
Agent-oriented Semantic Discovery
and Matchmaking of Web Services

Ivan Mećar1, Alisa Devlić1, Krunoslav Tržec2

1University of Zagreb
Faculty of Electrical Engineering and Computing

Department of Telecommunications
Unska 3, HR-10000 Zagreb, CROATIA

E-mail: {ivan.mecar, alisa.devlic}@fer.hr

2Ericsson Nikola Tesla
R&D Center

Krapinska 45, HR-10000 Zagreb, CROATIA
E-mail: krunoslav.trzec@ericsson.com

Abstract — The article deals with implementation issues of
semantic matchmaking of Web services using intelligent
middle agents in an electronic market (e-market). The idea
of comparison of Web services according to their semantic
descriptions is used to find the most appropriate service that
meets user preferences. Comprehensive description of not
only the syntax, but also semantic meaning of the service is
used to find the most suitable match. Matchmaking
procedure is based on DAML-S (DARPA Agent Markup
Language for Services) ontology, which contains required
semantic information for discovery and comparison as well
as execution and monitoring of Web services. In order to
find a service that satisfies user requirements, the intelligent
software agent semantically compares descriptions of
requested and advertised Web services using matchmaking
algorithm and automated reasoner based on description
logics. This way user will be provided with the most
appropriate service that matches his requirements.

Keywords-Semantic matchmaking; intelligent software
agents; DAML+OIL; DAML-S; Semantic Web

I. INTRODUCTION
The Semantic Web will enable software agents to

autonomously find eligible Web services [1]. This idea
can be realized by providing semantic descriptions of
advertised and requested services. By adding additional
metadata in order to describe existing Web services,
agents will be able to recognize and understand the
semantics of Web service capabilities. Consequently, the
vison of Semantic Web will enable further step to
complete automation of the trading activites in an
electronic market of Web services. Intelligent software
agent, developed and presented in this article represents a
middle agent in the e-market that assists trader agents in
semantic discovery and comparison of Web services
offered by service provider that participate in the e-
market. Because of matchmaking capabilities, this
intelligent software agent is called matchmaking agent.

Using implemented matchmaking agent, it is possible
to semantically discover required Web services. Service

providers have to describe offered Web services with
DAML-S service ontology in order to be advertiesed in
the e-market [2]. Buyers also have to describe requested
Web services using DAML-S ontology. The middle agent
uses existing matchmaking algorithm to compare
requested service with advertised services [3].
Consequently, the requested service isn’t an actual
service, but an ideal abstraction of a Web service. If it
happens that the advertised service is exactly what the
requester was looking for, then the advertised service
completely matches the requested service. The
contribution of this work is the implementation of the
intelligent middle agent that uses the matchmaking
algorithm to determine the semantic level of matching
requested and advertised Web services. The elements of
the DAML-S service descriptions are considered and
matched individually. With this ranking it is possible to
select appropriate advertised service among large set of
results. The article is organized as follows: First, we
discuss the existing Web service technologies and their
shortcomings in the Semantic Web vision and therefore
introduce the need for the shared ontologies; Next, we
describe the Semantic Web languages and give a
description of DAML-S ontology; Finally, we briefly
explain the matchmaking algorithm and give the
implementation overview of the matchmaking agent and
its software components.

II. EXISTING WEB SERVICE TECHNOLOGIES

Web Service Description Language (WSDL) is a
language that provides a communication level description
for a Web service [1]. A WSDL document is, basically,
the XML (Extensible Markup Language) document
specifying the location and operations of the service and
how to access it. WSDL files are XML files with no
explicit semantic data.

