
Logical Design of Data Warehouses from XML

Marko Banek, Zoran Skočir and Boris Vrdoljak
FER – University of Zagreb, Zagreb, Croatia

{marko.banek, zoran.skocir, boris.vrdoljak}@fer.hr

Abstract—Data warehouse is a database that collects and
integrates data from heterogeneous sources in order to
support a decision making process. Data exchanged over the
Internet and intranets has recently become an important
data source, having XML as a standard format for
exchange. The possibility of integrating available XML data
into data warehouses plays an important role in providing
enterprise managers with up-to-date and relevant
information about their business domain. We have
developed a methodology for data warehouse design from
the source XML Schemas and conforming XML documents.
As XML data is semi-structured, data warehouse design
from XML brings many particular challenges. In this paper
the final steps of deriving a conceptual multidimensional
scheme are described, followed by the logical design, where
a set of tables is created according to the derived conceptual
scheme. A prototype tool has been developed to test and
verify the proposed methodology.

I. INTRODUCTION
Data warehousing system is a set of technologies and

tools that enable decision-makers (managers and analysts)
to acquire, integrate and flexibly analyze information
coming from different sources. The central part of the
system is a large database specialized for complex
analysis of historical data, called a data warehouse. The
process of building a data warehousing system includes
analysis of the data sources, design of a warehouse model
that can successfully integrate them and later the
construction of the warehouse according to the proposed
model. Decision-makers use OLAP (OnLine Analytical
Processing) tools to put queries against the warehouse in a
quick, intuitive and interactive way. OLAP tools use the
multidimensional data model, which enables focusing on
small pieces of data, generally a few numerical
parameters, that are most interesting for the decision
making process. Other data in the warehouse are
organized hierarchically into several independent groups,
called dimensions, and used to perform calculations with
the few important parameters.

Data warehouses, owned by big enterprises and
organizations, integrate data from heterogeneous sources:
relational databases or other legacy database models,
semi-structured data and different file formats. Recently,
the World Wide Web, Web services and different
information systems for exchanging data over the Internet
and private networks have become an important data
source.

The amount of semi-structured content in the
information systems of big organizations has constantly
and rapidly been increasing, particularly since the
appearance of XML [12] as a format for notating semi-
structured data. XML has become a standard de facto for
data exchange over the Internet or other network. It is

used in e-business: either for business-to-business (B2B)
or business-to-customer (B2C) applications, as well as in
the e-government projects. XML has also become a
standard format for accessing Web services. The
possibility of integrating available XML data into data
warehouses plays a crucial role in providing enterprise
managers with up-to-date and comprehensive information
about their business domain. Therefore, the task of
defining a methodology for integrating XML data into
data warehouses has become inevitable.

In [11] we proposed a methodology for integrating
XML data modeled by XML Schemas [13][14][15] into
data warehouses. The warehouse design process starts
directly from the source XML documents and their XML
Schema and includes conceptual, logical, ETL
(Extraction, Transformation and Loading) and physical
design. Conceptual and logical design are aimed at
constructing the warehouse, while the latter two steps
refer to populating the warehouse with data and using it
optimally. In [9] and [10] the greatest part of conceptual
design was described and implemented in a Java-based
prototype tool.

In this paper the final steps of the conceptual design
and the whole logical design are explained, thus
completing the construction of the warehouse. The
conceptual model is implemented in a relational database
as a star schema. Given the completed conceptual
scheme, the prototype tool first creates the logical model
automatically and then constructs tables in a database,
according to the proposed star schema.

The paper is structured as follows. The
multidimensional data model is described in Section II.
The methodology for integrating XML data into data
warehouses is briefly explained in Section III. In Section
IV the principles of rearranging the conceptual scheme are
explained and illustrated through several examples. The
problem of choosing dimensions and measures and
planning dimension hierarchies is described in Section V.
Section VI shows how the conceptual scheme is
automatically transformed into a star schema. Conclusions
are drawn in Section VII.

II. MULTIDIMENSIONAL MODEL
In order to make the data accessible to OLAP and

reporting tools and enable efficient analysis of a large
amount of data, a multidimensional data model is used in
the warehouse. Basic components of the
multidimensional model are: fact, measures, dimensions
and hierarchies.

