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Abstract— In this paper we introduce a new design procedure for 
low-sensitivity filter sections, which have a symmetrical passive-RC 
network in the operational amplifier (opamp) feedback loop. In the 
design procedure we apply impedance scaling to the symmetrical 
bridged-T and twin-T networks; they become "potentially 
symmetrical" [1]. The design of low-sensitivity allpole active-RC 
filters, which have an RC-ladder network in the opamp feedback loop, 
has already been published [2]. There, successive L-sections of the 
ladder structure are impedance scaled upwards, from the driving 
source to the positive opamp input; we refer to it as "impedance 
tapering". In both cases we reduce the filter's magnitude sensitivity to 
variations of the passive components of a circuit. The new design 
concept will be demonstrated by designing two very popular and often 
used filter sections: a band-pass realized by the Deliyannis SAB, and a 
band-rejection filter with a Twin-T. The sensitivity analysis is examined 
analytically and double-checked using PSpice Monte Carlo runs. 

I. INTRODUCTION 
In this paper we present a low-sensitivity design procedure for 

two very often-used 2nd-order active-RC single-opamp filter 
sections. One is used for the realization of a band-pass (BP) transfer 
function and is known as a Deliyannis section. It is realized by a 
bridged-T RC-network in the negative feedback loop and belongs to 
“class-3” networks [3]. The other is a band-rejection (BR) section 
with a Twin-T RC-network in the positive feedback loop and 
belongs to the “class-4”. Both are described in [1][4] and are based 
on physically symmetrical passive RC networks. The newly 
introduced design concept reduces the sensitivity to the passive 
components of the circuit of those two filter sections, making them 
even more attractive for the realization of filter circuits. In the new 
design procedure, the topology and component count remain the 
same, we just judiciously select the component values, in order to 
decrease the component tolerance sensitivity. 

The design method is based on impedance scaling of one half of 
a symmetrical passive RC-network, in order to maximize its pole Q 
factor. It is well known that the pole Q, q̂  of a passive RC network 
is upper limited with the value of (never accessible) 0.5; if we want 
to reach it we will need to realize an infinite ratio of two 
components [1]. Note, that we use the symbol "^" on the top of any 
passive-network parameter. Design of the passive RC network such 
that its pole Q is as close to 0.5 as possible, is very valuable due to 
several reasons presented in [4] (pp. 315-339). 

II. SELECTIVITY OF PASSIVE RC NETWORKS 
One very useful network characteristic in connection with RC 

networks is that of symmetry. It is well known that physically and 
electrically symmetrical networks (and reciprocal—this property is 

generally fulfilled for passive networks [‘generally’ because it does 
not hold for the ‘passive’ gyrator, for example]), can be split into 
two identical halves. Then, we can apply Bartlett’s bisection 
theorem to readily calculate open-circuit impedances [1]. 

The process of deriving a so-called “potentially symmetrical” 
bridged-T network is shown in Fig. 1 if we scale the impedance of 
one half of the network (e.g. right) by a constant factor ρ. The 
transfer function of the bridged-T in Fig. 1 is given by [1][4]: 
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The transfer function in (1) has the characteristic of the "Frequency 
Rejection Network" (FRN) [1][3]. For the "symmetrical" bridged-T 
in Fig. 1(a) we have: 
 .3/1ˆ  ;1  ;)( 1

0 ===ω=ω − qqRC zz  (3) 
Deriving the "potentially symmetrical" bridged-T as shown in Fig. 
1(d), we obtain the same values for ωz and qz as in (3), but for the 
pole Q, q̂  we obtain: 
 5.0)21/(ˆ T-Bridged =ρ+ρ=

∞→ρ
q . (4) 

It is apparent from (4) that by increasing the impedance-scaling 
factor ρ the passive pole Q, q̂  is increased towards 0.5. In what 
follows, we shall demonstrate the reduction of sensitivity when 
increasing the ρ, in the class-3 and class-4 filters, separately. 

