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Abstract – The equivalence of Boolean functions is an 
important issue in hardware design. In order to check the 
equivalence of two combinatorial circuits SAT solvers and 
BDD based algorithms are used. For complex hardware 
designs efficient BDD manipulation algorithms must be 
employed. There is a number of industrial combinatorial 
circuitry for which BDD representation explodes 
exponentially in the number of inputs. An example of such a 
circuitry is multiplier that is known to have no efficient BDD 
representation regardless of the employed variable ordering. 
In this paper we analyze some important properties of the 
BDD representation of multipliers, as well as the complexity 
of the involved computations. 

 
 

I. INTRODUCTION 
 

The growth of the integrated circuits components (in the 
number of elements per chip) makes these designs more 
error prone. In order to minimize design flaws efficient 
formal verification methods must be used. 

In the verification of combinatorial (stateless) circuits 
equivalence checking is the most important formal 
verification algorithm. Many equivalence checking 
algorithms [1][2] rely on the Binary Decision Diagrams 
(BDDs) as its central data structure. Binary decisions 
diagrams are known to be efficient in representing 
common patterns, like digital adders, in combinatorial 
circuit design. 

Since BDDs represent logical function the 
representation cannot be efficient for all the functions 
because Boolean function representation is known to be 
NP complete. Multiplier is an important example of 
combinatorial circuitry with no efficient BDD 
representation. It is proved in [3] that at least one of the 
multiplier outputs has its BDD representation exponential 
in the number of the operand bits. This is true regardless of 
the variable ordering used while creating BDD outputs. 
Even more, if each of the outputs is presented using 
different variable ordering (which is not feasible for 
computation) the size of at least one of the output would 
be exponential in the number of variables. 

In this paper we analyze some important properties of 
multiplier BDD representation such as: the size of the 
representation, computation issues and variable ordering. 
In section II we define BDDs and its basic properties. 
Multiplier circuit is described in section III. The size of the 
multiplier BDD representation and complexity of the 
computation involved are outlined in section IV. Different 
variable orderings and their effect on the BDD properties 
of the multipliers are discussed in section V.  

II. BDD DEFINITION 
 
BDD is a directed acyclic graph used to represent 

Boolean functions. The nodes in the graph correspond to 
Boolean variables, while the arcs define evaluation of the 
variables. The paths in the graph therefore stand for 
different interpretations of the Boolean function. The sinks 
of the graph are equivalents of true and false value of the 
function. BDDs for the outputs of the full adder are given 
in Fig. 1.  

The lower bit of the result, presented by the left BDD, 
evaluates to true if the odd number of inputs evaluates to 
true. The right BDD represents the higher bit of the results 
which is evaluated to true if any pair of the inputs 
evaluates to true. 

BDDs are canonical, which is very important for 
equivalence checking, if the following three conditions are 
satisfied: 

1. variable ordering is the same for all the functions,  
2. there is no isomorphic subgraphs in the diagram  
3. node collapses if both arcs are pointing to the same 

child 
The basis for the efficient BDD manipulation is the 

following recursive expression: 

where f and g are BDDs representing functions f  and g. 
The cofactors xf  and xf  are defined as: 
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and can be easily obtained from BDD f if the xi is the top 
variable.  
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Fig. 1. BDD representation of full adder



III. MULTIPLIER DEFINITION 
 

Multiplier is a combinatorial circuit that is consisted of 
2n inputs and 2n outputs where n denotes the number of 
the operand bits. The inputs are bit vectors defined as: 

]...[,]...[ 11 nn yyyxxx == . 

Bits nx and ny  are the highest level bits in the x and 
the y  bit vectors, respectively. The result bit vector is  

In order to define the outputs in term of the inputs, the 
following functions that represent outputs of the full adder 
are used:  

 
 
 

in which the operators ⊕⋅,  and + denote Boolean 
operators and, xor and or respectively. Two dimensional 
bit vectors s and c are needed to express the output vector 
z. Dimension of the vector s is [n,n+1] and dimension of 
the vector c is [n-1,n+1]. The values of vectors s and c are 
given by the following equations: 

The order of calculation is determined as an iteration 
over k in the interval [1,n], and for the each k, iteration for 
i is made over the values [0,n]. The values for ck,i-1 are 
calculated before the values sk,i. 

The output vector z is expressed directly from the vector 
s in the following expression: 

It is observable that the cover of the upper half of the 
output vector bits is the entire input set. 

