
Caching in Parallel BDD Package

Igor Grudenić, Nikola Bogunović
Faculty of Electrical Engineering and Computing, University of Zagreb

Unska 3, 10000 Zagreb, Croatia
{igor.grudenic, nikola.bogunovic}@fer.hr

Abstract. Fast computation of Binary Decision
Diagram (BDD) operations is essential for
efficient symbolic model checking. In order to
improve symbolic model checking we
parallelized BDD operations on network of
workstations (NOW). Sequential BDD packages
have always been sensitive to cache design,
which is even more true in the parallel
environment. Distribution of cache to the NOW
made larger cache possible, but it implicated
problems with references in distributed
environment and posed limitations on ordering
of computation. In this paper we address these
issues with our distributed cache architecture.

Keywords. Distributed BDD computation,
cache management, formal methods.

1. Introduction

Representation of logical functions and their
efficient manipulation is the heart of many
formal verification methods, especially model
checking [2]. BDDs are commonly used to
represent logical functions because of its two
basic properties: canonicity and compactness.
Since formal verification is essential for complex
systems, the uncontrolled growth of its BDD
encoding is an open problem.

Parallelization of BDD representation and
management is used in [5][8][6][3] to address
space and time complexity of formal verification.
BDD management parallelization is realized for
multiprocessor systems and for networks of
workstations (NOWs). Introducing cache system
in the BDD management delivers performance
improvement that justifies its use [1]. In this
paper we address cache issues in parallel BDD
implementation [3], which runs on NOW.

In Section 2 we outline an algorithm for BDD
manipulation. Cache distribution and data
organization are presented in section 3. In section
4 we describe different cache issues such as
hashing function, number of caches and cache

size. The results, which contain speedups and
cache hit rates are given in section 5.

2. Parallel BDD algorithm

BDD is a directed acyclic graph, where
vertices represent Boolean variables and arcs
represent different variable interpretations. Sinks
in the graph denote Boolean function values for
the given interpretation. The basics of BDD
management are in the following recursive
definition of operations:

 () ()xxxx gopfxgopfxgopf ⋅+⋅= (1)

where f and g are BDD representations of the
corresponding Boolean functions, and op is the
Boolean operation. Cofactors xf and xf refer to
the BDDs of f with variable x evaluated to true
and false respectively. The calculation of
equation (1) is terminated when one of the
terminal cases occur.

Distribution of BDD nodes in the parallel
algorithm [3] is based on the variable indexes.
Every workstation holds a set of consecutive
variable indexes. Nodes are allocated to the
workstations in order to maintain equal memory
consumption.

A workload for every workstation is defined
in terms of a context. Every context holds a
number of BDD operations that need to be
expanded and reduced. Operations are encoded
into the operationNode data structures. The
expansion is defined in equation (1) and the
reduction is the following phase, where the new
BDD is checked for isomorphism with the
existing BDDs to prevent duplicate BDDs to
occur.

During the expansion phase, if the number of
newly generated operations is beyond the given
threshold, new contexts are created. All the
operations for which expansion needs to continue
on the other workstations are dispatched after the
expansion. The reduction of each of the contexts

can begin only if all operations are expanded,
and results came in for all the dispatched
operations. The reduction will be delayed if there
is any context that needs to be expanded. The
order of expansions and reductions is made in
first-come first-served manner.

3. Cache system organization

Cache system is very important in BDD
management. During the expansion phase, every
operation is looked up in the cache before
expanding by equation (1). If it is found the
result is returned, and if not, the operation is
added into the cache. Using this and presuming
that an infinite cache is available, the upper
bound for the time complexity of the BDD
operation f<op>g is given by │f│·│g│, where
│f│ and │g│ represent number of vertices in the
BDDs.

In the subsection 3.1., cache structure is
described. Limitations on the order of the
computation are presented in subsection 3.2.

3.1. Cache structure

Cache is internally organized as a number of

hash tables without collision chains. We initially
designed collision chains which consumed more
memory because of the links in the chain.
Finding elements in such a chain is a bit slower,
especially for cache misses, since all the
elements must be visited. Avoiding the use of
collision chains results in overwriting the
elements with the same hash key and it cancels
theoretical bound on the time complexity. In the
practice however, the cache without the collision
chains is faster because the hashing functions
distributes entries nicely for all our benchmarks
which include the ISCAS 85 [4].

