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Abstract. Fast computation of  Binary Decision 
Diagram (BDD) operations is essential for 
efficient symbolic model checking. In order to 
improve symbolic model checking we 
parallelized BDD operations on network of 
workstations (NOW). Sequential BDD packages 
have always been sensitive to cache design, 
which is even more true in the parallel 
environment. Distribution of cache to the NOW 
made larger cache possible, but it implicated 
problems with references in distributed 
environment and posed limitations on ordering 
of computation. In this paper we address these 
issues with our distributed cache architecture. 
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1. Introduction 
 

Representation of logical functions and their 
efficient manipulation is the heart of many 
formal verification methods, especially model 
checking [2]. BDDs are commonly used to 
represent logical functions because of its two 
basic properties: canonicity and compactness. 
Since formal verification is essential for complex 
systems, the uncontrolled growth of its BDD 
encoding is an open problem. 

Parallelization of BDD representation and 
management is used in [5][8][6][3] to address 
space and time complexity of formal verification. 
BDD management parallelization is realized for 
multiprocessor systems and for networks of 
workstations (NOWs). Introducing cache system 
in the BDD management delivers performance 
improvement that justifies its use [1]. In this 
paper we address cache issues in parallel BDD 
implementation [3], which runs on NOW. 

In Section 2 we outline an algorithm for BDD 
manipulation. Cache distribution and data 
organization are presented in section 3. In section 
4 we describe different cache issues such as 
hashing function, number of caches and cache 

size. The results, which contain speedups and 
cache hit rates are given in section 5. 
 
2. Parallel BDD algorithm 
 

BDD is a directed acyclic graph, where 
vertices represent Boolean variables and arcs 
represent different variable interpretations. Sinks 
in the graph denote Boolean function values for 
the given interpretation. The basics of BDD 
management are in the following recursive 
definition of operations: 

    ( ) ( )xxxx gopfxgopfxgopf ⋅+⋅=  (1) 

where f and g are BDD representations of the 
corresponding Boolean functions, and op is the 
Boolean operation. Cofactors xf  and xf  refer to 
the BDDs of f with variable x evaluated to true 
and false respectively. The calculation of 
equation (1) is terminated when one of the 
terminal cases occur. 

Distribution of BDD nodes in the parallel 
algorithm [3] is based on the variable indexes. 
Every workstation holds a set of consecutive 
variable indexes. Nodes are allocated to the 
workstations in order to maintain equal memory 
consumption. 

A workload for every workstation is defined 
in terms of a context. Every context holds a 
number of BDD operations that need to be 
expanded and reduced. Operations are encoded 
into the operationNode data structures. The 
expansion is defined in equation (1) and the 
reduction is the following phase, where the new 
BDD is checked for isomorphism with the 
existing BDDs to prevent duplicate BDDs to 
occur. 

During the expansion phase, if the number of 
newly generated operations is beyond the given 
threshold, new contexts are created. All the 
operations for which expansion needs to continue 
on the other workstations are dispatched after the 
expansion. The reduction of each of the contexts 



can begin only if all operations are expanded, 
and results came in for all the dispatched 
operations. The reduction will be delayed if there 
is any context that needs to be expanded. The 
order of expansions and reductions is made in 
first-come first-served manner. 

 
3. Cache system organization  
 

Cache system is very important in BDD 
management. During the expansion phase, every 
operation is looked up in the cache before 
expanding by equation (1). If it is found the 
result is returned, and if not, the operation is 
added into the cache. Using this and presuming 
that an infinite cache is available, the upper 
bound for the time complexity of the BDD 
operation f<op>g is given by │f│·│g│, where 
│f│ and │g│ represent number of vertices in the 
BDDs.  

In the subsection 3.1., cache structure is 
described. Limitations on the order of the 
computation are presented in subsection 3.2. 

 
3.1. Cache structure 

 
Cache is internally organized as a number of 

hash tables without collision chains. We initially 
designed collision chains which consumed more 
memory because of the links in the chain. 
Finding elements in such a chain is a bit slower, 
especially for cache misses, since all the 
elements must be visited. Avoiding the use of 
collision chains results in overwriting the 
elements with the same hash key and it cancels 
theoretical bound on the time complexity. In the 
practice however, the cache without the collision 
chains is faster because the hashing functions 
distributes entries nicely for all our benchmarks 
which include the ISCAS 85 [4]. 

The structure of the each cache entry is 
presented in Fig. 1. For the operation f <op> g, 
index1 and index2 represent the lowest variable 
index in BDDs f and g. Indexes are needed since 

it’s the only mechanism for locating the 
workstation in which the BDD node is stored. 
Pointers to the graph structure that correspond to 
BDDs f and g are operand1 and operand2 (Fig. 
1.). The result of the operation is denoted by 
resultP. The lowest variable index of the result is 
calculated as the minimum of index1 and index2 
and it is not stored.  Since the parallel package 
[3] is based on calculation of the binary 
operations, it is necessary to store the code of the 
Boolean operation (opCode) in order to minimize 
network traffic. The other feasible solution 
would be to have a different hash table for every 
Boolean operation. 