A fact is a focus of interest for the decision-making
process. It typically corresponds to events occurring
dynamically in the enterprise world (such as sales or
orders, for example).

Measures are continuously valued attributes that
describe the fact numerically. During the business
analysis their values are used for mathematic calculations
that primarily include summing.

Dimensions are mutually independent parameters that
describe the business process fact. Every parameter has a
discrete domain of possible values. Each fact record is a
primary event, an occurrence of a fact, defined by an n-
tuple of values taken from the domains of its n
dimensions. Dimensions can be presented as axes of an n-
dimensional coordinate system (Fig. 1). Every primary
event is represented by a cube. Each cube contains values
of measures for that fact record. Primary events
correspond to the finest grain level.

The business process can be viewed at different levels
of abstraction. For instance, the total purchase cost for
“Fresh milk” supplied by “General Milkman” can be
calculated daily or monthly. The daily output corresponds
to the primary event. Getting the monthly output requires
collecting and summing the daily values. The month level
is a higher level of abstraction. Fact records (cubes in Fig.
1) are joined together into a larger cube, thus making the
grain level coarser. The process of joining primary events
is called aggregation. One attribute value at a higher
level of abstraction joins several attribute values of the
lower level. The attribute of the lower level functionally
determines that of the higher level. For instance, “January
2005” unites the 31 date values and “the 9th of January
2005” determines the month “January 2005”. Functional
dependencies imply hierarchies, where the cardinality of
the relationship is always many-to-one

Two or more levels at different level of abstraction
form a hierarchy. We call attributes that express hierarchy
levels level keys. The key of the lowest level (at the finest
grain level), which functionally determines all other
attributes, is called the dimension key. Hierarchies may
also include descriptive attributes, which contain
additional information about a level of the hierarchy.
They are also connected to the level key by a to-one
relationship, but unlike other dimension attributes, they
cannot be used for aggregation.

A measure is additive across a dimension if its values
can be aggregated by summing, otherwise it is non-
additive. The sum of the daily purchasing costs for all
days of the month will always give the monthly cost, so
cost is additive across time. Meanwhile, the sum of the
daily account balances in the date warehouse of a bank is

not a monthly account balance. An average value should
be calculated instead. Bank account balance is not
additive across time, but is additive across dimensions
that describe types of account or branches of the bank.
Such a dimension is called semi-additive. The more
dimensions a measure is additive across, the more
suitable and more often it can be used for calculations.

III. METHODOLOGY
In deriving the methodology for data warehouse design

from XML sources [11], the methodology for creating a
data warehouse from entity-relationship diagrams [1] was
changed and adapted in order to address various issues
emerging from the semi-structured nature of XML data.
The methodology consists of the following steps:

1. preliminary work
• analyzing the XML Schemas and the

conforming XML documents
• storing XML

2. design
• conceptual design,
• workload definition,
• logical design,
• ETL design,
• physical design.

Another approach to designing a warehouse from
XML sources is based on translating XML data into a
relational scheme, either using DTD [8] or not [3].
Standard methods for designing a warehouse from
relational databases are used afterwards. However,
insufficient emphasis is given to determining to-one
relationships, which express functional dependencies that
form hierarchies. In [5] and [6] a technique for data
warehouse design starting from DTDs is outlined.
Although that approach bears some resemblance to ours,
the unknown cardinalities are not verified against the
source XML documents, but they are always arbitrarily
assumed to be to-one.

Conceptual design consists of transforming the model
of the source data into a multidimensional model, which
represents the data in a warehouse. The conceptual
multidimensional model does not depend on the model of
the database used for storing data. Because of the semi-
structured nature of XML data, the conceptual design
represents the biggest challenge when developing the
methodology. Two main issues arise: firstly, not all the
needed information can be safely derived; secondly, there
are different ways of representing the relationships in
XML Schemas and each achieves different expressive
power.

Conceptual design starts from the XML Schema that
models the source XML documents. The Dimensional
Fact Model [2] is adopted as the conceptual model. At the
beginning, a schema graph (SG), which shows the
structure of XML data, is created. XML elements and
attributes declared in XML Schema correspond to vertices
of the SG. Additional vertices in the SG are operators of
cardinality, inherited from DTD, which appear between an
element and its sub-element or attribute in case when the
sub-element or attribute may appear one or more (operator

Figure 1. Dimensions and fact records

“+”), zero or more (“*”) or zero or one times (“?”). If the
cardinality is exactly one, no operator is inserted.

