
Developing a general purpose OLAP client prototype using XML for Analysis

Igor Mekterović , Mirta Baranović
Faculty of Electrical Engineering and Computing

University of Zagreb
Unska 3, 10000 Zagreb, Croatia

Phone: +385-1-6129-790 Fax: +385-1-6129-915 E-mail: igor.mekterovic@fer.hr

Data warehouse is a copy of transaction data specifically
structured for query and analysis [1]. Within data
warehouse, data is usually stored in a dimensional model.

On-Line Analytical Processing (OLAP) is an approach
to analysis and reporting that enables a user to easily and
selectively extract and view data from different points of
view based on a multidimensional data structure called a
cube [2].

There are numerous data warehousing platforms
available on the market. Exhaustive data warehousing
platform comprises of data warehouse server, OLAP
server and some data mining functionality.

There are no present standards to support
interoperability between different OLAP systems. In this
article, two major initiatives towards standardization are
examined: XMLA and JOLAP.

Web service is a piece of business logic, located
somewhere on the Internet, that is accessible through
standard-based Internet protocols such as HTTP or SMTP
[3]. Web services are neither language nor platform-
specific.

Using Java programming language, general purpose
client tool prototype for standardized OLAP data access is
developed. Client communicates with OLAP data source
through web service and is based on XMLA 1.1.
specification.

It is concluded that the client encompasses satisfactory
set of functionalities.

I. INTRODUCTION

Today's information systems mostly rely on relational
databases for transactional data storage and
manipulation. Throughout the years, massive amounts of
data have been gathered. Those data, if properly
analyzed, could serve as a basis for strategic decisions.
For the purposes of analysis data is transformed from
relational model (database) into dimensional model and
stored in a data warehouse. Informations gained from
gathered data provide an advantage that, in the
conditions of sharp business competition, could be
distinguishing. Followed by intense hardware
development, that was the main reason for rapid data
warehousing development and acceptance in the past
years.

However, data warehousing platform includes more
than relational database holding data in a dimensional
model: exhaustive data warehousing platform comprises
of data warehouse server, OLAP (On-Line Analytical

Processing) server and some data mining functionality.
OLAP stands for a type of application that attempts to
facilitate multidimensional (i.e., data that has been
aggregated into various categories or "dimensions")
analysis. OLAP should help a user synthesize enterprise
information through comparative, personalized viewing
as well as through analysis of historical and projected
data. The main characteristic of OLAP systems is
providing multi-dimensional view of the data and
answers to queries at high response rates.

Unlike relational databases that show some degree of
uniformity through the SQL and ODBC standards, there
are no generally accepted standards for communicating
with OLAP databases. Such situation makes
development of OLAP client tools more complicated
and expensive. This results in platform specific and
more expensive products that are, therefore, less
acceptable to the end users.

In this article two major initiatives for OLAP
standardizations are discussed. Also, an OLAP client
tool based on the XML for Analysis (XMLA) protocol
with a sufficient set of functionalities was developed.

II. EMERGING STANDARDS

Two major standardization initiatives for
communication with OLAP data sources present today
are Java OLAP (JOLAP) and XMLA.

Java™ OLAP Interface (JOLAP) is a pure Java™
API for OLAP servers and applications deployed on the
Sun Java™ 2 Platform, Enterprise Edition (J2EE™) [4].
JOLAP has been developed within the Java Community
Process by a number of companies dealing with the
OLAP, business intelligence, and data warehousing
domains, such as Oracle, Sun, IBM, Unisys, etc. Since
there is no common logical model for OLAP, JOLAP
leverages the CWM (Common Warehouse Metamodel)
OLAP metamodel and other metamodels of CWM as the
base metamodel for its own metadata model. CWM is
an open industry standard for interchange of warehouse
metadata developed by Object Management Group™. It
provides a framework for representing metadata about
data sources, data targets, transformations and analysis,
and the processes and operations that create and manage