Universal Description, Discovery and Integration
(UDDI) is the existing specification for a repository to
find Web services in the Internet [1]. The repository is a

business registry that enables businesses to locate on
quick, dynamic and easy way the other business partners.
Businesses register their services with UDDI, and the
UDDI business registry uses standard industry
taxonomies, or classification schemes to categorize
business, services and service types (so called Yellow
pages). Typically, when a business registers a Web
service, besides the usual information, it also stores a
WSDL description of the service, or a reference to the
WSDL document. This specification then enables the
user to easily connect to the Web service. Basically,
UDDI allows only keyword search based on the name of
businesses and services.

However, WSDL does not support semantic
description of services. For example, it does not provide
the definition of logical constraints between its input and
output parameters. Furthermore, UDDI does not represent
service capabilities so the matchmaking can only be done
by string matching on the defined attributes such as name
or address of service provider.

III. SEMANTIC DESCRIPTIONS OF WEB SERVICES
Today, Web is a remarkable source of information.

This information is mostly structured in the form of
human understandable Web pages (i.e. plain text), which
makes this information unrecognizable for computer
programs. The concept of the Semantic Web allows for
the unambiguous interpretation of Web resources and
content through the use of shared Web ontologies.
DAML-S is an example of ontology that provides a
semantic markup for Web services, offering an
automation of business processes (e.g., automatic
discovery of a Web service). The ontologies represent
shared descriptions that consist of concepts as well as
relationships between these concepts that are important
for a domain of interest. These predefined ontologies
allow software agents to interpret the meaning of Web
resources. Ontologies can refer to other ontologies,
providing domain-dependent terminologies that describe
some concepts and relationships in more detail.
Ontologies are explicit semantic models, which include
taxonomies of terms and semantic relations that help in
interpreting described knowledge [1].

DAML-S ontology provides semantic description of
Web service capabilites [2]. Web services that come along
with semantic information therefore become meaningful
to software agents. DAML-S integrates rich class
representations with a process model designed to capture
not only the control and data flow of Web services but
also their real world side effects (preconditions and
effects). Its well-defined semantics allows automated
service matchmaking in the e-market with a known
outcome using powerful reasoning techniques.
Consequently, using appropriate software components,
agents in the electronic market are able to autonomously
decide whether a particular Web service satisfies certain

Ontology & Description logics

HTTP

XML

RDF

RDFS

DAML

DAML-S

WWW protocol

Syntax layer

Relating statements

Upper Ontology

Defining taxonomies

richer
semantics

Figure 1. The Semantic Web languages

requirements or not, which results in even greater
automation of the trading processes in the e-market [2].

DAML-S makes use of DAML+OIL (DARPA Agent
Markup Language + Ontology Inference Layer) that is an
Artificial Intelligence (AI) inspired description logic
(DL)-based language [4]. Description logics is a
formalism that we can use for knowledge representation
and reasoning. It gives us ability to find implicit
consequences of explicitly represented knowledge.
DAML+OIL is suitable for knowledge representation of
Web service capabilites as:

• It provides a reasonable level of flexibility and
extensiveness while keeping a nice balance
between expressiveness and decidability. The
support for types greatly enhances the
expressiveness and modularity of the descriptions.

• DAML+OIL offers support for ontologies. It has
been already integrated with tools which make the
generation of new ontologies for service
description much easier.

• It is a good candidate for expressing service
descriptions that will be subject to the
matchmaking operations. It is shown that all
needed matchmaking procedures can be expressed
in terms of the description logic subsumption
operation [3]. Moreover, mature software
components exist (so called DL reasoners) that
can efficiently perform the subsumption operation
on DAML+OIL descriptions.

• DAML+OIL offers support for expressing
constraints, while still maintaining decidability.

