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Abstract

In this paper, we show that if p is a prime and ifA = {a1, a2, . . . , am}
is a set of positive integers with the property that aiaj +p is a perfect
square for all 1 ≤ i < j ≤ m, then m < 3 · 2168. More generally, when
p is replaced by a squarefree integer n, the inequality m ≤ f(ω(n))
holds with some function f , where ω(n) is the number of prime divi-
sors of n. We also give upper bounds for m when p is replaced by an
arbitrary integer which hold on a set of n of asymptotic density one.

1 Introduction

Let n be any nonzero integer. A Diophantine m-tuple with the property D(n)
is a set of m positive integers {a1, . . . , am} such that aiaj+n is a perfect square
for all 1 ≤ i < j ≤ m. Diophantus found the quadruple {1, 33, 68, 105}
with the property D(256), while the first Diophantine quadruple with the
property D(1), the set {1, 3, 8, 120}, was found by Fermat (see [4]). Baker
and Davenport [1] proved that this Fermat set cannot be extended to a
Diophantine quintuple. The first author proved recently that there does not
exist a Diophantine sextuple with the property D(1), and that there are only
finitely many such quintuples (see [7]). On the other hand, there are examples
of Diophantine sextuples, e.g. {99, 315, 9920, 32768, 44460, 19534284} with
the property D(2985984), found by Gibbs [9].

The question is what can be said about the size of sets with the property
D(n) for n 6= 1. Let

Mn = sup{|S| : S has the property D(n)}.
02000 Mathematics Subject Classification 11D45.
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Considering congruences modulo 4, it is easy to see that Mn = 3 if n ≡ 2
(mod 4) (see [2]). On the other hand, if n is not congruent to 2 modulo 4
and n 6∈ {−4, −3, −1, 3, 5, 8, 12, 20}, then Mn ≥ 4 (see [5]).

Since the number of integer points on the elliptic curve

y2 = (a1x + n)(a2x + n)(a3x + n)

is finite, we conclude that there does not exist an infinite set with the property
D(n). Furthermore, the hyperelliptic curve

y2 = (a1x + n)(a2x + n)(a3x + n)(a4x + n)(a5x + n)

has genus g = 2. Caporaso, Harris and Mazur [3], proved that the Lang
conjecture on varieties of general type implies that for g ≥ 2 the number
B(g, K) = maxC |C(K)| is finite. Here, C runs over all curves of genus g
over a number field K, and C(K) denotes the set of all K-rational points on
C. However, even the question whether B(2, Q) < ∞ is still open. Since
Mn ≤ 5 + B(2, Q) (by [11], we also have Mn ≤ 4 + B(4, Q)), we see that the
Lang conjecture implies that there exist an absolute constant C such that
Mn ≤ C for all nonzero integers n. However, at present, the best known
upper bound for Mn has the form Mn ≤ C log |n| (see [6, 8]).

The main result of this paper consists in an absolute upper bound for the
size of sets with properties D(p) and D(−p), where p is a prime.

Throughout the paper, the letter p will always denote a prime number.
For a nonzero integer n, we write ω(n) and P (n) for the number of prime
divisors and the largest prime factor of n, respectively, with the convention
that P (±1) = 1. As usual, π(x) denotes the number of primes p ≤ x. We
use the Vinogradov symbols � and �, as well as the Landau symbols O and
o, with their usual meanings.

Acknowledgments. The authors would like to thank the referee for
valuable comments. This paper was written during a visit of the second
author at the University of Zagreb in October of 2004. He warmly thanks
this University for its hospitality. Both authors were partly supported by the
Croatian Ministry of Science, Education and Sport Grant 0037110.

2 Results

The first result of this paper is an absolute upper bound on the size m of a
Diophantine m-uple with the property D(±p) which holds for all primes p.

2



Theorem 2.1. There exists an absolute constant C such that any Diophan-
tine m-tuple with the property D(p) or D(−p), where p is a prime, satisfies
m < C. Furthermore, C can be chosen to be 3 · 2168.

We next give a more general result, namely an upper bound on the size
m of a Diophantine m-tuple with the property D(±n), where n is squarefree,
which depends only on the number of prime divisors ω(n) of the positive
integer n.

Theorem 2.2. There exists a function f : IN −→ IN such that if n is any
squarefree positive integer, then any Diophantine m-tuple with the property
D(n) or D(−n) satisfies m < f(ω(n)), where ω(n) is the number of distinct
prime divisors of n.

We finally present an upper bound on m which is valid for most positive
integers n. Let us call a Diophantine m-tuple A with the property D(n)
reduced if gcd(a, n) = 1 holds for all a ∈ A.

Theorem 2.3. For every ε > 0, the set of positive integers n with the prop-
erty that there exists a Diophantine m-tuple with the property D(n) or D(−n)
and with m > (1 + ε) log log n, is of asymptotic density zero. Furthermore,
if only reduced Diophantine m-tuples are considered, then the same result
holds with (1+ ε) log log n replaced by any increasing function f(n) such that
limx→∞ f(x) = +∞.

3 The proof of Theorem 2.1

We shall analyze in detail the case of the Diophantine tuples with the prop-
erty D(p), and we shall only point out the minor differences in the argument
for the case of the Diophantine tuples with the property D(−p).

We start with a short outline of the methods used in the proof. In Section
3.1 we show that in order to prove Theorem 2.1, it suffices to establish a gap
principle of the form ai+` > pγai for the elements of a Diophantine tuple.

In the first step, in Section 3.2, a factorization is assigned to any triple
with the property D(p). A combination of p-adic and archimedean estimates
suffice to determine that the second factor appearing in the factorization
should be divisible by p2, since divisibility of the first factor leads to a quick
conclusion of the proof.
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In the second step, we obtain in Lemma 3.1 a congruence condition as-
sociated with solutions and deduce from this a set of new polynomial con-
gruences. By elimination of variables, one gets a new polynomial of bounded
height which must satisfy a congruence modulo p for rather small values of
the variables if the gap principle we want is not fulfilled. The smallness of
the variables yields the key fact that the congruence in question must be in
fact an equation.

The final step consists in deducing from this the existence of a polynomial
of bounded degree M in five variables which vanishes on a set which is a
cartesian product M5, with M a set of cardinality larger than M , which is
impossible. This establishes the gap principle.

3.1 Reductions of the original problem

Let A = {a1, . . . , am} be a Diophantine m-tuple with the property D(p).
Since the main result from [8] shows that if A is any Diophantine m-tuple
with the property D(n) (n any nonzero integer), then m ≤ 16 log |n| for
|n| > 400, and m ≤ 31 for |n| ≤ 400, it follows that from now on we may
assume that p > 2276

, and that C > 280 log 2.