Relationships in XML Schema can be expressed in two
ways: by joining sub-elements and attributes to an
element or by key/keyref mechanism. When joining a sub-
element or attribute to an element, XML Schema defines
only cardinality of the relationship towards the sub-
element or attribute (note that the vertices of the SG in
Fig. 2 are connected by directed edges pointing towards
the descendant). The cardinality in the other direction can
be inferred by examining the content of the XML
documents. The key/keyref mechanism is similar to the
mechanism of primary and foreign key in relational
databases. The keys and the referenced keyrefs must
belong to the same data type.

The algorithm for the semi-automated process of
conceptual design was proposed in [4] and [9]. There are
four basic steps of the algorithm:

1. Preprocessing the XML Schema
2. Creating and transforming the schema graph (SG)
3. Choosing facts
4. For each fact:

4.1. building the dependency graph (DG) from
the SG

4.2. rearranging the DG
4.3. defining dimensions and measures.

All steps except 4.2 and 4.3 were described into details
and implemented in our prototype tool.

Steps 1, 2, 3 and 4.1 are performed semi-automatically
(in some cases completely automatically) and a basic
conceptual scheme that includes functional dependencies,
called dependency graph (DG), is produced. After
creating the SG automatically in steps 1 and 2, the
designer of the warehouse chooses the fact among the
vertices and relationships of the SG (step 3), using her/his
knowledge on their semantic meaning. Step 4.1 is
performed semi-automatically and a basic conceptual
scheme that includes functional dependencies, called
dependency graph (DG), is produced. During the process
of creating the DG, relationships with cardinality to-one
(which includes one and zero-or-one relationships) are
recursively added into the DG, as they correspond to
functional dependencies. In cases when the cardinality of
a relationship cannot be read from the SG (i.e. from an
XML element towards it parent) the content of XML
documents must be examined and the designers
knowledge on semantics is required. XML documents are
examined using queries in XML Query language [16].

In this paper we focus to steps 4.2 and 4.3 of the
proposed algorithm. After completing the step 4.3, the
conceptual design of the warehouse is finished, with a
conceptual scheme as a result. In the logical design, a set
of tables is created in a database according to the derived
conceptual scheme.

We have used a real-life example to verify the proposed
methodology of integrating XML data into the data
warehouse. The Open Applications Group (OAG) is a
non-profit organization that supports e-business and
electronic exchange of data. A major grocery store
company in Croatia uses the Purchase Order document
from OAG Integration Specification, version 7.2.1
(OAGIS 7.2.1, [17]). According to the XML Schema,

each order document (the root element of the order is
PROCESS) consists of a single header and one or many
line items. The header contains the order ID (POID), order
date (DATETIME and its sub-elements) and the business
partner (i.e. supplier). Beside its ID (LINENUM), each
line item contains data about one purchased product
(UPC, DESCRIPTN) and the purchased quantity. The
schema graph is shown in Fig. 2.

The initial DG is shown in Fig. 3. The gray vertex,
LINEITEM, is chosen as the fact and becomes the root of
the DG.

IV. REARRANGING A DEPENDENCY GRAPH
The semi-automated algorithm creates the DG by

recursively navigating relationships between vertices of
the SG. Any time a to-one relationship is reached, it is
added to the DG without checking its semantic meaning.
Therefore, the data warehouse designer should check all
vertices in the DG. The wrong conceptual scheme results

PROCESS

+

POID POTYPE

HEADER

PARTNR

NAME PARTNRID

LINEITEM

LINENUMITEM

UPC QUANTITY

DATETIME

.

DESCRIPTN?

Figure 2. Schema graph for OAGIS 7.2.1. Purchase Order

LINEITEM

LINENUM
UPC

ITEM

DESCRIPTN

PROCESS

HEADER
POID

POTYPE

YEAR
MONTH

DAY
HOUR

MINUTE

SECOND

SUBSEC

TIMEZONE
DATETIME

NAME
PARTNRID PARTNR

QUANTITY

Figure 3. Dependency Graph

in storing unnecessary information in the warehouse or,
worse, loosing important ones. Creating a usable and
efficient conceptual scheme of a DW, the designer
usually has to:

• remove some existing vertices from the DG,
• add some new vertices to the SG,
• change the position of some existing vertices in

the DG.