III. CLASS-3 FILTERS—NEGATIVE FEEDBACK 
Consider a common 2nd-order class-3 active-RC filter section 

with BP characteristic shown in Fig. 2. It is known as the 
Deliyannis section [3], and is suitable for realization of medium-Q 
values (2<qp<20) [5]. The circuit in Fig. 2 has the same bridged-T 
network as in Fig. 1, providing FRN characteristic in the negative 
feedback loop (from node 3 to 2), while in the signal forward path 
(node 1 to 2) it has a BP RC ladder network. Because of the latter, 
its overall BP transfer function is given by: 
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where the pole frequency, ωp and pole Q, qp (or the transfer 
function coefficients a1=ωp/qp and a0=ωp

2) are given by: 
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Figure 1.  Bridged-T network. (a) Common configuration. (b) Broken up symmetrically. (c) Impedance scaled. (d) Potentially symmetrical. 
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Figure 2.  2nd-order BP active-RC filter (Deliyannis SAB section) with 

general scaling factors r and c as in [6]. 

and where β =1+RG/RF (7) 
represents a positive feedback gain, realized by resistors RG and RF. 
A positive feedback in the circuit, is represented by a direct measure 
α=RG/(RF+RG); 0<α<1 in Fig. 2 (node 3 to 2'). 
The complementary transformation between class-3 network with 
additional positive feedback and class-4 network is demonstrated in 
[3] (p. 167) and [7]. In [7] it was shown that a 2nd-order class-4 
high-pass (HP) filter and class-3 BP filter as shown in Fig. 2, are 
related by the complementary transformation, and the low-
sensitivity design of one will produce the low-sensitivity design of 
the other filter; their coefficient-to-component sensitivities also 
have the same form. It is more practical to use β =(1-α)-1; 0< β <∞ 
instead of α, because the equations for pole parameters as functions 
of components (6) are then identical for both filters [6]. Note that 
the class-4 (HP) circuit has the gain β=1+RF/RG instead of gain β ; 
the gains are related by 1/ β +1/β=1 [7]. Sensitivity of coefficient a0 
to all components is –1, thus only the sensitivities of a1 are 
presented in the first column of Table 1. Note that all sensitivities in 
Table 1 are proportional to pole Q, qp. 
Example: Consider BP and BR filters having 1kHz center frequency 
and pass-band range of 200Hz. To obtain this selectivity we need 
the pole Q factor of qp=ω0/B=5, and the active-RC filter realization. 
Magnitudes of the transfer function characteristics are shown in Fig. 3. 
One segment of the sensitivity analysis (given in [6]) of the SAB 
filter in Fig. 2 will be summarized here. Filters with various 
resistance (r) and capacitance (c) ratios are presented Table 2. In the 
last two columns the Q-values of the bridged-T network calculated 

TABLE I.  SENSITIVITY OF COEFFICIENT a1 TO COMPONENT 
VARIATIONS IN A 2ND-ORDER BAND-PASS FILTER. 
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Figure 3.  The 2nd-order filter transfer function magnitude with f0=1kHz, 

qp=5. (a) Band-pass. (b) Band-rejection. 
from (2) are given. Corresponding Monte Carlo (MC) runs with 1% 
Gaussian distribution, zero-mean resistors and capacitors were 
carried out and presented in Fig. 4. It is obvious, for the reasons 
given in [6] that filter no. 4 with equal capacitors and impedance 
scaled resistors has min. sensitivity. 
When used in the “infinite-gain” mode the closed-loop poles in (5) 
of the class-3 network coincide with the open-loop zeros of bridged-
T in (1). By applying an additional positive feedback the closed-
loop poles move closer to the jω-axis, starting from the zeros of the 
bridged-T. Therefore, from (2) and (6) we have the relationship for 
pole Q, qp, which is given by ([3] p. 161): 

 pzzp qqqqqqq ≤<−β−= − ˆ     ;)]/ˆ1(1[ˆ 1 . (8) 
From (8) obviously, the pole Q, qp has the form: 

 1
321 )( −κβ−κ⋅κ=pq , (9) 

where κ1, κ2, and κ3 depend only on the passive RC network [2]. 
Calculating the relative sensitivity of the pole Q, qp to the variations 
of positive feedback gain β , we obtain [1][2]: 

 1ˆ/1 −=−= ββ qqSS p
aq p . (10) 

TABLE II.  COMPONENT VALUES OF 2ND-ORDER BP FILTERS WITH 
VARIOUS SCALING FACTORS (RESISTORS IN [KΩ], CAPACITORS IN [NF]).  