 
3.2. The order of computation 

 
Every cache entry is written twice in order to 

store one operation into the hash table. After the 
operation’s expansion the operands and the 
pointer to the operationNode (as resultP in 
Fig.+1.) are stored into the cache entry. When 
the reduction of the operation is done, resultP is 
updated with the result of the reduction, which is 
either a newly created or an existing BDD node. 

It is possible that the cache hit occurs before 
the cache entry is updated with the final result 
(after reduction). Cache hit in that scenario can 
be used if the operationNode that generated 
cache entry is reduced before the operationNode 
for which the hit occurred. After the cache entry 
update, new result must be propagated to all the 
operationNodes that accessed the entry before 
the update. Such propagation would involve list 
of such operationNodes for each of the non-
updated cache entries. 

The use of such lists is avoided by node 
forwarding. After each of the operation nodes is 
reduced and updated in the cache, it is not freed 
but forwarded to the result. In Fig.2. 
operationNodeC is the node stored in the cache, 
which can be reached through the cache entry. 
After the operationNodeH (which is semantically 
the same as operationNodeC and results in a 
cache hit) is created, it is pointed to the 

 index1 operand1 

index2 operand2 

opCode resultP 

Figure 1. Cache entry 

Cache entry 

operationNodeC operationNodeH 

result 
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operationNodeC. When the operationNodeH is 
reduced, it is forwarded to the result, and it is 
possible to reach that result from the 
operationNodeH. The reduction of the 
operationNodeH is simply the redirection to the 
result. 

In order to achieve a correct order on 
operationNode reduction, it is necessary to care 
about ordering of the context computation. As 
noted above, the first-come first-served method 
is used. After all the expansions are computed, 
reductions are done in the same context order. 
Strict ordering of the context reductions may 
theoretically slow the parallel algorithm. It is 
possible that the context, which is scheduled for 
the reduction, can’t be reduced because the 
results from the other workstations are not 
available yet. In such a scenario algorithm stops 
and waits for the results, because reduction of 
other contexts would harm the caching system. 
In practice, it is rarely a case that other contexts 
could be reduced, because almost always their 
reduction depends on the results that hadn’t 
arrived. It is also possible that, while waiting for 
the other workstations results, new context that 
needs to be expanded arrives for the 
computation. 

Operations that reside in each of the contexts 
are handled in the breadth-first manner and the 
correct reduction ordering within context is 
preserved. 
 
4. Cache implementation issues 

 
Implementation of hash accessed tables as 

computed caches, involves choosing the 
appropriate hash function. This issue is discussed 
in subsection 4.1. Determination of the cache 
size is a problem that can drastically affect 
system performance and is addressed in 
subsection 4.2. Specifically for BDD 
management, different number of caches can be 
introduced. This aspect is outlined in subsection 
4.3. 

 
4.1. Hash function 

 
Hash function is used to transform data that is 

going to be cached into a key, which will be used 
to determine cache address of the operation. 

Input data for the hash function are 32-bit 
pointers to the BDD operands. Prevalent BDD 
packages, such as CUDD [7] and PPBF [9], use 
two different hash functions: 
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The first one, noted by the equation (2), is 
based on the prime number multiplication, where 
p1 and p2 are primes, and op1,op2 are pointers to 
the operands. The CS stands for cache size which 
is a power of two, while operator >> is the right 
shift operator. In order to fit the hash key to the 
cache address space, operator >> was used to 
select proper amount of the register’s upper bits 
for addressing. The registers size is 32 bits. 

The function f2, defined by the equation (3), 
was proposed because the multiplication of large 
primes takes significant processor time. Given 
that the computer architecture evolved, 
multipliers in modern processors are designed 
using fast look-up tables, which renders the 
function f1 more time effective. 

Both functions were tested in order to 
determine “randomness” of the hash function and 
the time consumption. The hash function f1 
distributes operations more evenly to the cache. 
As the CPU time is concerned, almost no 
difference is observed, which shows that the 
effect of the slower multiplication is neutralized 
by the better hashing properties of the function f1.  

 
4.2 Cache size 

 
Cache size in every software system can be 

fixed or can be determined dynamically during 
the runtime. Both policies were employed and 
tested. The fixed size for the cache is taken as the 
10% of the systems memory. While employing 
cache with variable capacity, the size is doubled 
when certain percentage of the cache is filled. 

For large BDD management we discovered 
that both policies result in the same execution 
time, since cache size reaches the limit 
exponentially during the beginning of execution. 
For moderate size BDDs, the recommended 
policy is to determine cache size in advance. 