All described methods of rearranging the DG are
implemented in the prototype tool.

A. Removing Vertices
Every vertex of the final conceptual scheme must

conform to a database attribute of the logical scheme. All
vertices that express no content to be stored to a database
must be removed from the DG. In XML, the content may
either be an attribute value or the text content of an
element. Elements that have sub-elements and/or
attributes but no text content only express the logical
structure of a document. The XML Schema definition of
such an element, PARTNR, is shown in Fig. 4. In our
prototype tool vertices with no content are shown as
white circles, while those with content can be seen as
dark ones.

It is the warehouse designer’s duty to remove all such
vertices from the DG. This operation can be done in two
ways: by replacing the vertex with one of its descendants
or by simply grafting it.

Replacing a vertex v with its descendant w is possible
if w functionally determines all other descendants of v.
Besides, w must have a text content. Consider vertex
PARTNR in Fig. 3, which describes the supplier being
dealt with when purchasing goods. Its child PARTNRID
is the identity code of the company and functionally
determines the other descendant of PARTNR. When
replacing a vertex, the prototype tool asks which of its
descendants will come in its place (Fig. 5). PARTNR is
removed and, PARTNRID becomes child of HEADER.
NAME becomes child of PARTNRID. This part of the
DG can be seen in Fig. 6, as presented by the tool.

Grafting of a vertex is performed when none of its
descendants determines the rest of them. In most cases
the descendants are semantically independent and belong
to different dimension hierarchies. When grafting a
vertex v, which has u as a parent, the entire sub-graph
with root in v is connected directly to its parent u and v is
eliminated. As a result, the aggregation level
corresponding to v is lost. On the other hand, all
descendant levels are maintained.

The most interesting case is the one when the grafted
vertex is child of the root (the fact vertex) and has more
than one descendant. In such case, the number of
dimensions in the conceptual scheme may increase.
Consider vertices PROCESS and HEADER in Fig. 3.
First, PROCESS is grafted and HEADER becomes child
of the root vertex LINEITEM. After grafting HEADER,
all its children: PARTNRID (note that we have already
removed PARTNR), DATETIME, POID and POTYPE
become dimension candidates. They are not only
functionally but also semantically independent and some
of them will become separate dimensions.

The designer may remove any of the remaining vertices
that have text content if she/he considers them
unnecessary for multidimensional analysis. For instance,
the exact time an order has been created is described by
DATETIME and its children. The finest grain level for
the time dimension is day, so all vertices giving more
detail about time (HOUR-SUBSEC, TIMEZONE) should
be removed as uninteresting. LINENUM is also left out
(Fig. 7) because it gives no useful information.

B. Adding New Vertices
The source XML Schema often does not contain some

important measures or dimensional attributes, which
means that the designer should add them during the
rearranging process. The DG in Fig 3. does not contain
any vertex that represents price of the ordered goods.
Prices are stored separately in an operational database of
the grocery store company. The price vertex is added to
the DG, suggesting that we are going to integrate data

Figure 4. Defining an element with no content in XML Schema

<xsd:element name="PARTNR">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="PARTNRID"

 type="xsd:positiveInteger"/>
 <xsd:element name="NAME"

 type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

Figure 5. Replacing an element with no content

Figure 6. The element has been replaced

Figure 7. DATETIME with unnecessary vertices removed

from different sources: operational (relational) databases
and semi-structured (XML) data.

When adding new vertices to the DG, the designer
must be aware that all of them must match some content.
The content of a new vertex can be obtained by:

• using “foreign” content from other sources
different from the XML documents matching the
starting XML Schema,

• using content of other vertices of the DG,
• giving the vertices an “artificial” value.