We assume that a1 < a2 < · · · < am. Furthermore, whenever we write
aiaj + p = x2

ij, we make the convention that xij > 0. We note that there
exists at most one element of A which is a multiple of p. Indeed, for if two
such elements, say ai and aj exist, then reducing the equation aiaj + p = x2

ij

modulo p2 we get p ≡ x2
ij (mod p2), which is a contradiction. Eliminating

such an element from A, it follows that we may assume that p does not divide
a for any a ∈ A. We now note that a3 > p1/4. Indeed, note that if we write

a1a3 + p = x2
13 and a2a3 + p = x2

23,

then x23 > x13 > p1/2. In particular,

a2
3 > a3(a2 − a1) = x2

23 − x2
13 = (x23 − x13)(x23 + x13) ≥ 2p1/2.

Hence, a3 > p1/4. When p is replaced by −p, we then have

a2
2 > a1a2 = p + x2

12 > p,

therefore a2 > p1/2, which is even a better inequality. Thus, eliminating the
smallest two elements, if needed, we may assume that a > p1/4 holds for all
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a ∈ A. Furthermore, a result from [6] shows that there exist at most 21
elements a ∈ A such that a > p3. Eliminating those elements too, we may
assume that p1/4 < a < p3 holds for all a ∈ A. We now note that if there
exist constants γ and ` such that the inequality ai+` > pγai holds for all
i ∈ {1, . . . ,m− `}, then, by induction on i, the inequality

ai > p1/4+bi/`cγ

holds for i = 1, . . . ,m. Since am < p3, we get the inequality⌊m

`

⌋
γ +

1

4
< 3.

Hence,

m <
(11 + 4γ)`

4γ
. (1)

The above argument together with the fact that we first eliminated at most
24 elements from A, shows that one may take

C = max

{⌈
280 log 2

⌉
,
(11 + 4γ)`

4γ
+ 24

}
. (2)

Thus, it suffices to find such constants γ and `.

3.2 A factorization

To any triple with the property D(p), a factorization can be assigned. We will
show that p2 divides exactly one of the factors appearing in the factorization.
The case when the smaller factor is divisible by p2 leads easily to desired
inequality of the form ai+` > pγai. The case when the larger factor is divisible
by p2 is much more involved, and will be considered later.

Let a < b < c be any three elements in A. We write

ab + p = x2, bc + p = y2 and ac + p = z2,

where x, y and z are positive integers. Then,

(xyz)2 = (ab + p)(bc + p)(ac + p)

= (abc)2 + pabc(a + b + c) + p2(ab + bc + ac) + p3

= (abc + p(a + b + c)/2)2

+ p2
(
ab + ac + bc− (a + b + c)2/4

)
+ p3,
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therefore

(2xyz − 2abc− p(a + b + c)) (2xyz + 2abc + p(a + b + c))

= p2
(
2ab + 2bc + 2ac− a2 − b2 − c2 + 4p

)
= p2

(
4(ab + p)− (a + b− c)2

)
= p2 (2x− a− b + c) (2x + a + b− c) . (3)

We note that if both sides of the above expression are zero then c = a +
b + 2x, and x depends only on a and b. Thus, given a < b, there exists
at most one value for c > b such that both sides of the above equation
vanish. (In the case D(−p) there is an additional possibility for c; namely,
c = a + b − 2x.) From now on, we assume that both sides of the above
equation are nonzero. We further note that the greatest common divisor of
the two factors appearing in the left hand side of the above identity (3) is
not a multiple of p. Indeed, for if it were, then reducing these expressions
modulo p we would get 2xyz − 2abc ≡ 0 (mod p) and 2xyz + 2abc ≡ 0
(mod p). Subtracting these congruences we get 4abc ≡ 0 (mod p), which is
impossible because p is odd and p does not divide any member of A. From
the above remarks and equation (3), we conclude that p2 divides one of the
two factors from the left hand side of equation (3). If p2 divides the smaller
factor, then |2xyz − 2abc− p(a + b + c)| ≥ p2, therefore equation (3) implies
that

4abc < 2xyz + 2abc + p(a + b + c)

≤ |2ab + 2bc + 2ac− a2 − b2 − c2 + 4p|
< 6c2 + 4p < 2 max{6c2, 4p}. (4)

If 4p > 6c2, then the above expression is bounded by 8p. However,

2xyz + 2abc + p(a + b + c) > 2xyz + p(a + b + c) > 3p5/4.

Comparing these inequalities, we get 8p > 3p5/4, or p1/4 < 8/3, which con-
tradicts our assumptions on p. Thus, 6c2 > 4p, and the above inequality
becomes

4abc < 12c2,

which leads to c > ab/3 > p1/4b/3 > p1/8b. The last inequality above follows
from the fact that p > 38. When p is replaced by −p, the small factor is
again considered to be

2xyz − (2abc− p(a + b + c)).

6



Furthermore, note that since a > p1/2 in this case, the large factor is bounded
below by

2xyz + 2abc− p(a + b + c) > 4abc− p(a + b + c)

> 4abc− 3pc

= abc

(
4− 3p

ab

)
> abc,

because p < ab. Thus, the analogue of inequality (4) is now

abc < 2xyz + 2abc− p(a + b + c) < 2 max{6c2, 4p} = 12c2,

which leads to the same inequality c > ab/12 > p1/2b/12 > p1/8b, because
p > 124/3.

We now let ` be some positive integer to be determined later and let
ai < ai+1 < · · · < ai+` be a sequence of length ` + 1 of consecutive elements
of A. We let b1 = ai, b2 = ai+1 and write b1b2 +p = y2

12. If b1 +b2±2y12 = aj

for some j ∈ {i + 2, . . . , i + `}, we then eliminate the element aj from our
sequence (b1 + b2− 2y12 = aj is possible only in the D(−p) case). Let b3 > b2

be the smallest element of this sequence (note that b3 = ai+2 or b3 = ai+3

or b3 = ai+4). We put b1b3 + p = y2
13 and b2b3 + p = y2

23. If either one
of b1 + b3 + 2y13 and b2 + b3 + 2y23 belong to our sequence, we eliminate
those elements too. Continuing in this way, if ` ≥ 16, we can then select
b1 < b2 < b3 < b4 < b5 such that bi + bj ± 2yij 6= bk for any i < j < k in
{1, 2, . . . , 5}. Note that b5 ≤ ai+16 (in the case D(p) we have b5 ≤ ai+10). For
each subset {i, j, k} of three elements of {1, . . . , 5}, we compute

2yijyikyjk + ε(2bibjbk + p(bi + bj + bk)), where ε ∈ {±1}.
From the preceding remarks, none of these numbers is zero, and for each

such subset {i, j, k} there exists only one ε ∈ {±1} such that the above
number is a multiple of p2. If this value for ε equals −1 for at least one of
these subsets, then, by the preceding argument, we have ai+` ≥ ai+10 ≥ bk >
p1/8b1 = p1/8ai, which is the desired inequality with γ = 1/8 and ` = 16.