The structure of the each cache entry is
presented in Fig. 1. For the operation f <op> g,
index1 and index2 represent the lowest variable
index in BDDs f and g. Indexes are needed since

it’s the only mechanism for locating the
workstation in which the BDD node is stored.
Pointers to the graph structure that correspond to
BDDs f and g are operand1 and operand2 (Fig.
1.). The result of the operation is denoted by
resultP. The lowest variable index of the result is
calculated as the minimum of index1 and index2
and it is not stored. Since the parallel package
[3] is based on calculation of the binary
operations, it is necessary to store the code of the
Boolean operation (opCode) in order to minimize
network traffic. The other feasible solution
would be to have a different hash table for every
Boolean operation.

3.2. The order of computation

Every cache entry is written twice in order to

store one operation into the hash table. After the
operation’s expansion the operands and the
pointer to the operationNode (as resultP in
Fig.+1.) are stored into the cache entry. When
the reduction of the operation is done, resultP is
updated with the result of the reduction, which is
either a newly created or an existing BDD node.

It is possible that the cache hit occurs before
the cache entry is updated with the final result
(after reduction). Cache hit in that scenario can
be used if the operationNode that generated
cache entry is reduced before the operationNode
for which the hit occurred. After the cache entry
update, new result must be propagated to all the
operationNodes that accessed the entry before
the update. Such propagation would involve list
of such operationNodes for each of the non-
updated cache entries.

The use of such lists is avoided by node
forwarding. After each of the operation nodes is
reduced and updated in the cache, it is not freed
but forwarded to the result. In Fig.2.
operationNodeC is the node stored in the cache,
which can be reached through the cache entry.
After the operationNodeH (which is semantically
the same as operationNodeC and results in a
cache hit) is created, it is pointed to the

 index1 operand1

index2 operand2

opCode resultP

Figure 1. Cache entry

Cache entry

operationNodeC operationNodeH

result

Figure 2. Operation Node forwarding

operationNodeC. When the operationNodeH is
reduced, it is forwarded to the result, and it is
possible to reach that result from the
operationNodeH. The reduction of the
operationNodeH is simply the redirection to the
result.

In order to achieve a correct order on
operationNode reduction, it is necessary to care
about ordering of the context computation. As
noted above, the first-come first-served method
is used. After all the expansions are computed,
reductions are done in the same context order.
Strict ordering of the context reductions may
theoretically slow the parallel algorithm. It is
possible that the context, which is scheduled for
the reduction, can’t be reduced because the
results from the other workstations are not
available yet. In such a scenario algorithm stops
and waits for the results, because reduction of
other contexts would harm the caching system.
In practice, it is rarely a case that other contexts
could be reduced, because almost always their
reduction depends on the results that hadn’t
arrived. It is also possible that, while waiting for
the other workstations results, new context that
needs to be expanded arrives for the
computation.

Operations that reside in each of the contexts
are handled in the breadth-first manner and the
correct reduction ordering within context is
preserved.

4. Cache implementation issues

Implementation of hash accessed tables as

computed caches, involves choosing the
appropriate hash function. This issue is discussed
in subsection 4.1. Determination of the cache
size is a problem that can drastically affect
system performance and is addressed in
subsection 4.2. Specifically for BDD
management, different number of caches can be
introduced. This aspect is outlined in subsection
4.3.

4.1. Hash function

Hash function is used to transform data that is

going to be cached into a key, which will be used
to determine cache address of the operation.

Input data for the hash function are 32-bit
pointers to the BDD operands. Prevalent BDD
packages, such as CUDD [7] and PPBF [9], use
two different hash functions:

()[] ()[]CSpoppop
opopf

2

1

log322211
)2,1(

−>>⋅+⋅
=

 (2)

)1(&)421()2,1(2 −>>+= CSopopopopf (3)

The first one, noted by the equation (2), is
based on the prime number multiplication, where
p1 and p2 are primes, and op1,op2 are pointers to
the operands. The CS stands for cache size which
is a power of two, while operator >> is the right
shift operator. In order to fit the hash key to the
cache address space, operator >> was used to
select proper amount of the register’s upper bits
for addressing. The registers size is 32 bits.