No. r c R1 C1 R2 C2 β  q̂  qz 
1) 1 1 15.9 10 15.9 10 2.8 0.33 0.5 
2) 4 4 15.9 10 63.6 2.5 2.05 0.44 0.8 
3) 1 4 31.8 10 31.8 2.5 5.6 0.33 0.4 
4) 4 1 7.96 10 31.8 10 1.4 0.33 1.0 

 

 
Figure 4.  Monte Carlo runs of impedance-tapered 2nd-order BP filters 

given in Table 2. 

(a) (b) 

(a) (b) (c) (d) 
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Note that pole Q, qp sensitivity to gain variation is reduced as the 
value of the passive pole Q, q̂  increases. Will the decrease of 
sensitivity in (10) really reduce the sensitivity to the tolerances of 
the two positive-feedback resistors RG and RF? The relative variation 
of pole Q, qp, due to variations of resistors RF and RG, is given by: 
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From (7) we can readily calculate (in class-3) the sensitivity of the 
gain β  to the feedback resistors RF and RG: 
 β−=−= ββ /11

FG RR SS . (12) 

Expressing β  from (8), and substituting it into (12) and with (11) 
we have: 
 1/ −=⋅=−= β

β zpR
qq

R
q
R qqSSSS
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pp

F
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G
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Note that the qp sensitivities to resistors RG and RF in (13) are 
independent of passive pole Q, q̂  value (the term qp/ q̂ -1 has 
cancelled out). Furthermore, the sensitivities in (13) are inversely 
proportional to the qz. Thus to reduce it, we should use large qz 
values (note that filter no. 4 with min. sensitivity has largest qz in 
Table 2). From (2) it is obvious that for large qz we must let C1=C2 
and R2/R1=4qz

2 (large resistor spread is required). It is known [1] 
that by bridged-T q̂  and qz are not independent. They cannot reach 
their respective max. values at the same time; the larger qz is 
selected, the smaller q̂  becomes. If we want to reduce the 
sensitivity of the circuit in Fig. 2 as much as possible, we reach the 
case when there is no positive feedback at all (qp=qz, β =1, 
R2/R1=4qp

2 !). The “medium-Q” circuit in Fig. 2, then simplifies 
into “low-Q” circuit ( β =1) as defined in [5]. It provides a good 
solution when pole Q is smaller than 2. “Low-Q” circuit is not 
suitable for larger pole Q realizations because its component spread 
and the gain-sensitivity-product (GSP)† are both proportional to qp

2. 
By “medium-Q” filter ( β >1) the GSP is proportional to qp and the 
component spread is not so critical [5]. 

In the new design instead of general scaling factors r and c in 
Fig. 2 we introduce scaling factor ρ as in Fig. 1(d) to calculate 
elements of potentially symmetrical bridged-T, using: 
 R1=ρ/(1+ρ)R; C1=C; R2=(1+ρ)R; C2=C/ρ. (14) 
With (14) we obtain the sensitivity relations given in the second 
column of Table 1. With β  from (8), and with (3), (4) and (14) for 
the potentially symmetrical bridged-T we have: 

 )1/()1(1 1 ρ+ρ⋅−+=β −
pq  (15) 

Substituting (15) into the second column of Table 1, we obtain the 
sensitivities in its last column (in our example of qp=5 the term 
(1-qp

-1) in (15) equals 0.8). Obviously, only the sensitivities to C1 
and C2 are dependent on the factor ρ and they worsen as ρ (i.e. the 
value of q̂ ) increase. From (13) we have p

FG

q
RS

,
=±4. 

To double-check the above conclusions we designed the filter in 
Fig. 2, with two values of ρ. The component values of the resulting 
filters are in Table 3, and MC runs are in Fig. 5. It appears that as ρ 
increases, the sensitivities in Fig. 5 are getting slightly worse. Thus, 
lower sensitivity of the two has the filter no. 1) which has ρ=1 and a 
symmetrical bridged-T network. Incidentally it is the identical filter 
to the filter no. 4) with min. sensitivity in Table 2 (and in [6]). 
Obviously, here tapering with potentially symmetrical bridged-T 
does  not  help.  In [5] are  given  design  procedures  for  min.-GSP 
                                                           
† The GSP gives a measure of a filter’s magnitude sensitivity to the 
open-loop gain (A) variation of the active component [5]. 