3.3 Auxiliary polynomials and variable elimination

From now on, we assume that p2 divides the above expression with ε = 1 for
all such subsets {i, j, k}. As we have already mentioned, the analysis of this
case is much more involved than the preceding one.
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Using a lemma on congruence properties of Diophantine quadruples, we
will assign to any quadruple with the property D(p) an integer Λ. In that
way, to any quintuple with the property D(p) we can assign a quintuple
of such integers (Λ1, Λ2, Λ3, Λ4, Λ5). The Elimination Theory will be used
to construct a nonzero polynomial Q such that Q(Λ1, Λ2, Λ3, Λ4, Λ5) ≡ 0
(mod p). It is important that we have also bounds for the degree and height
of Q. This will allow us to conclude that Q(Λ1, Λ2, Λ3, Λ4, Λ5) = 0, under
the assumption that all the Λi’s are small.

Lemma 3.1. Let A = {c1, c2, c3, c4} be a Diophantine quadruple with the
property D(p), where p is a prime. Let cicj + p = z2

ij for 1 ≤ i < j ≤ 4.
Assume that p does not divide any of the ci’s and that the congruence

zijzjkzik ≡ −cicjck (mod p)

holds for all subsets with three elements {i, j, k} ⊂ {1, . . . , 4}. Then, zijzk` ≡
zi`zjk (mod p) holds for all permutations (i, j, k, `) of {1, 2, 3, 4}. Here, we
make the convention that zji = zij if i < j. A similar statement holds for
Diophantine quadruples with the property D(−p).

Proof. We prove the lemma only for Diophantine quadruples with the prop-
erty D(p), since the proof for the case when p is replaced by −p is entirely
similar.

Since p does not divide any of the ci’s, it follows that p does not divide any
of the zij’s either. We use the notation (a, b, c, d) for an arbitrary permutation
of (c1, c2, c3, c4). We write

ab + p = x2
1, ac + p = x2

2, bc + p = x2
3,

ad + p = x2
4, bd + p = x2

5, cd + p = x2
6.

Of course, since this is an arbitrary permutation, it suffices to prove the
particular congruence x1x6 ≡ x2x5 (mod p). We multiply the congruences

x1x2x3 ≡ −abc (mod p) and x1x4x5 ≡ −abd (mod p),

and we obtain
x2

1x2x3x4x5 ≡ a2b2cd (mod p).
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Since x2
1 ≡ ab (mod p), and all elements a, b, c and d are invertible mod-

ulo p, we get x2x3x4x5 ≡ abcd (mod p). In the same way, multiplying the
congruences

x1x2x3 ≡ −abc (mod p) and x2x4x6 ≡ −acd (mod p),

we obtain
x1x

2
2x3x4x6 ≡ a2bc2d (mod p),

and since x2
2 ≡ ac (mod p), we arrive at the congruence x1x3x4x6 ≡ abcd

(mod p). Hence, x1x3x4x6 ≡ x2x3x4x5 (mod p), leading to x1x6 ≡ x2x5

(mod p). ut

In what follows, we let {c1, c2, c3, c4} be a Diophantine m-tuple with the
property D(p) satisfying the hypotheses of Lemma 3.1. There are precisely
three sets consisting each of a pair of opposite sides in any quadrilateral
of vertices a, b, c and d (here, by side we mean any edge connecting two
of the four points); namely, they are {ab, cd}, {ac, bd} and {ad, bc}. For
each two of the above three subsets of pairs, say {t1, t2} and {t3, t4}, where
ti are edges connecting two of the four points, we look at the expression
|(t1 + p)(t2 + p)− (t3 + p)(t4 + p)|. We assume that a < b < c < d.

When {t1, t2} = {ab, cd} and {t3, t4} = {ac, bd}, we get

p(d− a)(c− b) = (ab + p)(cd + p)− (ac + p)(bd + p)

= (x1x6)
2 − (x2x5)

2

= (x1x6 − x2x5)(x1x6 + x2x5).

By Lemma 3.1, it follows that if we write

λ1 =
(x1x6 − x2x5)

p
, (5)

then λ1 is a positive integer and

d2 > (d− a)(c− b) = λ1(x1x6 + x2x5) > 2λ1(abcd)1/2 > λ1a
2.

Hence, d > λ
1/2
1 a. In particular, if δ is some constant such that the inequality

λ1 ≥ pδ holds, then
ai+` ≥ d > λ

1/2
1 a ≥ pδ/2a, (6)
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which is the desired inequality with γ = min{1/8, δ/2}. From now on, we
assume that λ1 < pδ.

In the same manner, we conclude that we may assume that λ2 < pδ and
λ3 < pδ, where λ2 and λ3 are positive integers defined by

λ2 =
(x1x6 − x3x4)

p
, (7)

λ3 =
(x2x5 − x3x4)

p
. (8)

We now exploit the fact that all λi for i = 1, 2, 3 are small. Rewriting
equation (5) as

x1x6 = x2x5 + pλ1,

and squaring both sides of it, we get

(ab + p)(cd + p) = p2λ2
1 + 2pλ1

√
(ac + p)(bd + p) + (ac + p)(bd + p).

Performing the obvious cancellations in both sides and simplifying by a factor
of p, we arrive at

(d− a)(c− b)− pλ2
1 = 2λ1

√
(ac + p)(bd + p).

Squaring both sides of the above relation and reducing the resulting equation
modulo p, we get

(d− a)2(c− b)2 ≡ 4λ2
1abcd (mod p).

Performing the same manipulations with λ2 and λ3 and multiplying the three
congruences obtained in this way, we get

((d− c)(d− b)(d− a)(c− b)(c− a)(b− a))2 ≡ 26Λ(abcd)3 (mod p),

where Λ = (λ1λ2λ3)
2. We now write P = P (X, Y, Z, T, Λ) for the polynomial

in ZZ[X, Y, Z, T, Λ] given by

P = ((T − Z)(T − Y )(T −X)(Z − Y )(Z −X)(Y −X))2 − 26Λ(XY ZT )3.
(9)

Note that the above polynomial, as a polynomial in X, Y, Z and T with
coefficients in ZZ[Λ], is homogeneous, symmetric, and of degree D = 12.
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We now return to our instance in which {b1, . . . , b5} is a subset of car-
dinality five of A such that every subset of it with four elements satisfies
the hypotheses of Lemma 3.1. For every i ∈ {1, . . . , 5}, we write bi for the
quadruple {bj : j 6= i} and Λi for its corresponding Λ. Furthermore, we
define Pi(X1, X2, X3, X4, X5, Λ) ∈ ZZ[X1, X2, X3, X4, X5, Λ] as

Pi(X1, X2, X3, X4, X5, Λ) = P (X1, . . . , X̂i, . . . , Λ),

where by X̂i we mean that the variable Xi has been eliminated (note that
Pi depends only on four variables of the type Xj). We then get that the five
positive integers bi for i = 1, . . . , 5 satisfy the system of five congruences

Pi(b1, . . . , b5, Λi) ≡ 0 (mod p) for i = 1, . . . , 5.

