
0

zyx ⊕⊕ zyzxyx ⋅+⋅+⋅

Fig. 1. BDD representation of full adder

III. MULTIPLIER DEFINITION

Multiplier is a combinatorial circuit that is consisted of
2n inputs and 2n outputs where n denotes the number of
the operand bits. The inputs are bit vectors defined as:

]...[,]...[11 nn yyyxxx == .

Bits nx and ny are the highest level bits in the x and
the y bit vectors, respectively. The result bit vector is

In order to define the outputs in term of the inputs, the
following functions that represent outputs of the full adder
are used:

in which the operators ⊕⋅, and + denote Boolean
operators and, xor and or respectively. Two dimensional
bit vectors s and c are needed to express the output vector
z. Dimension of the vector s is [n,n+1] and dimension of
the vector c is [n-1,n+1]. The values of vectors s and c are
given by the following equations:

The order of calculation is determined as an iteration
over k in the interval [1,n], and for the each k, iteration for
i is made over the values [0,n]. The values for ck,i-1 are
calculated before the values sk,i.

The output vector z is expressed directly from the vector
s in the following expression:

It is observable that the cover of the upper half of the
output vector bits is the entire input set.

IV. MULTIPLIER SIZE AND COMPUTATION
PROPERTIES

It is shown in [3] that multipliers have no efficient BDD

representation. Using the variable ordering:

 011011 yyyyxxxx nnnn <<<<<<<<< −− (1)

we measured time and space complexity of the circuit
for the]14,1[∈n . The results are given in the Fig. 2. It can
be noticed that the size and the number of operations
grows exponentially in n. The number of operations is
larger than the number of nodes in the result because of the
reduction of the isomorphic subgraphs and recalculation of
already computed results due to the limited cache size. The
ratio between the number of operations and the size of the
multipliers BDDs grows linearly with the number of
multiplier bits and reaches the factor of four for the 14 bit
multiplier. This ratio is obtained with the start cache size

of 4 million entries and the maximum cache size of 16
million entries. The cache size is doubled whenever a
threshold is reached. The threshold is set to the point in
which 80% of the cache is full.

In order to measure exponential growth of multiplier
BDD representation we define factors of growth for both
the size sf and the number of operations of as:

where sizei denotes the BDD representation size of the
multiplier with i bit wide operands. The number of BDD
operations processed in order to build the multiplier is
expressed as nOpsi. Our experimental results show that the
size growth factor sfi converges to the value of 2.88
(i=14), while the factor ofi settles at slightly higher value
of 3.29 (i=14).

Beside the analysis of the time and space complexity of
multipliers, we analyzed the same complexities inside the
multiplier. Since n-bit multiplier is built using 2n Boolean
variables, activity was measured at each of the variable
indexes. As shown in Fig. 3. three values were measured:
the number of BDD nodes in the unique table and the
number of operations with as well as without the cache
system enabled. The values are obtained for 10 bit
multiplier.

When the number of BDD nodes is observed, it is
evident that the majority of data is spread across a few
neighbor variable indexes (interval [13, 15] in Fig. 3) . It
is apparent that this is followed by the number of
operations issued at this variable level, when considering
the computation made with the cache turned on. It can be
also observed, as in [7] that the peak of the computation is
one variable index subsequent to the number of BDD
nodes peak.

In the scenario where the cache system is not employed,

[]
[]

[] ⎭
⎬
⎫

⎩
⎨
⎧

∈∈
=∈

=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

+=∈
∈∈

∈=
=

−+−

−+−

ninkcsumxycarry
ink

c

ninkc
ninkcsumxysum

nikxysum
s

ikikik
ik

ik

ikikik

ik

ik

..1],..2[),,(
0],..2[0

1],..2[
..1],..2[),,(

..1,1)0,(

1,1,1
,

,

1,1,1,

zyzxyxzyxcarry
zyxzyxsum

⋅+⋅+⋅=
⊕⊕=

),,(
),,(

⎭
⎬
⎫

⎩
⎨
⎧

⋅∈
−∈

=
+−]2,[

]1,1[

1,

,

nnis
nis

z
nin

ii
i

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14

M
ill

io
ns

multiplier size (bits)

n
of

 O
ps

/B
D

D
 n

od
es

BDD size

nOps

Fig. 2. BDD multiplier time-space complexity

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Th
ou

sa
nd

s

variable index

nu
m

be
r o

f n
od

es
/o

pe
ra

tio
ns

nOps
BDD nodes

nOps cache

Fig. 3. 10 bit multiplier BDD properties

]̀...[21 nzzz =

)2(
11 −−

==
i

i
i

i

i
i nOps

nOpsiof
size
sizesf

the largest amount of operations is processed at the lowest
variable indexes (interval [17,19] in Fig. 3). Since all the
multiplier outputs have these indexes (as noted in section
III) in their cover, the operations issued at the lowest BDD
levels are repeated very frequently. The operations
involving higher variable indexes are computed less often
because BDD nodes at these levels are not referenced as
many times.