If the amount of system memory is not 
available, or exposed to frequent changes, it is 
reasonable to determine the cache size 
dynamically. The limit in that case may be the 
percentage of memory used by the BDD 
package. The percentage threshold for cache 
resize should be chosen to minimize execution 
time. In Fig. 3. execution times for different 
thresholds are presented. It is evident that the 
resize threshold should be set at about 70%. 



 
4.3. The number of caches 

 
BDD operations can be grouped by the type 

of operation and by the minimum variable index 
of the involved operands.  

It is possible to use different cache for each 
type of operations, and to set the cache size 
dynamically as required. This would eliminate 
the need for the opCode in the cache entry 
structure (Fig. 1.), but would mean a need for 
maintaining separate caches. Another issue is the 
distribution of memory capacity among the 
caches for different operations. We decided to 
keep all the operations in a single cache because 
we believe that resizing caches would consume 
too much of the CPU time. The overhead of 
memorizing the operation type is solved by the 
usage of lower operand pointer bits. These bits 
are not used for addressing because of the 
implemented custom memory management. 

The creation of BDD diagrams, which are 
exponentially large in the number of variables, 
revealed the fact that the majority of BDD 
operations tend to cluster over few variable 
indexes. Except this few variable indexes, 
operations involving other indexes occur in a 
much smaller rate. Opposite to the number of 

unique operations at each variable index, cache 
hit rate is the highest for variables with the 
highest variable index for the most of hardware 
designs. The number of unique operations, for 
which the cache hits never occur, is the greatest 
for the lowest variable indexes. It is possible that 
the unique operations replace operations with the 
high hit rates in the cache which could result in 
the lower global hit rates. Since the uniqueness 
of the operation usually depends on the variable 
index, it may be feasible to have a separate cache 
system for the each variable index.  

Measurements of the difference in the cache 
hit rate for each variable using one cache system 
or separate cache systems for each variable are 
shown in Fig. 4. The BDD built is ISCAS 85 10-
bit multiplier and the execution was made on the 
single workstation. 

It can be observed that the cache hit rates for 
the single cache system are slightly higher for 
almost all indexes. The reason for this could be 
in more frequent cache resizes as the result of 
higher number of caches. Since the cache is 
resized when it is almost filled up, the number of 
rewritings and cache misses is higher at that 
point. The use of different cache for each BDD 
variable is therefore unnecessary, except in the 
case of the fixed cache size. 
 
5. Experimental results 

 
Performance speed-up and hit-rates are the 

best indicators of the cache performance. The 
performance was tested on multipliers of size 8 
to 14 bits (Fig. 5.) with execution time limit of 
10 minutes for the 14 bit multiplier. For the 
purpose of testing, a computing cluster with 2.8 
GHz Xeon processors and 2GB of RAM per 
workstation was used. The computation was 
always done on different workstations, and 2 
CPUs in the same machine were never used. 

Fig. 5. presents the ratio of two execution 
times for a single CPU and a cluster of 2 to 5 
CPUs. The nominator is the execution time of 
the system without cache and the denominator is 
the execution time of the system with cache. For 
the 8-10 bit multipliers there is no visible 
performance gain, since the running times are 
below 5 seconds and data are statistically 
irrelevant. The use of the cache system is 
beneficial when the computation time exceeds 30 
seconds (11 bit multiplier and up). 

When comparing speedups on the single 
workstation and on several workstations in 
parallel, one workstation scenario discloses 
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better relative performance. The performance is 
degraded when multiple workstations are used 
due to the load balancing. When BDD nodes are 
moved between the workstations the cache 
entries are not moved but erased to minimize the 
overhead. This didn’t have large effect on the 
cumulative cache hit rate, as shown in Fig. 6.  

The results in Fig. 6. depict cache hit rates for 
a 13 bit multiplier with cache size preset to 4 
million entries. The cumulative cache hit rate is 
almost constant because the cache size is 
proportional to the number of processors.  

It is expected that, while presuming the same 
cache hit rate, the speedup for higher number of 
workstations will be more noticeable. The results 
in Fig. 5. are in favor of the single workstation 
computation. The reason for this lies in the 
processor power needed to keep distributed 
cache consistent while the parts of BDDs are 
moving among the workstations. 

 
6. Conclusion 

 
In this paper we addressed cache system 

issues for parallel BDD package. We analyzed 
the order of computation that must be followed 
to keep cache system consistent. Two different 
cache functions were discussed as well as two 
cache size policies. 
 It is shown that cache system significantly 
improves performance of the parallel BDD 
package. The improvement is most evident when 
employed on the single workstation. 
Performance gain with multiple workstations, 
compared to the single workstation, falls for 
about 10% which is the result of the employed 
load balancing strategy. 
 In order to make cache more feasible in the 
distributed environment, further investigations 
should be performed. Detailed cost analysis of 
the cache entries transfer between the 
workstations should be studied in more detail. 
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