Since we have 5 homogeneous polynomial relations in the indeterminates
b1, . . . , b5, by variable elimination, we get a relation of the form

Q(Λ1, . . . , Λ5) ≡ 0 (mod p). (10)

The polynomial Q is called the integral resultant for the system Pi = 0,
i = 1, . . . , 5. From the Elimination Theory (see [13, Section V.1] and [14,
Section 9]), it follows that Q is not the constant zero polynomial.

We now find upper bounds for the total degree deg(Q) of Q and its height
h(Q), which we define as the sum of the absolute values of all its coefficients.

Assume that

f(X) = E0 + E1X + · · ·+ EnX
n and g(X) = F0 + F1 + · · ·+ FmXm

are polynomials of degrees max{m, n} ≤ D. Then their resultant ResX(f, g)
is a polynomial in ZZ[E0, . . . , En, F0, . . . , Fm] of total degree not exceeding
2D. If furthermore our polynomials f(X) and g(X) shown above have the
property that each one of the coefficients a0, . . . , am, b0, . . . , bn are polynomi-
als in ZZ[Y, Z, T, . . . ] such that the degrees and heights in the sense mentioned
above of both f and g as polynomials in ZZ[X,Y, Z, T, . . . ] fulfill the inequal-
ities max{deg(f), deg(g)} ≤ D and max{h(f), h(g)} ≤ H, then it is easy to
see that their resultant ResX(f, g) as a polynomial in ZZ[Y, Z, . . . ] has total
degree at most 2D2 and height ≤ (2D)!H2D < (2DH)2D. Define the two
sequences of upper bounds for degrees and heights, say (Dk)k≥0 and (Hk)k≥0,
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respectively, as D0 = 12 (the total degree of P ), H0 = 212 (an obvious upper
bound for the height of P ),

Dk+1 = 2D2
k and Hk+1 = (2DkHk)

2Dk (11)

for k ≥ 1. Then Q is obtained from the Pi’s (which have the same degrees and
heights as P ) by taking successive resultants. For example, the first step, say
eliminating X1, means computing the three polynomials Uj = ResX1(P2, Pj)
for j = 3, 4, 5, thus reducing the problem from the five homogeneous poly-
nomials Pi for i = 1, . . . , 5, in the five variables X1, . . . , X5, to the four
homogeneous polynomials P1, U3, U4, U5, in the four variables X2, . . . , X5.
Inductively, it is easy to see that deg(Q) ≤ D4 and h(Q) ≤ H4, where the
numbers D4 and H4 can be computed using the above recurrence (11).

We now show that
Hk ≤ 2Dk(k+1). (12)

The above inequality is certainly true for k = 0. Assuming it to be true at
some k ≥ 0, and using the inequality 2Dk ≤ 2Dk , we obtain

Hk+1 = (2DkHk)
2Dk ≤ (2Dk)

2Dk · 22D2
k(k+1) ≤ 22D2

k · 22D2
k(k+1) = 2Dk+1(k+2).

As for Dk, one proves by induction on k that the formula

Dk = 22k−1D2k

0 (13)

holds for all k ≥ 0. Evaluating at k = 4, D0 = 12 first in formula (13) and
then in inequality (12), we get

deg(Q) ≤ D4 = 215 · 1216 < 273 and h(Q) ≤ H4 < 2275

.

These bounds will alow us to show that in (10) the congruence can be
replaced by the equality.

Since max{Λ1, . . . , Λ5} < p6δ, we get that

|Q(Λ1, . . . , Λ5)| ≤ h(Q) (max{Λi})deg(Q) < (2p6δ)275

< p279δ, (14)

where the last inequality holds when p10δ > 2. We now choose δ = 2−79 and
conclude for p > 2276

we have that

|Q(Λ1, . . . , Λ5)| < p. (15)

Comparing (10) with (15), we conclude that the only possibility is

Q(Λ1, . . . , Λ5) = 0. (16)
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3.4 Another auxiliary polynomial

In what follows, we study the equation (16). Namely, we show that there ex-
ists a polynomial R(X, Y, Z, T, W ) ∈ ZZ[X, Y, Z, T, W ], which is not the con-
stant zero polynomial, such that if Λ1, . . . , Λ5 satisfy (16), then (Λ1, . . . , Λ5)
arise from a quintuple (b1, . . . , b5) (via the formulas Λi = (λ1iλ2iλ3i)

2 where
λ1i, λ2i and λ3i are given by formulas (5), (7) and (8), respectively, when
(a, b, c, d) = (b1, . . . , b̂i, . . . , b5)), such that

R

(
b1√
p
,

b2√
p
,

b3√
p
,

b4√
p
,

b5√
p

)
= 0. (17)

We also give an upper bound for the total degree of R.

Fix again some Diophantine quadruple {a, b, c, d} with the property D(p).
With the substitution (x, y, z, t) = (a/

√
p, b/

√
p, c/

√
p, d/

√
p), formulas (5),

(7) and (8) show that we have

λ1 =
√

(xy + 1)(zt + 1)−
√

(xz + 1)(yt + 1), (18)

λ2 =
√

(xy + 1)(zt + 1)−
√

(xt + 1)(yz + 1), (19)

and
λ3 =

√
(xt + 1)(yz + 1)−

√
(xz + 1)(yt + 1). (20)

Clearly, λ1, λ2, λ3 are algebraic functions belonging to the unique extension
IK of IF = Q(x, y, z, t) of degree 26 which contains all the expressions e{u,v} =√

uv + 1 for all subsets of two elements {u, v} ⊆ {x, y, z, t}. Now we have
that

Λ = (λ1λ2λ3)
2

is a function belonging to the same field, which is also symmetric in the four
variables x, y, z, t. Furthermore, with respect to the canonical basis

{f1, . . . , f26} =


∏

I1,...,Ik⊂{x,y,z,t}
#Ij=2, Ij distinct

k∏
j=1

eIj
: k = 0, . . . , 6


of IK over IF (here an empty product is taken to be 1), we have that

Λ =
26∑

m=1

gm(x, y, z, t)fm, (21)

13



where gm(x, y, z, t) ∈ IF are polynomials of degrees at most 12. Let now
(b1, . . . , b5) be a quintuple for which relation (16) is fulfilled. Write zi = bi/

√
p

for all i = 1, . . . , 5, and represent

Λi = Λ(z1, . . . , ẑi, . . . , z5) (22)

for all i = 1, . . . , 5, in the form (21). If we insert all the five relations (22)
above into (16), we get a relation of the type

φ(z1, . . . , z5) = 0, (23)

where

φ(z1, . . . , z5) =
210∑
n=1

hn(z1, . . . , z5)en, (24)