Picture 1. Client communicating with OLAP data source using XMLA protocol
warehouse data and provide lineage information about
its use. JOLAP defines an object model for metadata and
query manipulation. However, JOLAP does not define a
linguistic interface (such as SQL in relational databases)
- client application has to combine JOLAP classes
(objects) to form a query. The client-side metamodel is
defined as projection (subset) of the CWM OLAP
metamodel that is required by JOLAP clients; that is,
required by users of the JOLAP Query model for
forming queries. Base class, called Schema, contains
classes Cube and Dimension, Cube contains Measures,
Dimension contains Hierarchy classes, etc. Members
retrieval is managed using cursors which are suitable for
retrieving member information from levels that contain
large number of members. Query object models and
languages are critical for developers who use an analytic
API. In the case of existing language interface (e.g.
SQL) a client application has to have some sort of
internal model for holding query components and
metadata so that query could be manipulated and
eventually assembled.

JOLAP models all queries as collections of objects
designed to reflect GUI gestures in constructing and
refining a query - there is no subsequent step required of
an application to traverse the objects and generate a
textual query [5]. It even supports rollbacks on portions
of query created by client's actions, for instance a
drilldown or filter modification could be rolled back to
return a query to a previous state using this API's build-
in functionality.

However, JOLAP is platform dependant - it is a Java
API. XMLA uses a different approach: XML for
Analysis specifies a SOAP-based XML communication
API that supports the exchange of analytical data
between clients and servers on any platform and with
any programming language. In short, clients
communicate with OLAP data source through web
service, i.e. via Simple Object Access Protocol (SOAP)
messages. This specification is built upon the open
Internet standards of HTTP, XML, and SOAP, and is
not bound to any specific language or technology.

Furthermore, XMLA provider web service is very
simple: it supports only two methods: discover and
execute. Discover is used to retrieve metadata, such as
the list of available data sources on a server or details
about a specific data source, cubes and dimensions
available, etc. The Execute method is used for sending
action requests to the server (Picture 1.). This includes
requests involving data transfer, such as retrieving or
updating data on the server. Typically, execute method
is used to send a query using mdXML (multidimensional
XML).

The XML for Analysis specification requires that
multidimensional providers support the mdXML
language. The mdXML language is based on MDX
(Multidimensional Expressions). MDX is the
multidimensional expression language defined in

Microsoft's OLE DB for OLAP specification. It is a
linguistic interface that is supposed to play a role similar
to SQL in relational databases. Currently mdXML
consists solely of the <Statement> element that contains
an MDX language statement. Future enhancements to
mdXML will make additional elements beyond the
<Statement> element available. However, for the time
being, mdXML simply wraps MDX statements in a
<Statement> tag. XMLA council, responsible for
development of XMLA, is composed of number of
companies such as SAS, Hyperion, Business Objects,
Cognos, Microstrategy, etc. but clearly, the main role in
the council and in the development of XMLA is held by
Microsoft.

It is not evident which standard will prevail. There are
opinions that these are even not competing standards,
but rather complimentary. For instance, Hyperion
supports both standards and implements XMLA web
service using JOLAP. These standards serve two
different needs: JOLAP is for the Java developer, there's
no linguistic interface, whereas XML for Analysis is
much more of a linguistic interface, a query language
specification combined with Web services. However
XMLA was released first and has gained a foothold in
the industry. All this considered, it was decided to
develop a client prototype using XMLA protocol.

IV. CLIENT PROTOTYPE REQUIREMENTS

Based on previous experience and existing client tools
assessment, a list of required features for general
purpose client tool prototype is assembled:
• platform independent
• graphical interface
• user-friendliness, usability
• no previous knowledge in IT required
• interactive queries
• a possibility to browse more than one cube
• drill-up / drill-down
• dimension members (to be displayed) selection
• ordering (by dimension members and by measures,

hierarchical and non-hierarchical)
• filtering, more than one member in the filter axis
• display up to 3 axes (columns, rows, pages)
• basic data visualization (common data charts)
• secure (encrypted) communication

Foremost, an easy-to-use and user-friendly interface is
required so that even a user with little or no computing
knowledge should be able to use it. Combined with
features listed above, that should satisfy the
requirements of most OLAP users since more advanced
analysis (e.g. statistical analysis, data mining, etc.) are

performed by system analyticians using specialized
software.

