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Abstract—This paper is concerned with a new design method 
of low-sensitivity current-mode filters, which results from low-
sensitivity voltage-mode filter design using impedance 
tapering. The current–mode filters are obtained by application 
of a network transposition to their voltage-mode counterparts, 
in which the passive-RC network remains the same, and both 
filters are expected to have identical sensitivity properties. 
However, current–mode filters may be easier to realize in IC 
form and are expected to have higher bandwidths, greater 
linearity and wider dynamic range than the voltage-mode 
filters. In this paper, the 2nd-order class-4 current–mode 
filters (with positive feedback) will be considered. Design 
procedures will be given for the design of low-sensitivity low-
pass (LP), high-pass (HP), band-pass (BP) and band-rejection 
(BR) filters, which are all realizable in class-4. A sensitivity 
analysis is examined using PSpice Monte Carlo runs. 

I. INTRODUCTION 
Because current-mode filters have certain advantages, in this 

paper we present a new design method, which reduces their transfer 
function (TF) sensitivity to the passive components of the circuit. A 
network transposition applied to voltage mode filters results in 
current-mode filters with the same TF as the TF of the initial 
voltage-mode filter. Most existing active-RC filters are voltage-
mode circuits (they use voltage controlled voltage sources [VVS]), 
which are difficult to realize in IC form. On the other hand, current-
mode circuits (based on current controlled current sources [CCS]) 
are easier to realize in IC form because current gain devices, and 
resistors based on transistor transconductances, can be well 
controlled in an IC environment. 

A voltage mode circuit, optimized according to some criterion 
(such as reducing the sensitivity to passive components using 
impedance tapering as in [1] or minimizing the gain-sensitivity 
product [GSP]† as in [2]), will remain optimum after transformation 
into a current-mode circuit. Moreover, filter circuits resulting from 
various optimum design procedures (CAD, handbooks) can be 
directly transferred into their current-mode counterparts, while 
retaining the same or similar component values. 

Procedures for constructing the mutually reciprocal "adjoint 
networks" were first introduced in [3] and later in [4]. In [4] adjoint 
networks play an important role in the computation of network 
sensitivities in circuit simulators, such as PSpice. The circuits are 

                                                           
† The GSP gives a measure of a filter’s magnitude sensitivity to the 
open-loop gain (A) variation of the active component. 

modeled in terms of passive networks and controlled sources. 
Basically, the two networks have the same topology, and the adjoint 
network is constructed by replacing each element (which must have 
a parametric representation) in the original network according to 
the list of elements as given in [4]-[6]. It was presented in [4] that 
for the resistive type of branch in the original network we obtain a 
resistive branch in the adjoint network (linear time-invariant resistor 
is a special case). Furthermore, for a capacitor and inductor in the 
original, we have a capacitor and inductor in the adjoint network, 
respectively. A class of memoryless nonlinear coupling elements is 
also considered; a VVS is replaced by a CCS with the same gain, 
and with the reverse-roles of controlling and dependent branch. The 
adjoint network element corresponding to a nullator is a norator, 
and vice versa. 

It was shown by Tellegen that any transfer function could be 
synthesized with all passive and only one active element: the 
"nullor" (nullator-norator combination) [2][7]. In [7], another more 
general approach than the adjoint transformation in [5][6] was 
presented. The transformation in [7] shows how easily current-
mode circuits can be derived from voltage-mode circuits by simply 
interchanging nullators and norators, while the passive network 
remains the same. Furthermore, in [2], it is shown how simple 
equivalence rules regarding nullators and norators permit the 
generation of a number of equivalent circuits. The adjoint network 
concept can also be used to generate alternative circuit realizations 
[4]-[6]. Furthermore, the node equations of the original network N 
is given by: 
 Yn⋅Vn=In, (1) 
where Yn is the nodal admittance matrix, Vn the vector of node 
voltages, and In the nodal current vector. The choice of elements as 
given by the rules above is such that the branch admittance matrix 

bY
~  of the adjoint network N

~  is merely the transpose of Yb of the 
network N (i.e. bY

~ =Yb
T). It follows that the nodal admittance 

matrix nY
~  of N~  equals to the transposed Yn of N, i.e.: 

 nY
~ =A⋅ bY

~ ⋅AT=A⋅Yb
T⋅AT=Yn

T, (2) 
where A is nodal incidence matrix (both networks have the same 
topology and the same matrix A). Therefore, the process of deriving 
an adjoint network is also called network transposition. 

Based on the theory above an entirely new method for 
performing analogue signal filtering was proposed for the first time 
in [5]. All circuits in [5] are based upon current amplifiers, which 
were derived from well-known voltage amplifier circuits. In [6] a 
general class of current amplifier-based biquadratic filter circuits 
derived from a class of voltage amplifier-based SAB was presented. 
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In [6] it was also experimentally demonstrated that the novel 
current-based filter circuits are effective over the entire bandwidth 
of the current amplifier, while voltage-opamp-based SAB 
realizations have an effective operating bandwidth much (5 to 20 
times) less than the unity-gain band-width (GB) of the opamp. 