{e1, . . . , e210} =


∏

I1,...,Ik⊂{z1,z2,z3,z4,z5}
#Ij=2, Ij distinct

k∏
j=1

eIj
: k = 0, . . . , 10


is the canonical basis of the smallest extension of IL = Q(z1, . . . , z5) contain-
ing all the functions e{u,v} for {u, v} ⊆ {z1, . . . , z5}, and hn(z1, . . . , z5) are
polynomials of degrees at most 12 · deg(Q) ≤ 12 · 273 < 277. We shall later
show that this relation is nontrivial (i.e., it is not constant zero). Assum-
ing that we have proved this, the above relation (23) leads to a polynomial
relation

R1(z1, . . . , z5) = 0

of total degree at most 210 · 277 = 287. Clearly, the polynomial R1 can be
regarded as being obtained from the minimal polynomial of φ(z1, . . . , z5) over
IL. This polynomial R1 is almost the polynomial R. To choose R, we note
that when we have selected {b1, . . . , b5} out of {ai, . . . , ai+`}, we chose not to
consider any instance of the type {ai, aj, ak} such that ak = ai + aj ± 2xij.
However, if {a, b, c} is a Diophantine triple having the property that

c = a + b± 2
√

ab± p,

we then get the relation

1

4

(
c
√

p
− a
√

p
− b
√

p

)2

− a
√

p

b
√

p
± 1 = 0,

14



which is a polynomial relation of the type

U±(a/
√

p, b/
√

p, c/
√

p) = 0,

where

U±(x, y, z) =
1

4
(z − x− y)2 − xy ± 1

is a polynomial of degree 2. We now take

R(z1, . . . , z5) = R1(z1, . . . , z5)
∏

1≤i<j≤5

(zi − zj)

×
∏

ε∈{±}

∏
I⊂{1,...,5}, #I=3

Uε(zi, zj, zk : {i, j, k} = I), (25)

and we note that this is a nonzero polynomial of degree ≤ deg(R1)+20+40 <
288.

Before proceeding further, we show that R1 (hence, R), is not the zero
polynomial. Assuming that it is, it follows that φ(z1, . . . , z5) is constant
zero. Since Q is not constant zero, and φ is the image of Q(Λ1, . . . , Λ5) via
the algebraic map

(Λ1, . . . , Λ5) = (Λi(z1, . . . , z5))i=1,...,5

which is differentiable (in fact, of class C∞) in the real open set B = {zi >
1 : i = 1, . . . , 5} ⊂ IR5, it suffices to show that the Jacobian of this map
is not constant zero in B. Here, we could not find a theoretical argument
to this effect, so we simply computed the specialization of this Jacobian in
(z1, . . . , z5) = (2, 3, 4, 5, 6) using Maple and obtained a nonzero value for
it. In fact, using 100 digits precision, we obtained that this Jacobian is
−0.1226252714 · 10−30. When p is replaced by −p (i.e., when all the +1’s are
replaced by −1’s in the formulas (18), (19) and (20)), we obtained that the
value of this Jacobian is 0.2933578498 · 10−28. This shows that indeed φ is
not constant zero as an algebraic element over IL.

3.5 The end of the proof

We will finish the proof of Theorem 2.1 by proving the non-vanishing of
polynomial R in an appropriate quintuple. This will imply the non-vanishing
of Q in the corresponding quintuple of Λ’s, contradicting the already proved
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property of Q. The obtained contradiction leads to a lower bound for one of
the λ’s (from the definition of Λ), and this implies the desired inequality of
the form ai+` > pγai.

We recall the following elementary result about the non-vanishing of poly-
nomials with more than one indeterminate.

Lemma 3.2. Let M be a positive integer, and let R be a nonzero polynomial
with complex coefficients in t ≥ 1 variables X1, . . . , Xt of total degree < M .
Let M be any subset of C of cardinality ≥ M . Then, there exists x =
(x1, . . . , xt) ∈Mt such that R(x) 6= 0.

Proof. We use induction on t. When t = 1, the assertion of the Lemma 3.2
follows from the fact that a nonzero polynomial R(x) of degree < M cannot
have a number of roots ≥ M , and therefore there exists an element x ∈ M
such that R(x) 6= 0.

Assume now that t ≥ 2 and that the assertion of Lemma 3.2 holds for
all nonzero polynomials with less than t variables. Let R be a polynomial in
C[X1, . . . , Xt] which depends on all t variables (i.e., ∂R/∂Xi is not the zero
polynomial for any i = 1, . . . , t), and write it as

R = Xd
t Rd + Xd−1

t Rd−1 + · · ·+ R0,

where d < M , and Ri are polynomials in the variables X1, . . . , Xt−1 for
i = 0, . . . , d, with Rd 6= 0, and of degree < M . By the induction hypothesis,
there exist xi ∈ M for i = 1, . . . , t − 1, such that Rd(x1, . . . , xt−1) 6= 0.
Specializing R in (X1, . . . , Xt−1) = (x1, . . . , xt−1), and letting the tth variable
Xt free, we obtain a nonzero polynomial in one variable Xt of degree < M ,
and therefore there exists a choice of an element xt ∈ M so that this last
polynomial in the variable Xt does not vanish when evaluated in xt.

ut

By assuming that the polynomial R appearing in the above Lemma 3.2
is a multiple of all the linear polynomials Xi −Xj for all i ≤ j in {1, . . . , t},
we may insure that every point x ∈ Mt realizing R(x) 6= 0 has distinct
coordinates.

We now take t = 5, R to be the polynomial appearing at (25), ` = M =
288, and M = {ai, . . . , ai+`}. By Lemma 3.2, there exists (a, b, c, d, e) ∈ M5

such that R(a, b, c, d, e) 6= 0. Since zi − zj divides R(z1, . . . , z5) for all i 6= j
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in {1, . . . , 5}, it follows that {a, b, c, d, e} = {ai1 , . . . , ai5}, where i ≤ i1 <
· · · < i5 ≤ i + `. Furthermore, since Uε(zi, zj, zk) divides R(z1, . . . , z5) for
all subsets with three elements {i, j, k} of {1, . . . , 5} and both ε ∈ {±1}, it
follows that aiu 6= aiv + aiw ± 2

√
aivaiw ± p holds for all triples (u, v, w) of

distinct indices in {1, . . . , 5}. Finally, since R1(ai1/
√

p, . . . , ai5/
√

p) 6= 0, it
follows that Q(Λi1 , . . . , Λi5) 6= 0, and this contradicts (16). Note that we have
obtained the equality (16), under the assumption that the corresponding λ’s
are small. Therefore, we conclude that the inequality λκij ≥ pδ holds for

some κ ∈ {1, 2, 3}, j ∈ {1, . . . , 5}. But then ai5 > pδ/2 (see (6)), and if we
take γ = δ/2 = 2−80 and ` = 288, then the desired inequality

ai+` ≥ ai5 > pγai1 ≥ pγai

does hold. Finally, inequality (2) tells us that we can take

C = 24 + ` + 11`γ−14−1 < 3`γ−1 = 3 · 2168,

and Theorem 2.1 is completely proved.