V. IMPLEMENTATION ISSUES

During implementation several issues were
encountered that will be further commented:

A. SOAP processing and secure communication

Since XMLA protocol is used client has to

communicate with web service using SOAP messages.
Furthermore, this communication should be encrypted. It
was decided to use Apache Axis as a SOAP engine
because Axis provided serializer classes (needed to
transform java object into its SOAP equivalent). Also,
Axis provided a tool, called wsdl2Java used to create
stub classes – these classes are used to hide the details of
calls and generate a wrapper classes for a web service.

SOAP communication is done over a secured (https)
channel. To achieve this (for a priori unknown URL)
Axis source code had to be changed to accept
HttpsURLConnection.getDefaultSSLSocketFactory()
class that can be then set from outside Axis. This is, of
course, considered to be a drawback.

B. Results display

It is typical for OLAP tables to have merged cells on

rows and columns headers. These come from cross
joining different dimensions. Picture 2 shows a table
with dimensions A and B cross joined on rows and
dimensions C and D cross joined on columns.

Picture 2. Typical OLAP result table

Table headers cells have to be responsive to user input

(double-click for drillup/drilldown and right click for
various other functions). This OLAP table was
implemented using standard JTable for table cells (non-
shaded part in the Picture 2) and set of aligned JButtons
for table row and column headers (shaded part of Picture
2). For this purpose GridBagLayout class was used.
Unfortunately, this layout manager class has hard-coded
grid size limitation of 512*512 and so it had to be
changed to accommodate tables with more than 512
rows.

As for charting the data, jFreeChart, a free Java class
library for generating charts was used. All that had to be
done is provide bridge classes that will implement
interfaces needed for jFreeChart to draw various charts.

C. Query generation

Essentially, there are two approaches to generating a
query in OLAP client tools. In the first approach, a user
composes a query from available elements (dimension
levels, members, etc.) in some sort of query designer and
then executes a query. Second approach, that is used
here, is to generate a query after every user's action. We
find this approach to be more suitable to users although
it consumes more network and server resources. To
generate a query application has to produce MDX
statement based on user's input. Form of MDX SELECT
statement used to create queries was:

[WITH MEMBER <aggregated_member_definition>]
SELECT
 NOT EMPTY <axis_definiton> ON ROWS
 , NOT EMPTY <axis_definition> ON COLUMNS
 [, NOT EMPTY <axis_definition> ON PAGES]
FROM <cube_name>
[WHERE <slicer_definition>]

where <axis_definition> defines a set of members to be
displayed on an axis. For multiple members filters, a
WITH MEMBER clause was used to define aggregated
members that were then used in WHERE clause to filter
the result set. As indicated with square brackets these
clauses can be omitted as well as the third, pages axis.

Besides this, MDX provides numerous functions that
facilitate query generation: ToggleDrillState function
was used to implement drillup and drilldown, Except to
exclude member for a set, Order for ordering member
etc.

VI. CLIENT PROTOTYPE

The basic idea is to translate user's GUI actions into
MDX queries, run queries against an OLAP server, and
display results in a table. Upon starting an application, a
client has to enter XMLA URL. Using discover method,
information about available data sources is retrieved and
displayed in a tree. User then chooses one or more cubes
to analyze. Cubes are displayed in different tabs. To run
a query against a cube user has to chose dimension
(levels) from the dimension tree (Picture 6, left side) and
put them on rows, columns or pages axis. Such actions
generate MDX statements that are then executed using
XMLA's execute method. If, for instance, a user puts
(using a mouse) Gender level (from Gender dimension)
and Unit Sales measure on column axis, and Year level
(from Time dimension) on rows axis, then the following
MDX statement would be generated:

SELECT
NON EMPTY
{
 {[Gender].[Gender].Members}
 * { [Measures].[Unit Sales]}
} ON COLUMNS,
NON EMPTY
{
 {[Time].[Year].Members}

} ON ROWS
FROM [Sales]
In this simple statement set of Gender level members

({[Gender].[Gender].Members}) is cross joined
(operator *) with a set that contains only one member ({
[Measures].[Unit Sales]}) and placed on columns axis.
Set containing all members from the year level of
dimension Time({[Time].[Year].Members}) is placed on
rows axis. In this example there is only one year in
database: 1997. "NON EMPTY" clause is used to omit
empty rows or columns. Query is run against Sales cube
("FROM [Sales]").

This statement is wrapped in a Statement tag of an
XMLA soap message and run against the data source.

Result is returned as an XML that, when parsed and
displayed in a table, looks like Picture 3.

Picture 3. A simple query result displayed in a table

Drilldown functionality is implemented as double

click on dimension member, e.g. if a user was to
double-click member "1997" a more detailed table
would be shown with quartiles of year 1997 (Picture 4).

Picture 4. A simple query result displayed in a table

OLAP clients usually support two axes: columns and

rows. This client supports a third, pages axis, which is
implemented as a tab for each member on pages axis.
Obviously this axis is suitable for use only with
dimensions or levels with low member count (e.g.
gender, year, marital state, etc.). Since double click is
reserved for drillup/drilldown operations other
operations have been made available on right-click:
• changing the order of dimension on an axis
• removing dimension or member from query
• sending member to filter
• sorting by dimension (hierarchical and non-

hierarchical, ascending and descending)
Filter members selection is implemented with separate
tree component that displays dimension members in a
hierarchical manner (Picture 5). Since dimension levels
can have big member count (e.g. day level of Time
dimension) lazy loading was used. Picture 5 shows filter
tree where two dimensions are involved: Store
dimension is restricted to USA and Acapulco, and Time

dimension is restricted to 1997, first quarter of 1998 and
July of 1998.

Picture 5. Filter tree on dimensions Store and Time

Such filter tree produces MDX with member clause:
WITH MEMBER [Store].[Filter members from (Store)]
 AS 'Aggregate(
 {
 [Store].[All Stores].[USA]
 ,[Store].[All
Stores].[Mexico].[Guerrero].[Acapulco]
 }
)'
 MEMBER [Time].[Filter members from (Time)]
 AS 'Aggregate(
 {
 [Time].[1997]
 , [Time].[1998].[Q1]
 , [Time].[1998].[Q3].[7]
 }
)'
that is then user in WHERE clause:
WHERE
 (
 [Store].[Filter members from (Store)]
 , [Time].[Filter members from (Time)]
)
Picture 6 shows main application window for a query
that cross joins "Marital state" and Product category
dimension or rows, Gender dimensions on columns and
Quarter level of Time dimension on pages. Filter and
dimension trees are displayed in tabs (left side). Result
table and two graphs (3D and combined graph) are also
displayed in tabs (right side).

Picture 6. Main application window

VII.TECHNICAL CONSIDERATIONS

Client tool prototype is developed using Java 2

Platform, Standard Edition, v 1.4.2 (J2SE). Client tool
uses Apache Axis 1.1. [6] as a SOAP engine. Also,
jFreeCharts are used for displaying data charts. As an
OLAP data source Microsoft Analysis Services 2000
SP3 (with XMLA 1.1. Software Development Kit) was
used running under Windows 2000 Server operating
system. All examples in this article are shown on
Foodmart 2000 database which is distributed with
Analysis Services.