The function f2, defined by the equation (3),
was proposed because the multiplication of large
primes takes significant processor time. Given
that the computer architecture evolved,
multipliers in modern processors are designed
using fast look-up tables, which renders the
function f1 more time effective.

Both functions were tested in order to
determine “randomness” of the hash function and
the time consumption. The hash function f1
distributes operations more evenly to the cache.
As the CPU time is concerned, almost no
difference is observed, which shows that the
effect of the slower multiplication is neutralized
by the better hashing properties of the function f1.

4.2 Cache size

Cache size in every software system can be

fixed or can be determined dynamically during
the runtime. Both policies were employed and
tested. The fixed size for the cache is taken as the
10% of the systems memory. While employing
cache with variable capacity, the size is doubled
when certain percentage of the cache is filled.

For large BDD management we discovered
that both policies result in the same execution
time, since cache size reaches the limit
exponentially during the beginning of execution.
For moderate size BDDs, the recommended
policy is to determine cache size in advance.

If the amount of system memory is not
available, or exposed to frequent changes, it is
reasonable to determine the cache size
dynamically. The limit in that case may be the
percentage of memory used by the BDD
package. The percentage threshold for cache
resize should be chosen to minimize execution
time. In Fig. 3. execution times for different
thresholds are presented. It is evident that the
resize threshold should be set at about 70%.

4.3. The number of caches

BDD operations can be grouped by the type

of operation and by the minimum variable index
of the involved operands.

It is possible to use different cache for each
type of operations, and to set the cache size
dynamically as required. This would eliminate
the need for the opCode in the cache entry
structure (Fig. 1.), but would mean a need for
maintaining separate caches. Another issue is the
distribution of memory capacity among the
caches for different operations. We decided to
keep all the operations in a single cache because
we believe that resizing caches would consume
too much of the CPU time. The overhead of
memorizing the operation type is solved by the
usage of lower operand pointer bits. These bits
are not used for addressing because of the
implemented custom memory management.

The creation of BDD diagrams, which are
exponentially large in the number of variables,
revealed the fact that the majority of BDD
operations tend to cluster over few variable
indexes. Except this few variable indexes,
operations involving other indexes occur in a
much smaller rate. Opposite to the number of

unique operations at each variable index, cache
hit rate is the highest for variables with the
highest variable index for the most of hardware
designs. The number of unique operations, for
which the cache hits never occur, is the greatest
for the lowest variable indexes. It is possible that
the unique operations replace operations with the
high hit rates in the cache which could result in
the lower global hit rates. Since the uniqueness
of the operation usually depends on the variable
index, it may be feasible to have a separate cache
system for the each variable index.

Measurements of the difference in the cache
hit rate for each variable using one cache system
or separate cache systems for each variable are
shown in Fig. 4. The BDD built is ISCAS 85 10-
bit multiplier and the execution was made on the
single workstation.

It can be observed that the cache hit rates for
the single cache system are slightly higher for
almost all indexes. The reason for this could be
in more frequent cache resizes as the result of
higher number of caches. Since the cache is
resized when it is almost filled up, the number of
rewritings and cache misses is higher at that
point. The use of different cache for each BDD
variable is therefore unnecessary, except in the
case of the fixed cache size.

5. Experimental results

Performance speed-up and hit-rates are the

best indicators of the cache performance. The
performance was tested on multipliers of size 8
to 14 bits (Fig. 5.) with execution time limit of
10 minutes for the 14 bit multiplier. For the
purpose of testing, a computing cluster with 2.8
GHz Xeon processors and 2GB of RAM per
workstation was used. The computation was
always done on different workstations, and 2
CPUs in the same machine were never used.

Fig. 5. presents the ratio of two execution
times for a single CPU and a cluster of 2 to 5
CPUs. The nominator is the execution time of
the system without cache and the denominator is
the execution time of the system with cache. For
the 8-10 bit multipliers there is no visible
performance gain, since the running times are
below 5 seconds and data are statistically
irrelevant. The use of the cache system is
beneficial when the computation time exceeds 30
seconds (11 bit multiplier and up).