 
 

IV. MULTIPLIER SIZE AND COMPUTATION 
PROPERTIES 

 
It is shown in [3] that multipliers have no efficient BDD 

representation. Using the variable ordering: 

 011011 ..... yyyyxxxx nnnn <<<<<<<<< −−  (1) 

we measured time and space complexity of the circuit 
for the ]14,1[∈n . The results are given in the Fig. 2.  It can 
be noticed that the size and the number of operations 
grows exponentially in n. The number of operations is 
larger than the number of nodes in the result because of the 
reduction of the isomorphic subgraphs and recalculation of 
already computed results due to the limited cache size. The 
ratio between the number of operations and the size of the 
multipliers BDDs grows linearly with the number of 
multiplier bits and reaches the factor of four for the 14 bit 
multiplier. This ratio is obtained with the start cache size 

of 4 million entries and the maximum cache size of 16 
million entries. The cache size is doubled whenever a 
threshold is reached. The threshold is set to the point in 
which 80% of the cache is full. 

In order to measure exponential growth of multiplier 
BDD representation we define factors of growth for both 
the size sf and the number of operations of as: 

where sizei denotes the BDD representation size of the 
multiplier with i bit wide operands. The number of BDD 
operations processed in order to build the multiplier is 
expressed as nOpsi. Our experimental results show that the 
size growth factor sfi converges to the value of 2.88 
(i=14), while the factor ofi settles at slightly higher value 
of 3.29 (i=14). 

Beside the analysis of the time and space complexity of 
multipliers, we analyzed the same complexities inside the 
multiplier. Since n-bit multiplier is built using 2n Boolean 
variables, activity was measured at each of the variable 
indexes. As shown in Fig. 3. three values were measured: 
the number of BDD nodes in the unique table and the 
number of operations with as well as without the cache 
system enabled. The values are obtained for 10 bit 
multiplier. 

When the number of BDD nodes is observed, it is 
evident that the majority of data is spread across a few 
neighbor variable indexes (interval [13, 15] in Fig. 3) . It 
is apparent that this is followed by the number of 
operations issued at this variable level, when considering 
the computation made with the cache turned on. It can be 
also observed, as in [7] that the peak of the computation is 
one variable index subsequent to the number of BDD 
nodes peak. 

In the scenario where the cache system is not employed, 
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Fig. 2. BDD multiplier time-space complexity
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the largest amount of operations is processed at the lowest 
variable indexes (interval [17,19] in Fig. 3). Since all the 
multiplier outputs have these indexes (as noted in section 
III) in their cover, the operations issued at the lowest BDD 
levels are repeated very frequently. The operations 
involving higher variable indexes are computed less often 
because BDD nodes at these levels are not referenced as 
many times.  

There is no upper bound for the number of operations at 
a given variable index whether the cache is used or not. 
Theoretically, if infinite cache is available [6], the number 
of BDD operations computed is limited by the size of the 
operands. The number of BDD nodes at the given level is 
generally limited only by the expression: 

                             
in

nOfNodes
−+
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122  (3) 

where i is the level, and n denotes the total number of 
variable indexes. The expression (3) expresses the number 
of possible Boolean functions over the cover of n+1-i 
variables. 

 

 
V. VARIABLE ORDERING EFFECT ON MULTIPLER 

BDD CHARACTERISTICS 
 
Variable ordering is a prerequisite for the canonicity of 

the BDDs. The choice of variable ordering can be 
determined before the BDD creation (static variable 
ordering) or can be changed at any point of the 
computation (dynamic variable ordering) [4]. Dynamic 
variable ordering is based on the locality of the swap 
operation.  When two adjacent variable indexes are 
swapped it is possible to keep the same data structures in 
which BDD nodes are stored in order to avoid updating of 
references [5]. 

Although there is no efficient variable ordering which 
can be used to decrease exponential complexity of the 
multipliers BDD representation, we tried to analyze the 
properties of the different orderings. Trying all the variable 
orderings would not be feasible even for small multipliers 
since the amount of orderings is given by the equation: 

where n is the number of bits in the operands. The 
number of all the input bit permutations is divided by the 
factor of two since multiplication is a commutative 
operation. Because of the large number of different 
variable orderings we tested multipliers with only a limited 
number of ordering permutations (nOrderings=1000).  

In order to ensure a proper distribution of permutations 

over the set of all the permutations we used the heuristic 
algorithm presented in Fig. 4. The vector a contains 
pointers to BDD nodes representing variable indexes, 
while n represents the number of indexes. The function 
random(i,n) returns random number from the closed 
interval [i,n], while the function Swap(x,y) swaps the 
contents of objects x and y. The creation of random 
numbers is done by the linear congruential generator from 
the standard C language library. We tested the random 
permutation generator by producing large numbers of 
permutations on only few variable indexes. The result was 
that all the possible permutations were generated and the 
distribution of occurences for each permutation was 
uniform. 