 VIII. CONCLUSION

This paper points out the problem of lack of
standardization in the area of multidimensional
databases both in metadata representation and client
server communication. Efforts towards standardizing
OLAP communication are inspected. It is found that
there are two emerging standards: JOLAP and XMLA.
These standards are different in nature: JOLAP is a Java
API that has to be used from Java applications while
XMLA specifies linguistic interface – a query language
that is then used in conjunction with web services.
XMLA is consequently platform independent. XMLA
was chosen as a standard for developing a general
purpose OLAP client prototype. A list of client tool
requirements is proposed. Client implementation is
described and features implemented are commented. It is
concluded that client prototype implements proposed
requirements. Client prototype can be downloaded at:
http://i.zpm.fer.hr/rex

LITERATURE

 [1] R. Kimball, The Data Warehouse Toolkit. John Wiley,

1996, New York
 [2] Cognos Business Intelligence Guide, URL:

http://www.cognos.be/biguide
 [3] D. Chappell, T. Jewell, Java Web Services, O'Reilly

2002
 [4] Hyperion Solutions, Sun Microsystems, Java™ OLAP

Interface (JOLAP), Version 1.0, 2003, URL:
http://www.jcp.org/aboutJava/communityprocess/first/js
r069/

 [5] G. Spofford, Access to Intelligence: The New OLAP
APIs, Intelligent Enterprise, 2002

 [6] Apache Software Foundation, Axis User's Guide, 2003,
URL: http://ws.apache.org/axis/

 [7] W.H.Inmon, Building the Data Warehouse Third
Edition, John Wiley, 2002, New York

 [8] R. Kimball, A Dimensional Manifesto, DBMS Online,
1997

 [9] P. Dean, Browsable OLAP apps on SQL Server
Analysis Services , Intelligent Enterprise Custom
Analytic Apps, 2001

[10] D. Everett, Compare and Contrast JOLAP and XML for
Analysis, Hyperion Resource Library,
URL:http://dev.hyperion.com/resource_library/articles/j
olap_xmla.cfm

[11] S. Grimes, API Wars, Intelligent Enterprise, 2003
[12] S. Grimes, XML for Analysis Decoded, Intelligent

Enterprise, 2001

[13] B.King, XML for Analysis: A Sneak Peak Inside the
Skunk Works, DM Review, 2003

[14] The Java Tutorial, Sun Microsystems, 2001
[15] B.Eckel, Thinking in Java, 3rd Edition, Prentice Hall,

2003
[16] E.Armstrong, S.Bodoff, D.Carson, M.Fisher, S.Fordin,

D.Green, K.Haase, E.Jendrock, The Java Web Services
Tutorial 1.1., 2003, URL:
http://java.sun.com/webservices/

[17] D.Almaer, Creating Web Services with Apache Axis,
2002, URL:
http://www.onjava.com/pub/a/onjava/2002/06/05/axis.ht
ml

[18] SOAP Tutorial, URL: http://www.w3schools.com/soap
[29] WSDL Tutorial, URL:http://www.w3schools.com/wsdl/
[20] S.Shin, Web Services Programming using XML and

Java(tm) Programming Language, URL:
http://www.javapassion.com/webservices/

[21] H. Bhagwat, Web Services Tutorial, URL:
http://hrishikeshbhagwat.tripod.com/webservices/Table
OfContents.html

[22] E. Newcomer, Understanding Web Services: XML,
WSDL, SOAP, and UDDI, Addison-Wesley, 2002

[23] R. Jacobson, Step By Step, Microsoft SQL Server 2000
Analysis Services, Microsoft Press, 2000

[24] C.Nolan, Introduction to Multidimensional Expressions
(MDX), 1999

[25] Microsoft Corporation, Hyperion Solutions Corporation,
XML for Analysis Specification, Version 1.1, 2002,
URL:http://www.xmla.org/

[26] M. Kramer, A Comparison of Business Intelligence
Strategies and Platforms, Green Hill Analysis, 2002

[27] N.Pendse, R. Creeth, The OLAP Report, URL:
http://www.olapreport.com/

[28] N.Pendse, OLAP Market Review, DM Review, 2001
[29] G.Spofford, Basic Statistical Calculations in MDX and

Analysis Services, DSSlab, 2001, URL:
http://www.dsslab.com/MDXSolutions.html/

