Available online at www.sciencedirect.com

Nuclear Instruments and Methods in Physics Research B 238 (2005) 272-275

www.elsevier.com/locate/nimb

The evolution of the morphology of Ge nanocrystals formed by ion implantation in SiO₂

U.V. Desnica ^{a,*}, P. Dubcek ^a, K. Salamon ^b, I.D. Desnica-Frankovic ^a, M. Buljan ^a, S. Bernstorff ^c, U. Serincan ^d, R. Turan ^d

^a Rudjer Bošković Institute, Physics Department, Bijenicka 54, P.O. Box 180, HR-10000 Zagreb, Croatia ^b Institute of Physics, Zagreb, Croatia ^c Sincrotrone Trieste, Basovizza, Italy ^d Middle East Technical University, Ankara, Turkey

Available online 10 August 2005

Abstract

Grazing incidence small angle X-ray scattering was applied to study the synthesis and growth of Ge quantum dots in Ge-implanted SiO₂. Ge ion doses were up to 10^{17} /cm², and subsequent annealing temperatures up to $T_a = 1000$ °C. Results suggest that ordered and correlated Ge QDs can be achieved by high-dose implantation followed by medium-T annealing.

© 2005 Elsevier B.V. All rights reserved.

PACS: 81.07.-b; 61.10.Eq; 61.46.+w; 68.65.-k; 68.65.Hb; 81.05.Cy

Keywords: Nanocrystals; Quantum dots; X-ray scattering; GISAXS; Implantation; Ge

1. Introduction

Physical properties of Ge nanocrystals or quantum dots (QDs), like tunable absorption, intense photo- and electroluminescence and third-order optical nonlinearities, are strongly dependent on QDs size. This makes them suitable for electronic, optoelectronic and photonic applications, like in sensor technology, for integrated opto-couplers in microsystems in biotechnology, for electronic nonvolatile memories, etc. [1]. Ion implantation offers great flexibility in the QDs formation by control of the process parameters, considerable freedom from thermodynamical limitations and extreme chemical purity [2,3]. Additionally, it enables dense packing of nanocrystals, and is compatible with the conventional silicon-based integrated circuit technology.

^{*} Corresponding author. Tel.: +385 1 4561173; fax: +385 1 4680114.

E-mail address: desnica@irb.hr (U.V. Desnica).

⁰¹⁶⁸⁻⁵⁸³X/\$ - see front matter @ 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.nimb.2005.06.062

In this paper the formation and growth of Ge QDs in the implanted SiO_2 was investigated by means of grazing incidence small angle X-ray scattering (GISAXS), as a function of Ge ion dose and post-implantation annealing temperature.

2. Experimental details

100 keV ⁷⁴Ge⁺ ions were implanted into a 250 nm thick SiO₂ amorphous layer, that was grown on (100) Si substrate by wet oxidation [4]. Samples with doses of 1×10^{17} cm⁻² and 6×10^{16} cm⁻² were annealed at temperatures, T_a , ranging from $T_a = RT$ (not annealed) to 1000 °C, for 1 h in N₂ atmosphere. GISAXS experiments were carried out using X-ray photons of energy E = 8 keV (wavelength, $\lambda = 0.154$ nm) at the Austrian SAXS beamline of the synchrotron radiation facility ELETTRA, Trieste, Italy. The two-dimensional GISAXS patterns were recorded with a 2D CCD detector containing 1024 × 1024 pixels, placed in the *y*-*z* plane, perpendicularly to the specular *x*-*z* plane [3].

3. Results and discussion

The majority of 2D GISAXS patterns comprised of quasi-isotropic, half-rings, example of which is shown in the inset of Fig. 1. This (as well as other, not shown) GISAXS pattern showed quite a symmetric intensity distribution in all directions. These rings are interpreted as scattering from (spherical) Ge QDs; the interference maximum being related to the spatial correlation between isolated Ge QDs embedded in amorphous matrix. The formation of nanoparticles in SiO_2 substrate was confirmed by Raman spectroscopy (appearance of the frequency mode in Raman spectra), while the spherical shape of QDs was established with transmission electron microscopy (TEM) in a few analogously implanted + annealed samples (not shown). They are chemically identified as Ge QDs through the appearance of the characteristic TO mode in Raman spectra and with grazing incidence X-Ray Diffraction in some of these samples (not shown).

Fig. 1. Vertical scans of 2D GISAXS pattern of SiO₂ samples implanted with Ge ion dose $D_1 = 1 \times 10^{17}$ /cm², and annealed at various annealing temperatures for 1 h in N₂. Spectrum of the unimplanted SiO₂ substrate is added for comparison. Annealing temperatures (in °C) are indicated in the figure. Inset (upper): 2D GISAXS pattern of as-implanted sample. Inset (lower): Fits of spectrum of the sample annealed at $T_a = 500$ °C using one size distribution (dashed line) and two size distributions (full line).