Figure 1 depicts the Semantic Web languages. It can be
seen that DAML-S is built on the top of DAML+OIL
ontology language. RDF (Resource Description
Framework) is a basic data model for writing statements
about Web resources. The RDF does not relay on XML.
However, it has an XML-based syntax. RDFS (RDF
Schema) provides modeling primitives for organizing
Web resources into hierarchies. Key primitives are
classes and properties, subclass and subproperty
relationships, and domain and range restrictions. RDF
Schema can be viewed as a primitive language for writing

inputs/outputs
preconditions

effects

communication protocol
(RPC, HTTP, ...)

port number
marshalling/serialization

Service

ServiceGrounding

ServiceModel

ServiceProfile

provides

presents describedBy

supports

Resource

process flow
composition hierarchy

process definition

Figure 2. The structure of DAML-S ontology

ontologies based on RDF data model. If we need more
expressive language for ontologies, than we can use
DAML+OIL language based on RDFS.

IV. STRUCTURE OF DAML-S ONTOLOGY
DAML-S ontology represents an upper ontology for

describing Web services. It is conceptually divided into
three subontologies: Service Profile (specifying what a
service does), Service Model (specifying how the service
works), and Service Grounding (specifying how the
service is implemented) [1]. Structure of DAML-S
ontology is made of four basic classes and every class is
aimed to enable execution of one of main Web service
tasks. This structure is represented on Fig. 2. The class
Service provides an entry point for any Web Service
description. It is an abstraction of real service. Exactly
one instance of Service will exist for each published
Web service. Service has three properties and the
range of each property is another class. Each of that class
provides essential type of knowledge about particular
service.

The ServiceProfile class provides a precise
description of the functionality of service in order to
enable software agent to make decision whether the
service satisfy its demands. Each method that a service
provides is described in a class Profile. A service
profile is actually presented through the class Profile,
which is a direct subclass of the class
ServiceProfile. The ServiceModel class
describes what happens when the service is executed. The
exact functionality is presented through a process model
(i.e. through Process ontology and Process Control
ontology). Finnaly, the ServiceGrounding class
specifies how an agent can access a service. ''Grounding''
specifies communication protocol, message format, port
number, etc.

Since the matchmaking agent is created to find the
most appropriate advertised Web service, it will use the
Profile class of both requested and advertised

DAML-S service descriptions. Matching procedure
implemented in matchmaking agent will efficiently find
the semantic similarity between Profile class of
requested service and Profile class of advertised
service. The profile of the service (Profile class)
contains three basic types of information used in
matchmaking process that occurs in an electronic service
market.

First type of information includes textual description
and contact information (like name, title,
phone, email, etc.), which is mainly intended for
human users. The second type of information provides a
functional description of the service. This is the main part
of DAML-S document used by the matchmaking agent.
Functional description is expressed with input
parameters and output parameters generated by the
service. Additionally, the functional description contains
two sets of conditions: preconditions and
effects. Preconditions have to hold before
service can be properly executed, and effects have to
hold after successful execution of the service. These four
functional descriptions are also named IOPE. Every IOPE
parameter has his own three properties:
parameterName, restrictedTo and refersTo.
Finally, the third type of information comes with the set
of additional properties of class Profile that are used
to describe additional features of the service. The ranges
of these additional properties are classes
QualityRating, ServiceParameter and
ServiceCategory.

The ServiceProfile is the central entity that
enables agents for seeking and comparing service
advertisements against users requests. However, in some
cases, intelligent agents might find ServiceModel
useful for details about particular service, because
ServiceModel describes the dynamic behavior of the
service and gives more details about its functions. These
details could be found inspecting the service Process
Model.

V. MATCHMAKING ALGORITHM

Matchmaking algorithm is a procedure that will assist
the software agent in selecting the most suitable Web
Service for the given preferences. The algorithm is based
on the available semantic information encoded in DAML-
S. More specifically, it will match (compare) advertised
service parameters with requested capabilites
(parameters). This match will result with some matching
degree, a ranking result. Such ranking will eventually
become necessary since it is highly unlikely that there
will always be the service that offers exactly the specified
functionality from requester’s point of view. Based on
these rankings, users (or software agents that act on
behalf of users) can decide if they want to make the use
of a Web Service that does not exactly match the desired

functionality or can use the service that match this
functionality to some extent.