4 The Proof of Theorem 2.2

We treat again only the case of the positive squarefree integer n, and we
shall point out the minor modifications required to deal with the case of the
negative integer n. Put

Mn = max{|A| : A is a Diophantine tuple with the property D(n)},

and we wish to show that the inequality Mn ≤ f(ω(n)) holds with some
function f . If p|n, then there can be at most one element a ∈ A such that
p|a. Indeed, if two such occur, call them a and b, we then get that ab+n = x2

holds with some integer x such that p|x. Reducing this equation modulo p2,
we get n ≡ 0 (mod p2), which is impossible because n is squarefree. Thus,
eliminating at most ω(n) elements fromA, we may assume that the remaining
ones are all coprime to n.

As in the case when n was prime, we may assume that n > 2276
, and

therefore that f(ω(n)) > 280 log 2.

Again as in the case when n was a prime, at most two of its elements are
< n1/4. Eliminating those ones, we may assume that the inequality a > n1/4

holds for all a ∈ A.
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Let again {a, b, c} be some triple of elements of A with a < b < c and
write again

ab + n = x2, bc + n = y2, and ac + n = z2

with some positive integers x, y and z. We write again equation (3), which
in this instance is

(2xyz − 2abc− n(a + b + c)) (2xyz + 2abc + n(a + b + c))

= n2 (2x− a− b + c) (2x + a + b− c) . (26)

If both sides of the above equation (26) are zero, then c = a + b + 2x (or
c = a + b− 2x if n is negative). Therefore c is (almost) uniquely determined
in terms of a and b. As in the proof of Theorem 2.1, we shall ignore such
triples. Furthermore, as in the proof of Theorem 2.1, since each of a, b and c
is coprime to n, it follows that the greatest common divisor of the two factors
appearing on the first line of the above array of equations (26) is coprime to
n if n is odd and to n/2 if n is even. We write n1 for the largest odd divisor
of n.

We now write

ds = gcd
(
2xyz − 2abc− n(a + b + c), n2

1

)
, (27)

and
dl = gcd

(
2xyz + 2abc + n(a + b + c), n2

1

)
, (28)

and remark that dsdl = n2
1 ≥ n2/4.

We will first consider the case when the “small factor” is divisible by some
“large divisor” of n2. More precisely, we assume that ds ≥ n8/5. In this case,
we get that

2 max{4xyz, 3nc} ≥ |(2xyz − (2abc + n(a + b + c))| ≥ n8/5. (29)

We distinguish the following situations.

Case 1. 3nc > 4xyz.

In this case, nc > xyz > abc, therefore ab < n. In particular, a < n1/2.
Since also 6nc = 2 max{4xyz, 3nc} > n8/5, we get

c > n3/5/6 > n1/10a/6 > n1/11a,
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where the last inequality above follows from the fact that n > 6110. Hence,
in this case we get the desired inequality with ` = 2 and γ = 1/11.

From now on, we have 4xyz ≥ 3nc. Clearly,

xyz ≤ 2
√

2 max{
√

ab,
√

n}max{
√

bc,
√

n}max{
√

ac,
√

n}.

If ab < ac < bc < n, then xyz ≤ 2
√

2n3/2, and now inequality (29) leads to
the inequality

16
√

2n3/2 ≥ 8xyz = 2 max{4xyz, 3nc} > n8/5.

In turn, the above inequality implies n < (16
√

2)10 = 245, contradicting our
assumption on n. Thus, bc > n.

Case 2. ab < n and ac < n.

In this case, a2 < ab < n, therefore a < n1/2. Furthermore, the inequality
(29) leads to

16
√

2nc > 16
√

2n
√

bc ≥ 2 max{4xyz, 3nc} > n8/5,

which in turn implies

c > n3/5/(16
√

2) > n1/10a/(16
√

2) > n1/11a,

which is the same inequality as the one from Case 1. The last inequalities
hold for the range n > (16

√
2)110 = 2495, which is our case.

Case 3. ab < n but ac ≥ n.

In this case, a2 < ab < n, therefore a < n1/2. Furthermore, the inequality
(29) becomes

16
√

2nc > 16
√

2
√

n
√

abc = 16
√

2
√

n
√

ac
√

bc ≥ 2 max{4xyz, 3nc} ≥ n8/5,

so we reached again the same inequality as the one from Case 2.

Case 4. ab ≥ n.

In this case, the desired inequality is

16
√

2c3 > 16
√

2abc > 3 max{4xyz, 3nc} > n8/5,
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leading to c > n8/15/23/2. We now have, by (26),

n8/5(2(xyz + abc) + n(a + b + c))

≤ |2xyz − 2abc− n(a + b + c)||2xyz + 2abc + n(a + b + c)|
≤ n2|2(ab + ac + bc)− a2 − b2 − c2 − 4n|
≤ n2 max{4n, 6c2}.

If 6c2 < 4n, then c < n1/2, which together with the fact that c > n8/15/23/2

leads to the conclusion that n < (23/2)30 = 245, contradicting our assumption
on n. Hence, we must have the inequality

4abc < 2xyz + 2abc + n(a + b + c) < 6n2/5c2,

leading to c > (2/3)abn−2/5. Since b > n1/2 (because ab ≥ n), we have c >
an1/10(2/3) > n1/11a, where the last inequality follows because n > (3/2)110.

Hence, in all the above four cases we reached the conclusion that the
inequality c > n1/11a holds when ds > n8/5. The case in which n is replaced
by −n can be analyzed with similar arguments.

We now look at the case ds < n8/5. In this case, dl > n2/(4ds) > n2/5/4 >
n1/5 because n > 45. Since every prime in dl appears at the exponent exactly

2, it follows that the largest prime p|dl is odd and fulfills p > n
1

10ω(n) .

Let {p1, . . . , pt(n)} be the set of all the distinct prime factors of n dividing
some divisor of n1 larger than n1/10 (in the case of the above triple, such a
divisor can be taken to be

√
dl). We also put

u(n) = max

{
log n

log pi

: i = 1, . . . , t(n)

}
. (30)

Clearly, u(n) ≤ 10ω(n). We note that t(n) ≤ ω(n).

To continue, we need to introduce the following combinatorial definition
of the Ramsey like number R(A, B), where A and B are arbitrary positive
integers. For an arbitrary finite set S, let us refer to an arbitrary subset with
three elements of S as to a triangle.

Definition 4.1. Given A and B, we write R(A, B) for the smallest positive
integer S such that every finite set S of cardinality #S ≥ S, and for every
coloring of the set of all its triangles with at most A colors, there exists a
subset S1 of S of cardinality at least B such that all its triangles have the
same color.
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We may recognize R(A, B) as the classical generalized Ramsey number
R(B, . . . , B︸ ︷︷ ︸

A times

; 3). Here, R(m1, . . . ,mk; q) is the minimum positive integer R

such that if S is a set of cardinality R and all its q-element subsets are
colored with k colors, then there exists i ∈ {1, . . . , k} and a subset Si of S of
cardinality at least mi such that all its q-element subsets have color i.