TABLE III.  COMPONENT VALUES OF 2ND-ORDER BP FILTERS WITH 
POTENTIALLY SYMMETRICAL BRIDGED T. 

No. ρ R1 C1 R2 C2 β  q̂  qz 
1) 1 7.96 10 31.8 10 1.4 0.33 1.0 
2) 4 12.7 10 79.6 2.5 1.64 0.44 1.0 

 
Figure 5.  Monte Carlo runs of impedance-tapered 2nd-order BP filters 

given in Table 3. 
biquads. In most of the circuits in [5], one additional degree of 
freedom is available, which permits to choose the values and ratios 
of two (or three) components. The optimum trade-off in the 
Deliyannis circuit between qz (neg. feedback) and β  (pos. 
feedback) is to choose resistor ratio R2/R1>1 (by which the qz is 
increased) thus reducing passive sensitivity, and to calculate 
capacitor ratio C1/C2 for min. GSP (from [5] p. 54), which provides 
circuit with reduced active sensitivity, as well. 

IV. CLASS-4 FILTERS—POSITIVE FEEDBACK 
As a representative example consider a 2nd-order class-4 BR (or 

notch) filter shown in Fig. 6, which is known as “Split-Feedback 
FRN" (SF-FRN) [3]. It is suitable for medium-Q realizations [5]. It 
has a potentially symmetrical “Twin-T” circuit in the positive 
feedback loop (inside rectangle) [1]. In [3] (pp. 224-229) the 
“Standard” FRN (ST-FRN) is presented, which has feedback on 
both R3 and C3 legs (switch S1 is in the position “ST-FRN”). To 
make possible the realization of finite pole-Q, qp ST-FRN needs a 
“loading network” of twin-T as in Fig. 6 [3]. In what follows we 
shall concentrate on SF-FRN because it is much simpler. It can 
readily be shown that the design techniques and results obtained for 
SF-FRN can be applied for the design of low-sensitivity ST-FRN, 
and for all-pass (AP) networks in [3], as well. 
The transfer function is given by: 
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The parameters in (16) are given by [3]: 
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where β=1+RF/RG (18) 
is the positive feedback gain in the class-4 circuits and 
    Cs=C1C2/(C1+C2), Rs=R1+R2, Rp=R1R2/(R1+R2), Cp= C1+C2. (19) 
Note also that qz=∞, if the “balance condition” for the Twin-T 
network holds, and it is given by [1]: 

C3=C(1+1/ )ρ

R2= RρR1=R

C1=C C2=C/ρ

Vout

R =G R0 R = ( -1)F βR0
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21
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Figure 6.  2nd-order BR active-RC filter of class-4: “Split Feedback Twin-

T” section as in [3].  
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 pp CRCR // 33 = . (20) 
Introducing the impedance-scaling factor ρ, to obtain the potentially 
symmetrical twin-T, into (17), i.e. 
     R1=R; C1=C; R2=ρR; C2=C/ρ; R3=ρR/(1+ρ); C3=C(ρ+1)/ρ (21) 
we satisfy (20) and obtain the following simple relations: 

      
RCzp
1

=ω=ω ; qz=∞; 
2/1

1ˆ
β−

⋅=qqp ; 
ρ+

ρ
⋅=− 12

1ˆ TTwinq . (22) 

Note that the impedance-scaling factor ρ exists only in equation for 
calculating q̂ . If we increase ρ→∞, the passive pole Q, 5.0ˆ →q . 
The process of deriving a potentially symmetrical twin-T network 
[1][4] is identical as for the bridged-T network presented above. It 
is actually a third-order network but because of (20) the negative 
real pole and zero are cancelled out. Therefore the twin-T passive 
network provides a 2nd-order transfer function of the form given by: 
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For the symmetrical case with ρ=1, the parameters in (23) take on 
the values in (22), and k12=1, q̂ =1/4. 
It is well known [1] that the network in the positive feedback loop 
of the class-4 circuit has a BP characteristic of the form: 
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and therefore the pole parameters in (16) have the form: 
 0ω=ωp ; 1