The main characteristic of the algorithm is splitting
matchmaking procedure into several parts: input
matching, output matching, profile matching and user-
defined matching. The procedure is logically divided into
four stages, each independent on other three. The final
result will be based on the results of each matchmaking
stage. Division of algorithm is very logical and fully
compatible with DAML-S Profile. We used the algorithm
that inspects only ServiceProfile to get needed
information about the particular Web service.

1) INPUT PARAMETERS MATCHING
In input parameters matching, the algorithm attempts

to determine how good the inputs of the advertised
service correspond to the inputs of the requested service.
For each input of the advertised service, the algorithm
tries to find a match with an input of the requested service
using property_match and type_match
functionality. The best match will constitute a pair. This
is made for all parameters of advertised and requested
inputs. When looking at matching results for all input
pairs, the final result represents worst-case scenario. The
input parameters degree of match can be: FAIL (0),
UNCLASSIFIED (1), SUBPROPERTY (2),
TYPE_INVERT (3), TYPE_SUBSUMES (4), and
MATCH (5).

2) OUTPUT PARAMETERS MATCHING
In output parameters matching, the algorithm attempts

to determine how good the outputs of the advertised
service correspond to the outputs of the requested service.
For each output of the requested service, the algorithm
tries to find the matching output parameter of the
advertised service which will result in the highest rank.
This ''one shot'' matching is again composed of
property_match and type_match functionality.
When looking at all output pairs being matched, the final
result is worst-case scenario. The output parameters
degree of match can be: FAIL (0), PARTIAL_FAIL (1),
UNCLASSIFIED (2), SUBPROPERTY (3),
TYPE_INVERT (4), TYPE_SUBSUMES (5), and
MATCH (6).

3) PROFILE MATCHING
Profile matching is different than the IOPE matching

explained above. It attempts to determine how good the
service category of the advertised service fits into service
category of the requested service. This matching is based
on possibility of classifying the class Profile into
subclasses/subcategories. Consequently, Profile matching
is based on concept matching, i.e. matching between
classes. Possible degrees of profile matching are: FAIL
(0), UNCLASSIFIED (1), SUBSUMES (2), and
MATCH (3).

Matchmaking
Agent

Rule-based Engine
DAMLJessKB

XSD

RDF

DAML
Jess rules
encoding
semantics

DAML Inference Engine

Matchmaking Algorithm

DAML-S Matchmaker

JADE agent
platform

Apache Web
server

advertised service

requested service

DAML files
Jena

XML/RDF
parser

Figure 3. Software components required for semantic matchmaking

4) USER-DEFINED MATCHING
This fourth and last stage of matchmaking algorithm

allows the entity that manages the algorithm to define
additional matching functions with plug-in. There can be
many plug-in matching types. If only one plug-in match
fails, user-defined matching fails too. Final result of this
matching can be either TRUE or FALSE. This matching
gives us possibility to exploite Quality of Service (QoS)
through class QualityRating, the property of
Profile class.

5) FINAL MATCHING RESULT
Final matching result can be either MATCH or FAIL,

and represents ''logical AND'' between all four stages of
matching procedure.

VI. MATCHMAKING AGENT COMPONENTS
Implemented matchmaking agent uses two components

to realize semantic matchmaking process of required and
advertised Web services. These components are:

• DAML Inference Engine
• DAML-S Matchmaker

These components are necessary to accomplish complex
reasoning tasks, including Java understandable
interpretation of requester’s and advertiser’s service
written in DAML-S.