Using “foreign” content from other data sources
includes classical databases (the warehouse is designed
for a large company that has one or more operational
bases, either relational or even hierarchical), semi-
structured data (other XML documents, either for
business information exchange with partners or for
internal use within the company) or Web services. We
have already mentioned the PRICE vertex as an example
of using “foreign” content. Web services may be used
when the required values change frequently. Consider a
European industry corporation that sells its products in
the EU and the USA, earning both a euro and a dollar
income. The business analysis requires all income to be
comparable. The dollar prices must be expressed in euros,
which requires the currency exchange rate for the day the
products have been sold. Existing Web services give both
temporary and historical exchange rates for different
currencies. Web services are accessed and the calculated
data returned via XML documents, so our warehouse
design method for semi-structured data sources can be
used to integrate the return data.

When the content of a vertex is obtained from other
vertices, transforming functions must be created during
the ETL design process. The main measure for the
purchase order fact table is the amount of money paid for
the purchased goods. Therefore a COST vertex is inserted
in the DG. Its value is always the product of the unit price
of the purchased product (PRICE) and the number of
units (QUANTITY).

Numbers from an artificial sequence list are typically
used if the inserted vertex is a dimension key. In that case
it is not important to know the value of the vertex, but to
distinguish the record it represents from other records.
Dimension keys generally have integer values when
implemented in a relational database.

V. DEFINING DIMENSIONS AND MEASURES
Defining dimensions and measures, which also

includes formal specification of hierarchies, is the last
step of the conceptual design.

A. Planning dimensions in the dependency graph
Data warehouse is a set of periodically taken snapshots

of the relevant data in an enterprise information system.
Therefore, every data warehouse must contain a time
dimension, while the choice of other dimensions depends
on the fact. The principles of rearranging a DG, described
in Section IV, will be used when planning the time
dimension. After removing the vertices that gave too
many unnecessary details, the vertex DATETIME has
three children attributes of integer datatype describing
day of month (DAY, with values ranging between 1 and

31), month of year (MONTH) and YEAR. None of those
attributes can be the key of the time dimension. The key
must describe a date, the unique combination of the three
mentioned attributes. A new TIMEKEY vertex is added
to DATETIME, which is subsequently removed and
replaced by TIMEKEY. TIMEKEY is an integer; when
implementing the conceptual scheme as a star schema in
a relational database, all dimension keys are artificially
generated integers in order to save memory space. We put
an integer key, PRODKEY, as the key of the product
dimension instead of UPC. PARTNRID, which is an
integer, is renamed to PARTKEY.

There will be four levels in the hierarchy: day, month,
quarter and year. TIMEKEY is the key of the time
dimension and of the day level. Key attributes of other
levels will be MONTHKEY, QTRKEY and YEAR,
which are functionally determined by TIMEKEY. The
day, month and quarter level key also get additional
vertices. The DATE vertex on the day level describes
date instead of the integer TIMEKEY.

The rearranged conceptual scheme, as shown by the
GUI of the prototype tool, is presented in Fig. 8.

B. Defining dimensions and measures in the prototype
tool

The prototype tool does not allow defining dimensions
and measures if vertices representing elements without
text content are still present in the current DG. We can

Figure 8. Rearranged DG in the prototype tool

define dimensions and measures after completing the
rearranging process.

All children of the fact vertex of the DG either become
dimension keys or measures. All vertices that have its
own children (TIMEKEY, PRODKEY, PARTKEY)
imply a hierarchy so they are set as dimension keys for
the time, product and partner dimension, respectively.
QUANTITY and COST are additive across all created
dimensions. PRICE is not additive across time and
partner. Viewing from the point of conceptual design, it
could also be a descriptive attribute in product dimension.
However, when implementing a star schema in a
relational database, many authors (for instance [7])
suggest that parameters whose value often changes
should be stated as measures. The value of the POID
vertex identifies the purchase order. This is a discrete,
non-additive constraint parameter, joining all line items
that form the same purchase. This will be the fourth
dimension of our conceptual model.

The tool automatically detects all children of the fact
vertex that have descendants. Such vertices are
automatically stated as dimensions. For each child of the
fact without descendants the tool asks the designer
whether it should be a dimension (like POID) or a
measure (like PRICE, QUANTITY and COST).

The designer uses the GUI of the prototype tool to
create the hierarchy metadata in dimensions. The
dimension keys are stated as the keys of the finest grain
level for all dimensions. The tool offers their children
vertices to become the next level key. The process repeats
recursively for the children of each last selected level key
vertex. In Fig. 9, the checked vertices are selected as level
keys.