When comparing speedups on the single
workstation and on several workstations in
parallel, one workstation scenario discloses

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Boolean variable

Ca
ch

e
hi

t r
at

e

One cache
Cache per variable

Figure 4. One cache vs. Per-variable cache

Figure 3. Switching treshold

24

25

26

27

28

29

30

31

10% 20% 30% 40% 50% 60% 70% 80% 90%

Switching treshold (in percent)

Ti
m

e
(in

 s
ec

on
ds

)

better relative performance. The performance is
degraded when multiple workstations are used
due to the load balancing. When BDD nodes are
moved between the workstations the cache
entries are not moved but erased to minimize the
overhead. This didn’t have large effect on the
cumulative cache hit rate, as shown in Fig. 6.

The results in Fig. 6. depict cache hit rates for
a 13 bit multiplier with cache size preset to 4
million entries. The cumulative cache hit rate is
almost constant because the cache size is
proportional to the number of processors.

It is expected that, while presuming the same
cache hit rate, the speedup for higher number of
workstations will be more noticeable. The results
in Fig. 5. are in favor of the single workstation
computation. The reason for this lies in the
processor power needed to keep distributed
cache consistent while the parts of BDDs are
moving among the workstations.

6. Conclusion

In this paper we addressed cache system

issues for parallel BDD package. We analyzed
the order of computation that must be followed
to keep cache system consistent. Two different
cache functions were discussed as well as two
cache size policies.
 It is shown that cache system significantly
improves performance of the parallel BDD
package. The improvement is most evident when
employed on the single workstation.
Performance gain with multiple workstations,
compared to the single workstation, falls for
about 10% which is the result of the employed
load balancing strategy.
 In order to make cache more feasible in the
distributed environment, further investigations
should be performed. Detailed cost analysis of
the cache entries transfer between the
workstations should be studied in more detail.

References

[1] Brace KS, Rudell RL, Bryant RE. Efficient

implementation of a BDD package.
Proceedings of the 27th Design Automation
Conference; June 1990; Orlando, USA. p.
40-45.

[2] Burch JR, Clarke EM, Long DE, MacMillan
KL, Dill DL. Symbolic Model Checking for
Sequential Circuit Verification. IEEE
Transactions on Computer-Aided Design of
Integrated Circuits and Systems 1994; 4(13):
401-24.

[3] Grudenic I, Bogunovic N. Parallel
approaches to BDD manipulation.
Proceedings of MIPRO, Computers in
technical systems and intelligent systems.
2004; Opatija, Croatia.

[4] Harlow JE. Overview of Popular Benchmark
Sets. IEEE Design and Test 2000; 17(3):15-
17.

[5] Milvang-Jensen K, Hu AJ. BDDNow: A
Parallel BDD Package. Proceedings of
FMCAD. 1998 Nov 4-6; Palo Alto,
California, USA. p. 501-07.

[6] Sanghavi JV, Ranjan RK, Brayton RK,
Sangiovanni-Vincentelli A, High
performance BDD package by exploiting
memory hierarchy, Proceedings of Design
Automaton Conference. 1996 Jun 3-7; Las
Vegas, Nevada, USA. p. 635-40.

[7] Somenzi F, CUDD: “CU Decision Diagram
Package Release 2.3.0.”, University of
Colorado at Boulder, 1998.

[8] Stornetta T, Brewer F. Implementation of an
Efficient Parallel BDD Package.
Proceedings of Design Automaton
Conference. 1996 Jun 3-7; Las Vegas,
Nevada, USA. p. 641-44.

[9] Yang B, “PPBF parallel BDD package”,
http://www-2.cs.cmu.edu/~bwolen/software/
ppbf/

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

1 2 3 4 5 6

number of CPUs

C
ac

he
 h

it
ra

te

Figure 6. Cache hit rates Figure 5. System speedup

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

8 9 10 11 12 13 14

Size of multiplier (in bits)

Ti
m

e
ra

tio

1 CPU
2 CPU
3 CPU
4 CPU
5 CPU