There is no upper bound for the number of operations at
a given variable index whether the cache is used or not.
Theoretically, if infinite cache is available [6], the number
of BDD operations computed is limited by the size of the
operands. The number of BDD nodes at the given level is
generally limited only by the expression:

in

nOfNodes
−+

=
122 (3)

where i is the level, and n denotes the total number of
variable indexes. The expression (3) expresses the number
of possible Boolean functions over the cover of n+1-i
variables.

V. VARIABLE ORDERING EFFECT ON MULTIPLER

BDD CHARACTERISTICS

Variable ordering is a prerequisite for the canonicity of

the BDDs. The choice of variable ordering can be
determined before the BDD creation (static variable
ordering) or can be changed at any point of the
computation (dynamic variable ordering) [4]. Dynamic
variable ordering is based on the locality of the swap
operation. When two adjacent variable indexes are
swapped it is possible to keep the same data structures in
which BDD nodes are stored in order to avoid updating of
references [5].

Although there is no efficient variable ordering which
can be used to decrease exponential complexity of the
multipliers BDD representation, we tried to analyze the
properties of the different orderings. Trying all the variable
orderings would not be feasible even for small multipliers
since the amount of orderings is given by the equation:

where n is the number of bits in the operands. The
number of all the input bit permutations is divided by the
factor of two since multiplication is a commutative
operation. Because of the large number of different
variable orderings we tested multipliers with only a limited
number of ordering permutations (nOrderings=1000).

In order to ensure a proper distribution of permutations

over the set of all the permutations we used the heuristic
algorithm presented in Fig. 4. The vector a contains
pointers to BDD nodes representing variable indexes,
while n represents the number of indexes. The function
random(i,n) returns random number from the closed
interval [i,n], while the function Swap(x,y) swaps the
contents of objects x and y. The creation of random
numbers is done by the linear congruential generator from
the standard C language library. We tested the random
permutation generator by producing large numbers of
permutations on only few variable indexes. The result was
that all the possible permutations were generated and the
distribution of occurences for each permutation was
uniform.

 For each of the generated permutations and given
multiplier we measured the size of the resulting BDD and
the number of generated operations. In addition, we noted
the BDD sizes of all the multipliers output, and we
specifically outlined the output whose BDD representation
contains the greatest number of nodes.

The results of the size measurements are presented in
Fig. 5. The curve maxSize denotes the highest number of
BDD nodes generated during the computation of all tested
variable ordering permutations for the given multiplier.
The curve minSize denotes the minimal number of BDD
nodes given in the described manner, while avgSize is the
average multiplier BDD size for all the computed
orderings.

It can be observed from Fig. 5. that in all three scenarios
(minimal, maximal and average) the size of BDD
representation is exponential in the number of multiplier
bits. The sfi factor (2) is different for the each curve. The
factor for minSize range of values (for each multiplier)
averages at 2,06. The average value of the avgSize and the
maxSize factor is 2,43 and 3,10 respectively.

When comparing these factors with the factors obtained
for the variable ordering given in (1), both minSize and
avgSize factors outperform it. The worst case variable
ordering scenario has a factor 3,10 which is only slightly
higher than the one stated in the previous section. This
leads to the conclusion that the variable ordering given in
(1) is close to the worst experimentally measured variable
ordering. It should be noted that sfi factor values for
random variable orderings do not converge but are rather
slowly growing with the number of multiplier bits. That
could be due to the small number of calculated
permutations (considering the number of possible
orderings). As the number of bits becomes higher, the

0

200

400

600

800

1000

1200

1400

1600

1800

2000

3 4 5 6 7 8 9 10 11

Th
ou

sa
nd

s

multiplier size (bits)

nu
m

be
r o

f B
D

D
 n

od
es

minSize

maxSize

avgSize

Fig. 5. Variable ordering impact on BDD size

Random_Permutation(vector a, int n)
Begin
 For i=1 to n-1 do
 Begin
 swapIndex=random(i,n)
 Swap(a[i],a[swapIndex])
 End
End.