 For each of the generated permutations and given 
multiplier we measured the size of the resulting BDD and 
the number of generated operations. In addition, we noted 
the BDD sizes of all the multipliers output, and we 
specifically outlined the output whose BDD representation 
contains the greatest number of nodes. 

The results of the size measurements are presented in 
Fig. 5. The curve maxSize denotes the highest number of 
BDD nodes generated during the computation of all tested 
variable ordering permutations for the given multiplier. 
The curve minSize denotes the minimal number of BDD 
nodes given in the described manner, while avgSize is the 
average multiplier BDD size for all the computed 
orderings. 

It can be observed from Fig. 5. that in all three scenarios 
(minimal, maximal and average) the size of BDD 
representation is exponential in the number of multiplier 
bits. The sfi  factor (2) is different for the each curve. The 
factor for minSize range of values (for each multiplier) 
averages at 2,06. The average value of the avgSize and the 
maxSize factor is  2,43 and 3,10 respectively.  

When comparing these factors with the factors obtained 
for the variable ordering given in (1), both minSize and 
avgSize factors outperform it. The worst case variable 
ordering scenario has a factor 3,10 which is only slightly 
higher than the one stated in the previous section. This 
leads to the conclusion that the variable ordering given in 
(1) is close to the worst experimentally measured variable 
ordering. It should be noted that sfi factor values for 
random variable orderings do not converge but are rather 
slowly growing with the number of multiplier bits. That 
could be due to the small number of calculated 
permutations (considering the number of possible 
orderings). As the number of bits becomes higher, the 
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Fig. 5. Variable ordering impact on BDD size

Random_Permutation(vector a, int n) 
Begin 
 For i=1 to n-1 do 
 Begin 
  swapIndex=random(i,n) 
  Swap(a[i],a[swapIndex]) 
 End 
End. 

Fig. 4. Random permutation algorithm 
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percentage of tried orderings is lower, which results in 
lower probability in finding both the best and the worst 
variable ordering. 

Experimental results for the number of BDD operations 
computed for different variable orderings are perfectly 
matched with the numbers gathered while analyzing the 
size of the resulting BDD. From the computational 
complexity analysis it can be noticed that the variable 
ordering given in (1) is very close to the worst generated 
ordering. 

The third series of analysis focused on finding the 
multiplier output (among all the outputs) whose BDD 
representation is the largest, but for the permutation that 
minimizes such an output. The idea behind this is in the 
theoretical lower bound [3] for the complexity on the at 
least one of the multiplier outputs. This complexity 
(expressed in terms of the multiplier size) evaluates to 
Ω(1,09n), where n is the number of multiplier bits. The 
output with largest representation is chosen as the worst 
case scenario since exact data could be gathered only with 
all the variable orderings available. 

The comparison between theoretical and experimentally 
tested bounds is given in Fig. 6. The series of values 
theoBDD represents the exponential theoretical complexity 
Ω(1,09n). The results for the output with the largest BDD 
representation for the best found variable ordering is 
denoted by outBDD. In order to express experimentally 
obtained results in terms of exponential size complexity 
we find the complexity of Ω(1,74n) to be an approximation 
of the outBDD values. This complexity is shown in Fig. 6. 
as the fitBDD set of values. The base of the exponential 
function is taken as the average ratio between all the 
adjacent outBDD values. We believe that the misalignment 
of the measured values and the exponential function is due 
to the small number of variable orderings tested. 

It can be concluded that the gap between the theoretical 
lower bound and measured values is not negligible. In 
addition, it should be noted that the variable ordering can 
improve BDD manipulation performance and therefore 
should be employed while representing multipliers. 

 

 
VI. CONCLUSION 

 
In this paper we analyzed BDD representation of digital 

multiplier, a common industrial design. BDDs are shown 
to be efficient representation for large number of 

commonly used combinatorial circuits, but not for the 
multipliers. 

Our BDD analysis included BDD size and 
computational complexity inside the multiplier and among 
multipliers of different size. We also showed the impact of 
cache system on the BDD computation. 

Since variable ordering is an important BDD issue we 
tested the multiplier against the number of randomly 
generated orderings. It is discovered that the initial 
variable ordering was far from the best ordering, and that 
the variable ordering algorithms should be employed even 
on the designs with exponential BDD complexity. 

The comparison of theoretical lower bound on the size 
of the multiplier output and the experimentally obtained 
lower bound revealed a large misalignment of these two 
values. This leads to the conclusion that the best variable 
orderings are not found in our random search. 

It is obvious that BDDs are not the best solution for the 
representation of circuitry which are proved to be 
exponentially large. Perhaps it is possible to achieve a 
speedup in manipulation of the BDDs by using distributed 
computation environment. 
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