It is a deep theorem due to Ramsey that R(A, B) exists (see, for example,
Theorem 1 on page 3 of [10]). We shall discuss upper bounds for it in the
proof of Theorem 2.3.

For our instance, we choose A = t(n) and B = 288, which is an up-
per bound on the degree of the polynomial R(z1, . . . , z5) appearing towards
the end of the proof of Theorem 2.1. We let ` = R(A, B) and let S =
{ai, . . . , ai+`}. We assume that every triangle in S is either regular; i.e., if
a < b < c is the triangle then c = a + b± 2

√
ab + n, or that it has ds < n8/5.

In case ds < n8/5, we color this triangle by assigning to it the color pi for
i ∈ {1, . . . , t(n)}, where pi is the maximal prime factor of dl (which is larger

than n
1

u(n) ). In the regular case, we simply assign to {a, b, c} an arbitrary
color from the set {p1, . . . , pt(n)}. From the definition of R(A, B) (more pre-
cisely, from the fact that it exists), it follows that we can select a subset of
it {aj : j ∈ J}, where J ⊂ {i, . . . , i + `} has at least B = 288 elements, and
such that furthermore there exists a prime number p ∈ {p1, . . . , pt(n)} such
that if {j1, j2, j3} ∈ J is an arbitrary triangle with j1 < j2 < j3, then either
{aj1 , aj2 , aj3} is regular, or aj1aj2aj3 ≡ −xj1j2xj1j3xj2j3 (mod p).

At this stage, the argument from the end of the proof of Theorem 2.1
based on Lemma 3.2 shows that there exists a quintuple of elements among
{aj : j ∈ J}, let us call it {b1, . . . , b5}, such that R(b1/

√
p, . . . , b5/

√
p) 6= 0.

In particular, Q(Λ1, . . . , Λ5) 6= 0, where the numbers Λi are the parame-
ters constructed in the proof of Theorem 2.1 with respect to the quintuple
{b1, . . . , b5}. As in the proof of Theorem 2.1, all the bi’s are distinct and no
triangle among them is regular. We now write δ for the nonnegative real
number such that

δ = max

{
log λji

log p
: j = 1, 2, 3; i = 1, . . . , 5

}
,

where Λi = (λ1iλ2iλ3i)
2, and the λji’s are defined through relations (5)- (8)

for j = 1, 2, 3 for the quadruple {b1, . . . , b̂i, . . . , b5}. The divisibility condition
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(10) together with inequality (14) now show that

p ≤ |Q(Λ1, . . . , Λ5)| ≤ h(Q) (max{Λi})deg(Q) < (2p6δ)275

< p279δ, (31)

provided that p10δ > 2. We will justify this inequality later. The above
inequality shows that δ ≥ 2−79. It remains to justify that p > 20.1δ−1

. For

this, it suffices that p > 2276
. However, since p > n

1
u(n) > n

1
10ω(n) , it suffices

that n > 2276·10ω(n), which is implied by

log n > 280ω(n). (32)

By the trivial estimate ω(n)! ≤ n and Stirling’s formula, we get that

log(n) ≥ ω(n) log(ω(n)/e). (33)

If ω(n)/e > e280
, then inequality (32) is implied by (33). If on the other hand

ω(n)/e < e280
, then ω(n) < 2281

, 280ω(n) < 2282
, therefore inequality (32) is

valid for n > e2282

. Thus, by the result from [8], we need that f(ω(n)) is
larger than 16 · 2282

, and in particular we may assume that it is larger than
2283

.

The conclusion is that with our values for ` and δ, we insured that the
inequality

ai+` ≥ b5 ≥ pδ/2b1 ≥ pδ/2ai ≥ n
2−80

u(n) ai = nγai

holds, where one can take γ = 2−80/u(n). Since at any rate am < n3, it
follows that we are entitled to apply inequality (2) and get that

Mn < max
{

2283

, 23 + ω(n) + `
(
1 + 11/4γ−1

)}
< max

{
2283

, 23 + ω(n) +R(t(n), 288)(1 + 11/4 · 280u(n))
}

< max
{

2283

, ω(n) + 282u(n)R(t(n), 288)
}

. (34)

Finally, since t(n) ≤ ω(n) and u(n) ≤ 10ω(n), we get the inequality

Mn < max
{

2283

, 286ω(n)R(ω(n), 288)
}

,

which is a bound depending only on ω(n).
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5 The Proof of Theorem 2.3

Since this result addresses only most positive integers, throughout this section
we shall make extensive use of the symbols O, o, � and � recalled at the
end of Section 1.

Let X be a large positive real number and let n ∈ [1, X]. We let E1(X) =
{n : n ≤ X/ log X}. Since #E1(X) = O(X/ log X) = o(X), we may assume
that n 6∈ E1(X). Write

n = s(n)n1,

where gcd(s(n), n1) = 1, s(n) is squarefull except for the prime 2; i.e., if p|s(n)
and p > 2 then p2|n, and n1 is odd and squarefree. It is wellknown that if we
write S(X) for the counting function of the set of squarefull numbers m ≤ X,
then

S(X) = β
√

X + O(X1/3), β =
ζ(3/2)

ζ(3)
≈ 2.1732, (35)

where ζ is the Riemann zeta function (see, for example, Theorem 14.4 of
[12]). We now let

E2(X) = {n 6∈ E1(X) : s(n) > log n}.

Since n > X/ log X, we get that s(n) > 1/2 log X holds for all X sufficiently
large. To estimate #E2(X), we fix a number m in the interval [1/2 log X, X]
such that either m or 2m is squarefull and count the number of positive
integers n ≤ X which are multiples of m. The number of such integers is

≤
⌊

X

m

⌋
≤ X

m
.

Thus,

#E2(X) ≤ X
∑

m>1/2 log X
m∈S(X)

1

m
+ X

∑
m>1/2 log X
m∈S(X/2)

1

2m
� X√

log X
, (36)

where estimate (36) above follows from (35) by partial summation. From
now on, we work only with those positive integers n ≤ X not belonging to
E1(X) ∪ E2(X).
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By the Túran-Kubilius estimate∑
n≤X

|ω(n)− log log X|2 = O(X log log X)

(see, for example, [16]), it follows that the set E3(X) of positive integers
n ≤ X not in E1(X)∪E2(X) which have the property that |ω(n)−log log X| ≥
(log log X)2/3 has cardinality O(X/(log log X)1/3) = o(X). Thus, from now
on, we work only with the integers n ≤ X not in E1(X)∪E2(X)∪E3(X). It is
easy to see that all such integers n have the property that |ω(n)− log log n| <
2(log log n)2/3 once X is large enough.