In our example, the product and partner dimension have
only one hierarchical level, so aggregation cannot be done
across those two dimensions.

VI. CREATING THE LOGICAL SCHEME
The conceptual scheme is implemented in a relational

database. The star schema model is used for creating the
logical scheme. It defines one central table, the fact table,

describing the fact, and a set of dimensional tables. Each
dimension table has a single-part primary key: its
dimension key attribute. Generally, every of the n
dimensions of the conceptual model correspond to one of
the n dimensional tables. The fact table contains all
measures of the fact and a multi-part key, each part
referencing a dimensional table as foreign key.

In certain cases, the number of dimensional tables in
the star schema may be smaller or larger than the number
of dimensions in the conceptual model. The dimension
POID has a single attribute. It would be useless and
memory space consuming to create a separate dimension
for POID because it would not reference any other
attribute but itself. Single attribute dimensions are called
degenerate dimensions in the star schema model.

It is the matter of data and their granularity whether a
degenerate dimension remains a part of the fact table key
or is left out, becoming a measure. If a partner can
receive multiple orders for the same product in one day,
as it happens in our example, POID must remain a part of
the key.

If only one order from the same partner in one day
were possible, or if only one of the orders might contain
the same product, POID could become a measure. In that
case POID would be left out of the fact table key. Such
discrete measures are not additive across any dimension.

The PRICE attribute is stated as a measure, although it
could possibly also be a descriptive attribute of the
product dimension. Values of dimension attributes should
change as rarely as possible. Any change of a single
dimension record requires a new record to be inserted. As
prices change often, the dimension would contain many
records describing the same product. The speed of
performing a query against a star schema depends on the
number of joins that must be done. Smaller number of
keys that have to be joined gives a better performance.
On the other hand, the fact table requires far more storage
space than all dimension tables together. Defining too
many measures in a fact table would increase its size and
deteriorate performance. Generally, attributes whose
values often change should become measures, and those
whose values change never or rarely should be left as
dimensional attributes [7].

At the end, the logical scheme contains three
dimensional tables (Fig. 10) and the corresponding
conceptual scheme contains four dimensions.

Dimension keys of integer type with artificially
generated values consume much less memory space than

Figure 9. Creating hierarchies

FOR_KEY_PART_KEY

FOR_KEY_DATE_KEY

MEASURE_QUANTITY

FACT_LINEITEM

MEASURE_COST

PRODKEY

UPC

DIM_PRODUCT

DESCRIPTN

TIMEKEY

DIM_DATE

PARTKEY

NAME

DIM_PARTNER

MEASURE_PRICE

FOR_KEY_PROD_KEY

FOR_KEY_TIME_KEY

POID

DATE

DAY

DAYOFWEEK

HOLIDAY

MONTHKEY

MONTH

WORKDAYS

NODAYS

QTRKEY

QTRDESC

YEAR

Figure 10. Logical scheme

long character strings, making the fact table much
smaller. This is the main reason why they are taken as
keys. Besides, any dimension with an attribute whose
value might change should have an artificially generated
key. When the attribute value changes, a new record, with
a new key value, is simply inserted. All dimension keys
in the purchase order example are integers.

In addition to the simple rule that describes the
creation of star schemas, some advanced design
techniques may be needed for the correct translation of a
fact scheme into a logical multidimensional scheme.
Although unusual, sometimes it is useful to model many-
to-many relationships. In this case a new table, called the
bridge table, should be included into logical schema. The
bridge table includes a weight attribute, whose values
consist of the coefficients that represent weights of the
many-to-many relationship for each couple of values
participating in the relationship. In result, this technique
gives consistent aggregations when many-to-many
relationships are modeled.

 After completing the conceptual design by defining
dimensions and measures, the tool automatically
produces the logical scheme based on the star schema.
Tables are displayed in the GUI. SQL statements for
creating the specified tables in a database are also
produced.

The designer defines the database where the tables
should be created. The tool connects to the database via
JDBC (Java DataBase Connectivity) interface and
executes the SQL statements. The temporary version of
the tool can connect to an Oracle 9i or Oracle 10i
database.