The DAML Inference Engine component is used to
transform DAML files in the form appropriate for the
DAML-S Matchmaker component that, using
Matchmaking Algorithm, semantically compares
transformed DAML files and calculate degree of
similarity between Web services. The DAML Inference
Engine represents off-the-shelf DL reasoner for
ontologies written in DAML+OIL, named DAMLJessKB
[5], which uses Jena API to parse DAML-S descriptions,

Figure 4. GUI of JADE agent platform running matchmaking agent

fetched from Apache Web server, into RDF subject-verb-
object (SVO) triples. DAMLJessKB also uses Jess (Java
Expert System Shell), a rule-based engine that can be
used for creation of agent knowledge base (KB)
populated with facts and rules. Jess uses Rete algorithm
(pattern matching mechanism) to process facts and
deduce new information according to rules. It is used to
enable the intelligent agent to process SVO triples,
represented as Jess facts, according to Jess rules that
represent DAML+OIL axioms. Consequently, the
intelligent agents can understand semantics of DAML-S
descriptions using the DAMLJessKB component and use
the DAML-S Matchmaker component to semantically
match requested and advertised services using all
available semantic information loaded into the KB.

VII. MATCHMAKING AGENT IMPLEMENTATION
The matchmaking agent is built and deployed in JADE

agent platform [2], as it is shown in Fig. 4. During the
agent development, component-based approach is
adopted. In order to perform semantic service
matchmaking using the matchmaking algorithm, the
intelligent agent fetches DAML-S documents from the
Apache Web server that is used as repository of DAML-S
service descriptions.

After reaching DAML-S descriptions and downloading
them, the matchmaking agent offers Graphical User
Interface (GUI) that enables the selection of satisfying
degree of input, output and profile matching stages. The
GUI for semantic matchmaking is shown in Fig. 5. It
enables user-friendly determination of the adequate
matchmaking degree between requested and advertised
service descriptions. For example, we don’t need to
expect that matchmaking algorithm will end with highest
degree of success in all its four stages. The lowest degree
that must be satisfied is one selected by the user.

Figure 5. GUI for semantic matchmaking

These offered degrees were already listed in this paper
when the stages of the matchmaking algorithm were
discussed (input parameter matching, output parameter
matching, profile matching and user-defined matching).
After the matchmaking process, the message with the
result of every stage (MATCH or FAIL), as well as final
result (MATCH or FAIL) appears.

VIII. CONCLUSION
The implemented intelligent matchmaking agent

provides the automation of semantic Web service
discovery and matchmaking in an electronic market for
Web services. The semantic matchmaking is enabled by
the use of DAML-S ontology for describing Web
services, which has well-defined semantics, based on
descripton logics formalism.

The matchmaking agent is built using component-
based approach. It contains the off-the-shelf component
for reasoning with DAML+OIL ontologies as well as
matchmaking algorithms for DAML-S service
descriptions that enable finding the most suitable service
according to user preferances, resulting in enhanced
utilization of Web services in the e-market.

REFERENCES
[1] G. Antoniou and F. van Harmelen, A Semantic Web Primer, MIT

Press, Cambridge, Massachusetts, US, 2004.
[2] K. Tržec, A. Devlić, G. Ježić, M. Kušek, and S. Dešić, “Semantic

Matchmaking of Advanced Personalized Mobile Services using
Intelligent Agents”, Proceedings of the 12th International
Conference on Software, Telecommunications and Computer
Networks (SoftCOM 2004), pp. 387-391, Split, Dubrovnik,
Croatia, Venice, Italy, 2004.

[3] S. Tang, ''Matching of Web Services Specifications using
DAML-S descriptions'', Technical University of Berlin, Berlin,
Germany, 2004.

[4] D. L. McGuinness, R. Fikes, J. Hendler, and L. A. Stein,
“DAML+OIL: An Ontology Language for the Semantic Web”,
IEEE Intelligent Systems, vol. 17, no. 5, pp. 72-80, 2002.

[5] J. Kopena and W. C. Regli: “DAMLJessKB: A Tool for
Reasoning with the Semantic Web”, IEEE Intelligent Systems,
vol. 18, no. 3, pp. 74-77, 2003.

Intelligent agent with
semantic matchmaking
capabilities

Matchmaking agent
offers an option for
selection of desired
degree of expected
semantic match