Fig. 1. shows one-dimensional (1D) GISAXS plots obtained by cross-sectioning 2D pattern parallel to the z-axis close to the beam-stopper, for samples implanted with the same Ge ion dose $D_1 = 10^{17}/\text{cm}^2$, but annealed at different annealing temperatures. By applying traditional analysis, the radius of gyration, R_g , of QDs was estimated from the so called Guinier plot, and the average interparticle distance, L from the curve maximum positions (Table 1). A strong half ring was present in the 2D GISAXS spectrum of as-implanted sample (inset of Fig. 1) showing that QDs were formed

Table 1 List of samples and results of Guinier analysis of 1D GISAXS spectra

1				
Sample no.	Ion dose (cm^{-2})	$T_{\rm a}(^{\rm o}{\rm C})$	$R_{\rm g}~({\rm nm})$	L (nm)
4111	1E17	1000	5.19	
4181	1E17	800	3.15	9.7
4171	1E17	700	2.94	9.4
4151	1E17	500	2.67	9.7
4131	1E17	300	2.50	9.6
As-implanted	1E17	RT	2.65	9
4411	6E16	1000	5.69	
4481	6E16	800	2.72	9.9
4471	6E16	700	2.10	7.5
4451	6E16	500	1.78	7
4431	6E16	300	1.70	7

 $T_{\rm a}$ stands for annealing temperature, $R_{\rm g}$ for the Guinier radius and L for the interparticle distance.

already during implantation ($R_g = 2.6 \pm 0.3$ nm). Both Raman and XRD indicated that these QDs are amorphous. Annealing up to 800 °C causes just moderate change in R_{g} and a minimal change in L. But noticeable changes in the shape of the curves indicate some reorganization of QDs, while Raman and XRD suggest that the QDs become crystallized. Annealing at $T_a = 1000$ °C, however, resulted in a strong increase of $R_{\rm g}$, suggesting that diffusion processes become very fast, leading to the formation of large QDs, with average diameter, D, larger than 13 nm $(D = 2 \times (5/3)^{0.5} \times R_g)$. Local monodisperse approximation (LMA) [4], applied to the same set of spectra, revealed that more than one size distribution of QDs is present in these samples. It comes out that for such a high implant dose an additional distribution of small QDs, centered close to 1 nm radius range, had to be assumed in order to explain also the large-q part of the spectra (inset in Fig. 1). The co-existence of small and large nanocrystals was indeed observed by TEM in similarly processed samples [5]. Fig. 2 depicts 1D GISAXS spectra for the Ge ion dose $D_2 = 6 \times 10^{16}$ /cm². Apparently, quite similar T_a dependence occurs for this dose as well. However, in contrast to the samples implanted with D_1 dose, here just one size distribution (lognormal), with practically the same size distribution width, was present in all samples up to $T_a = 800$ °C. Only in the sample annealed at $T_a = 1000$ °C, not only the average size of QDs but also the width of

Fig. 2. Vertical scans of 2D GISAXS pattern of SiO₂ samples implanted with Ge ion dose $D_1 = 6 \times 10^{16}$ /cm², and annealed at various annealing temperatures for 1 h in N₂. Annealing temperatures (in °C) are indicated in the figure. The fits depict LMA results, using one lognormal size distribution, with distribution width parameter $\sigma = 0.94 \pm 0.4$ in all fits.

the size distribution appears to increase considerably.

4. Conclusion

Grazing incidence small angle X-ray scattering was applied to study the synthesis and growth of Ge quantum dots (QDs) in SiO₂ implanted with Ge to high doses (0.6–1 × 10¹⁷/cm²), and subsequently annealed at temperatures in the range $T_a = RT - 1000$ °C. Ge-QDs were found to form already during implantation. Their average size changes insignificantly up to $T_a = 500$ °C, moderately in the $T_a = 700-800$ °C range and strongly after $T_a = 1000$ °C, where fast diffusion processes lead to the formation of large QDs intermixed with small QDs in the less than 2 nm size range. For dose 6×10^{16} /cm² up to $T_a = 800$ °C all Ge QDs remain correlated in a 3D ensemble having one size distribution and similar size distribution width. High-dose implantation appears to create amorphous QDs, which can be ordered/recrystallized by annealing at medium T_a , thus avoiding processing at high T_a .

Acknowledgements

The research has been supported by the Ministry of Science and Technology of Croatia. Work is partially supported by EU FP6 project SEMI-NANO with contract number 505285.

References

- W. Scorupa, L. Rebohle, T. Gebel, Appl. Phys. A 76 (2003) 1049.
- [2] A. Meldrum, R.F. Haglund Jr., L.A. Boatner, C.W. White, Adv. Mater. (Review) 13 (2001) 143.
- [3] U.V. Desnica, P. Dubcek, I.D. Desnica-Frankovic, M. Buljan, K. Salamon, O. Milat, S. Bernstorff, C.W. White, Nucl. Instr. and Meth. B 200 (2003) 191.
- [4] J.S. Pedersen, J. Appl. Cryst. 27 (1994) 595.
- [5] U. Serincan, G. Kartopu, A. Guennes, T.G. Finstad, R. Turan, Y. Ekinci, S.C. Bayliss, Semicond. Sci. Technol. 19 (2004) 1.