0 )/ˆ1(ˆ −ωωβ⋅−⋅= kp qiqq , (25) 
where i=1 or 0.5 [we have β or β/2 in (25)] for ST-and SF-FRN, 
respectively. Note that ωp is independent of β, and qp has the form 
presented in (9). Thus the relative sensitivity of the pole Q, qp to the 
variations of gain β, pqSβ  has the form given by (10) above (with β 

instead β ). Furthermore, from (18) the sensitivity of the gain β to 
the RF and RG follows (in class-4) and it is given by: 
 β−=−= ββ /11

GF RR SS . (26) 
With a potentially symmetrical twin-T network ST-FRN has the 
gain 2β in (17) and (22) instead of β, and the other expressions in 
(17) apply. Generally, from (25) and (26) we calculate the relative 
sensitivity of the pole Q, qp to RF and RG, and it is given by: 

 1)/ˆ( 0
1 −ωω⋅−⋅=⋅=−= −β

β kpR
qq

R
q
R iqqSSSS

F

pp

G

p

F
, (27) 

where i=1 or 0.5. From (22) and (25) and with i=0.5 we have 
ωk/ω0=1/ q̂ ; for the special case SF-FRN we can rewrite (27) into: 
 1ˆ/5.0 −⋅=−= qqSS p
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q
R

p

G
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F
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Unlike in (13), note that the qp sensitivities to resistors RG and 
RF in (28) are inversely proportional to the passive pole Q, q̂  value. 
The reason for this lies in the different techniques of obtaining pole 
Q values for class-3 and class-4 networks given above. Thus the 
decrease of sensitivity in (10) will reduce the sensitivity to the 
feedback-resistor tolerances in the case of class-4 networks. Both 
sensitivities in (13) and (28) are proportional to the pole Q, qp which 
is the characteristic of "medium-Q" filters [3]. 

Furthermore, it has been investigated using the program 
“Mathematica”, and the results of this investigation show that 
increasing the scaling factor ρ will also decrease the coefficient a1 
sensitivities to the passive components Ri and Ci (i=1,2,3). 

To double-check the above conclusions we designed the filter in 
Fig. 6, with two values of ρ for the BR example above. The 
resulting filters are in Table 4 and corresponding MC runs are in 
Fig. 7. Note that in the second column in Fig. 7 we perform only 
variation of feedback resistors RG and RF. 

TABLE IV.  COMPONENT VALUES OF 2ND-ORDER BR FILTERS WITH 
POTENTIALLY SYMMETRICAL TWIN-T.  

No. ρ R1 R2 R3 C1 C2 C3 β q̂  
1) 1 15.9 15.9 7.95 10 10 20 1.90 0.25 
2) 4 15.9 63.6 12.7 10 2.5 12.5 1.84 0.40 

 

 
Figure 7.  Monte Carlo runs of impedance-tapered 2nd-order BR filters 

given in Table 4.  

Clearly, as ρ increases, the sensitivities in Fig. 7 are improving. 
We can conclude that: we should enlarge the design factor ρ in (22) 
in the design procedure for class-4 filters. 

V. CONCLUSIONS 
In this paper we described the design procedure of the active-

RC filters, which have a symmetrical bridged-T and twin-T 
networks in negative (class-3) and positive (class-4) feedback loops. 
The process of deriving “potentially symmetrical” networks by 
increasing the impedance of one half of those symmetrical networks 
ρ times, has been described in [1][4]. Choosing a scaling factor ρ>1 
the passive pole Q factor, q̂  of both networks is increased. It is 
shown that for class-4 filters (Twin-T BR filter) the passive 
sensitivity can be reduced choosing larger ρ (and consequently 
larger q̂ ). For the class-3 filters (Deliyannis BP section) the passive 
sensitivity can only be reduced by increasing the qz value of 
bridged-T, even though the q̂  is thereby decreased. For the latter it 
is optimal to choose resistive impedance tapering with either equal 
capacitors or capacitors selected for GSP-minimization [5]. 
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