We now let A be an arbitrary Diophantine m-tuple with the property
D(±n). By the arguments from the beginning of the proof of Theorem 2.2,
there are at most 24 + ω(n1) elements a of A such that either a 6∈ (n1/4, n3),
or a is a multiple of some prime p dividing n1. Clearly, for us,

ω(n) ≥ ω(n1) ≥ ω(n)− ω(s(n)) ≥ ω(n) + O

(
log(s(n))

log log s(n)

)
= ω(n) + o(log log n),

therefore ω(n1) = (1 + o(1))ω(n) = (1 + o(1)) log log n. From now on, we
eliminate such elements from A.

We now let {a, b, c} be an arbitrary triple in A with a < b < c which is
not regular. We follow the arguments from the proof of Theorem 2.2, where
ds and dl are again given by formulas (27) and (28), respectively, except
that n1 = n/s(n) > n/ log n. As in the proof of Theorem 2.2, if ds > n8/5,
then c > n1/11a once n (hence, X) is sufficiently large. We now consider the
case when ds < n8/5, for which dl > n2

1/ds > n2/5/(log n)2 > n1/5 once n
is sufficiently large. Since dl is also a perfect square (in fact, the square of
a squarefree number), it follows that

√
dl > n1/10 is a divisor of n. As in

Theorem 2.2, we put {p1, . . . , pt(n)} for a set consisting of some prime factors
of n as large as possible such that every divisor d > n1/10 of n1 is a multiple
of one of the pi’s for i = 1, . . . , t(n). Such set is provided by

{p1, . . . , pt(n)} = {P (d) : d|n and d > n1/10}. (37)

We also put u(n) as in (30). The argument from the proof of Theorem 2.2
shows that if n is large (i.e., if X is large), then the inequality

Mn ≤ 23 + ω1(n) + 288u(n)R(t(n), 288) (38)
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holds for all our n ≤ X not in E1(X) ∪ E2(X) ∪ E3(X). Furthermore, the
term ω(n1) from the right hand side of the above inequality (38) can be
eliminated once the Diophantine m-tuple A is reduced (i.e., one no longer
has to “eliminate” the eventual a ∈ A such that p|a for some prime factor p
of n1 since A no longer contains such elements).

Unfortunately, the only inequality known for our number R(t, 288) is

R(t, 288) = exp exp . . . exp︸ ︷︷ ︸
O(t) times

(O(1)). (39)

Indeed, the above inequality follows from what is known about the classical
generalized Ramsey numbers (see [10, pp. 90-91]). However, regardless of the
size of R(t, 288), the full conclusion of Theorem 2.3 will now follow at once
from inequality (38), and the following purely probabilistic result, which
might be of independent interest.

Lemma 5.1. Let g : IR≥0 −→ IR≥0 be any increasing function with the
property that limx→∞ g(x) = ∞. Then the inequality

max{t(n), u(n)} < g(n)

holds for almost all positive integers n.

Proof. We let X be a large positive real number and put u = g(X). We may
assume that u < log log X for large X. We put Y = X1/u. We assume again
that n > X/ log X. We put E4(X) = {n ≤ X : P (n) ≤ Y }. By standard
results from the distribution of smooth numbers (see, for example, Section
III.5.4 in [15]), we know that

#E4(X) = Ψ(X; Y ) =
X

exp(u(1 + o(1)) log u)
= o(X).

We put E5(X) to be the set of n ≤ X not in ∪4
i=1Ei(X) such that p2|n for

some p > Y . Then

#E5(X) ≤
∑
Y <p

⌊
X

p2

⌋
≤ X

∑
p>Y

1

p2
� X

Y log Y
= o(X).

We now let n ≤ X not in ∪5
i=1Ei(X). We write E6(X) for the set of such

n such that there exists a divisor d|n with d > n1/10 and P (d) ≤ Y . Since
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n > X/ log X, we get that d > n1/10 > X1/11. For t ∈ [X1/11, X], we note
that u(t) = log t/ log Y ≥ u/11. Thus, for these values of t we have

Ψ(t; Y ) =
t

exp(u(t)(1 + o(1)) log(u(t)))
>

t

exp(u(log u)/12)
for t ∈ [Y, X],

once X is sufficiently large. Hence, by partial summation, we get that

S1 =
∑

X1/11<n<X
P (n)<Y

1

n
�
∫ X

X1/11

1

t
dΨ(t; Y )

� 1

exp(u(log u)/12)

∫ X

X1/11

dt

t

� log X

exp(u(log u)/12)
. (40)

To bound E6(X), we let n ∈ E6(X). Then n = Pab, where P = P (n) > Y ,
b > X1/11, P (b) ≤ Y , and a has the property that all its prime factors are
> Y . Fixing a, b, we have P ≤ X/ab, therefore the number of choices for P
is

≤ π

(
X

ab

)
≤ X

ab log(X/ab)
≤ Xu

ab log X
,

where in the last inequality above we used the fact that X/ab ≥ P ≥ Y =
X1/u. Summing up over a and b, we get

#E6(X) ≤ X

u
log X

 ∑
X1/11<a<X

P (a)<Y

1

n


 ∑

b<X
p|b⇒ p>Y

1

b

 .

The first sum above is the sum S1 which is bounded in (40). For the second
one, note that the b’s we are considering are squarefree (because b|n and
n 6∈ E5(X)). Thus,

S2 =
∑
b<X

p|b⇒ p>Y

1

b
≤
∑
k≥0

∑
b<X

p|b⇒ p>Y
ω(b)=k

1

b
≤
∑
k≥0

1

k!

( ∑
Y <p<X

1

p

)k

.
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Since

z =
∑

Y <p<X

1

p
= log log X − log log Y + o(1) = log u + o(1) < 1 + log u,

we get that

S2 ≤
∑
k≥0

zk

k!
= exp(z) � exp(log u) = u. (41)

From inequalities (40) and (41), we get that

#E6(X) � xu2

exp(u(log u)/12)
= o(X).

Hence, all n ≤ X but for o(X) of them have the property that if p ∈ P(n) =
{P (d) : d|n, d > n1/10}, then

u(n) = max

{
log n

log p
: p ∈ P

}
≤ u = g(X).

As for the size of the number t(n), let K = b2e log uc. Let E7(X) be the
set of n ≤ X not in ∪6

i=1Ei(X), such that t(n) ≥ K. Let P1, . . . , PK be
any K distinct primes factors of n than Y . Then n = P1 . . . PKm, where m
is some integer. Clearly, m can be chosen in at most X/(P1 . . . PK) ways.
Summing this up over all the possible choices of distinct primes Pi ∈ (Y,X)
for i = 1, . . . , K, we get

#E7(X) ≤ X
∑

Y <P1<P2<···<PK<X

X

P1 . . . PK

< X · zK

(K)!

≤ X

(
2e(u + 1)

K

)K

=
X

u2e(1+o(1)) log 2
= o(X).

Hence, t(n) ≤ K ≤ 2e log u < u = g(X) holds for all n ≤ X with o(X)
exceptions. ut
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