All dimensional tables and the fact can be seen in the
GUI of the tool. The fact table for OAGIS 7.2.1 Purchase
Order is shown in Fig. 11.

VII. CONCLUSION

This paper describes the accomplishment of data
warehouse design and construction starting from the
source XML Schemas and conforming XML documents.
The final steps of conceptual design and the whole
process of logical design are presented. The approach has
been implemented in a prototype tool which helps the
designer in designing faster and more accurately. All the
phases of the conceptual and logical design are controlled
and monitored by the designer through a graphical

interface that allows some rearranging interventions too.
In the last steps of the conceptual design, a semi-
automatically created dependency graph is rearranged by
the warehouse designer, and then dimensions and
measures are defined. In the process of logical design, the
derived conceptual schema is translated into a star
schema. This step is performed automatically by the tool.
When explaining the process of logical design, particular
relevance is given to additivity of the measures and
degenerate dimensions. An example of attributes that
may either become measures or dimensional attributes is
introduced and a solution of the problem is outlined. At
the end of the design process, the prototype tool connects
to a database and creates tables according to the proposed
star schema.

REFERENCES
[1] M. Golfarelli, D. Maio, and S. Rizzi, “Conceptual design of data

warehouses from E/R schemes”, HICSS-31, vol. VII, Kona,
Hawaii, pp. 334-343, 1998.

[2] M. Golfarelli, D. Maio, S. Rizzi, “The dimensional fact model: a
conceptual model for data warehouses”, International Journal of
Cooperative Information Systems, vol. 7, n. 2&3, pp. 215-247,
1998..

[3] D. Florescu and D. Kossman, “Storing and querying XML data
using an RDBMS”, IEEE Data Engineering Bulletin, vol. 22, n. 3,
1999

[4] M. Golfarelli, S. Rizzi, and B. Vrdoljak, “Data warehouse design
from XML sources”, ACM International Workshop on Data
Warehousing and OLAP (DOLAP01), Atlanta, pp. 40-47, 2001.

[5] M. Jensen, T. Møller, and T.B. Pedersen, “Specifying OLAP
cubes on XML data”, Journal of Intelligent Information Systems,
2001.

[6] M. Jensen, T. Møller, and T.B. Pedersen, “Converting XML data
to UML diagrams for conceptual data integration”, International
Workshop on Data Integration over the Web (DIWeb01),
Interlaken, 2001.

[7] R. Kimball, The Data Warehouse Toolkit. John Wiley & Sons,
1996.

[8] J. Shanmugasundaram et al., “Relational databases for querying
XML documents: Limitations and Opportunities”, 25th VLDB
Conference, Edinburgh, 1999.

[9] B. Vrdoljak, M. Banek, S. Rizzi, “Automating conceptual design
of web warehouses”. Proceedings of the International Conference
on Telecommunications (ConTEL03), Zagreb, Croatia, 2003.

[10] B. Vrdoljak, M. Banek, S. Rizzi, “Designing web warehouses
from XML schemas”, International Conference on Data
Warehousing and Knowledge Discovery (DaWaK03), Prague,
Czech Republic [Lecture notes in Computer Science (LNCS),
Springer, 2003].

[11] B. Vrdoljak, M. Banek, Z. Skočir, ” Methodology for integrating
XML data into data warehouses”, International Convention
MIPRO (MIPRO 2004), Opatija, Croatia, 2004.

[12] World Wide Web Consortium (W3C), “XML 1.0 Specification”,
2004. http://www.w3.org/TR/2004/REC-xml-20040204

[13] World Wide Web Consortium (W3C), “XML Schema Part 1:
Structures Second Edition”, 2004.
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028

[14] World Wide Web Consortium (W3C), “XML Schema Part 2:
Datatypes Second Edition”, 2004.
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028

[15] World Wide Web Consortium (W3C), “XML Schema Part 0:
Primer Second Edition”, 2004.
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028

[16] World Wide Web Consortium (W3C), “XQuery 1.0: An XML
Query Language (Working Draft)”, 2003
http://www.w3.org/TR/2003/WD-xquery-20031112

[17] Open Applications Group (OAG), “OAGIS Release 7.2.1”,
http://www.openapplications.org/downloads/oagidownloads.htm.

Figure 11. Fact table as shown in the tool