Fig. 4. Random permutation algorithm

2
)!2(ntionsnOfpermuta =

percentage of tried orderings is lower, which results in
lower probability in finding both the best and the worst
variable ordering.

Experimental results for the number of BDD operations
computed for different variable orderings are perfectly
matched with the numbers gathered while analyzing the
size of the resulting BDD. From the computational
complexity analysis it can be noticed that the variable
ordering given in (1) is very close to the worst generated
ordering.

The third series of analysis focused on finding the
multiplier output (among all the outputs) whose BDD
representation is the largest, but for the permutation that
minimizes such an output. The idea behind this is in the
theoretical lower bound [3] for the complexity on the at
least one of the multiplier outputs. This complexity
(expressed in terms of the multiplier size) evaluates to
Ω(1,09n), where n is the number of multiplier bits. The
output with largest representation is chosen as the worst
case scenario since exact data could be gathered only with
all the variable orderings available.

The comparison between theoretical and experimentally
tested bounds is given in Fig. 6. The series of values
theoBDD represents the exponential theoretical complexity
Ω(1,09n). The results for the output with the largest BDD
representation for the best found variable ordering is
denoted by outBDD. In order to express experimentally
obtained results in terms of exponential size complexity
we find the complexity of Ω(1,74n) to be an approximation
of the outBDD values. This complexity is shown in Fig. 6.
as the fitBDD set of values. The base of the exponential
function is taken as the average ratio between all the
adjacent outBDD values. We believe that the misalignment
of the measured values and the exponential function is due
to the small number of variable orderings tested.

It can be concluded that the gap between the theoretical
lower bound and measured values is not negligible. In
addition, it should be noted that the variable ordering can
improve BDD manipulation performance and therefore
should be employed while representing multipliers.

VI. CONCLUSION

In this paper we analyzed BDD representation of digital

multiplier, a common industrial design. BDDs are shown
to be efficient representation for large number of

commonly used combinatorial circuits, but not for the
multipliers.

Our BDD analysis included BDD size and
computational complexity inside the multiplier and among
multipliers of different size. We also showed the impact of
cache system on the BDD computation.

Since variable ordering is an important BDD issue we
tested the multiplier against the number of randomly
generated orderings. It is discovered that the initial
variable ordering was far from the best ordering, and that
the variable ordering algorithms should be employed even
on the designs with exponential BDD complexity.

The comparison of theoretical lower bound on the size
of the multiplier output and the experimentally obtained
lower bound revealed a large misalignment of these two
values. This leads to the conclusion that the best variable
orderings are not found in our random search.

It is obvious that BDDs are not the best solution for the
representation of circuitry which are proved to be
exponentially large. Perhaps it is possible to achieve a
speedup in manipulation of the BDDs by using distributed
computation environment.

REFERENCES

 [1] C. A. J. van Eijk, “A BDD-based verification engine for

combinational equivalence checking“, Proc. CSSP-97, 8th
Annual ProRISC/IEEE Workshop on Circuits, Systems and
Signal Processing, Mierlo, Netherlands, 27-28 November
1997, p. 155-162.

 [2] A. Kuehlmann and F. Krohm, “Equivalence Checking
using Cuts and Heaps”, Proc. 34th ACM/IEEE Design
Automation Conference, pp. 263-268, 1997

 [3] Randal E. Bryant, “On the Complexity of VLSI
Implementations and Graph Representations of Boolean
Functions with Application to Integer Multiplication”,
IEEE Trans. on Computers, vol. 40, no. 2, p. 205,
February 1991.

 [4] O. Grumberg, S. Livne, S. Markowitch, “Learning to Order
BDD Variables in Verification”, Journal of Artificial
Intelligence Research 18(2003) p. 83-116, Jan 2003.

 [5] R. Rudell, “Dynamic Variable Ordering for Ordered
Binary Decision Diagrams”, In Proceedings of the
International Conference on Computer Aided Design, p.
42-47, 1993.

 [6] K.S. Brace, R.L. Rudell, R.E. Bryant, “Efficient
implementation of a BDD package”, In Proc. of the 27th
Design Automation Conference, Orlando, USA. p. 40-45.,
June 1990.

 [7] K. Milvang-Jensen and A. J. Hu, “BDDNow: A Parallel
BDD Package”, In Proceedings of Formal Methods in
Computer Aided Design, p. 501, 1998.

0

500

1000

1500

2000

2500

3000

3500

2 3 4 5 6 7 8 9 10 11

multiplier size (bits)

nu
m

eb
er

 o
f B

D
D

 n
od

es

outBDD

theoBDD

fitBDD

Fig. 6. The size of the largest multiplier output