In the following section we will present the circuit transposition 
using signal flow graph (SFG) theory, and provide a simple proof of 
the circuit transposition theorem. This proof is based on the 
advanced course given in [8]. 

II. NETWORK TRANSPOSITION USING SIGNAL-FLOW-
GRAPHS 

We will use SFG analysis, to prove the transposition theorem, 
starting from the reciprocity theorem in [9], in its generic form. This 
circuit transposition is in a user-friendly form for all engineers, who 
have some understanding of SFGs and feedback block diagrams. A 
different and more complicated proof is given in [10], which 
presents the circuit transposition using SFGs in combination with 
driving point impedances. 

Consider a linear, time-invariant, passive network. For the kth 
branch of that network the relation between its current and voltage 
(in parametric representation) is given by: 
 ,,,1   );()()( bksIsZsV kkk K=⋅=  (3) 
where b is the number of branches in the network. For the network 
reciprocity theorem to hold [9] three statements must be specified: 
(i) equal short-circuit admittances y12=y21; (ii) equal open-circuit 
impedances z12=z21; and (iii) the transfer voltage ratio from input 
port 1 to output port 2 (open-circuit at 2) T(s)=V2(s)/V1(s) is 
identical to the transfer current ratio from port 2 to 1 I(s)=-I1(s)/I2(s) 
(short-circuited 1) as given in (4) and shown in Fig. 1. If any of the 
statements (i), (ii), or (iii) is fulfilled then the other two hold, as 
well. When statement (i) holds, then (ii) is automatically fulfilled, 
because open-circuit impedances [zij] follow from short-circuit 
admittances [zij] (see [2] p. 131). Also, when (i) is fulfilled, (iii) 
holds, resulting in the TFs in (4) being equal. 
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Note that equation (3) holds for every branch of the passive RC-
networks, that we use in active-RC filter biquads. It can readily be 
verified by applying the above statements of the reciprocity 
theorem, that those networks are reciprocal. If we include an active 
element into the network, for example a VVS, the network is no 
longer reciprocal. An example of adding a VVS to a passive 
network is in the voltage based active-RC filter realization shown in 
Fig. 2. 

It is well known that the pole Q, q̂  of a passive RC network is 
upper limited with the (not reachable) value of one half [2] (we will 
use the symbol "^" on the top of any passive-network parameter). 
Active-RC biquads achieve pole-Q values larger than 0.5 by 
inserting a passive RC network into an amplifier’s negative or 
positive-feedback loop, because they can realize high-selectivity 
filters (e.g. the realization of narrow BP filter). 

The question, which now arises, is: how can we exploit the fact 
that the passive RC-network in the amplifier feedback loop, as in 
Fig. 2, is reciprocal according to (4)? Is it possible to construct 
another active-RC circuit which will be reciprocal to the circuit in  
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Figure 1.  Statement (iii) of the reciprocity theorem. 

Fig. 2, in the sense that its current TF from terminal 3 to 1 is equal 
to the voltage TF from terminal 1 to 3 of the original circuit? These 
two (non-reciprocal) circuits are then called "inter-reciprocal" 
[3][5]. Note that in Fig. 1 we have a single reciprocal passive-RC 
network. Reciprocal networks are, by definition, inter-reciprocal by 
themselves. In what follows we will try to construct two inter-
reciprocal active-RC filters. 

Let us find the voltage TF from V1 to V3 [i.e. T13=V3/V1=T(s)] in 
Fig. 2 with positive feedback. We can represent the circuit by a SFG 
in Fig. 3. We can readily calculate T(s)=VOUT/V1 by application of 
Mason’s multi-path (general) reduction rule to the SFG in Fig. 3, 
contained in any book covering SFGs [2]. It is given by: 

 ∑ ∆
∆

=
k kkGG 1 , (5) 

where ∆ is the graph determinant of the form ∆=1-S1+S2-S3+…, 
where S1 is the sum of all loops, S2 is the sum of all products of two 
loops with no common nodes, etc. Gk is the gain of the kth forward 
path, and ∆k is the part of the graph determinant which contains 
only loops that have no common nodes with the path Gk. Applying 
(5) to the SFG in Fig. 3 we obtain: 
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where the voltage forward and feedback TFs in the SFG are given by: 
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An important advantage of using one RC network to realize the TFs 
in (7) is that both have identical poles, i.e. both have the same 
denominator )(ˆ sd  (the same network determinant). 

Consider the passive (and reciprocal) RC network in Fig. 2. The 
reciprocity theorem presented above states that a voltage TF )(1̂2 st , 
(node 1 to 2) is identical to the current TF )(ˆ21 ss , which transfers a 
signal in the opposite direction (node 2 to 1), i.e. 
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and similarly 

 )(ˆ)(ˆ
2332 ssst = ; V1=0. (8b) 

As a consequence we are able to realize both forward and 
feedback current TFs with the same passive RC-network in Fig. 2. 
To accomplish this, instead of voltages in nodes 1, 2, and 3 in SFG 
in Fig. 3 we introduce currents, then we need a CCS instead of a 
VVS. And finally, to realize the interreciprocal current TF I(s), 
where: 
 1331 //)(//)( VVVVsTIIIIsI inoutinout ==≡==  (9) 
we must exchange the input and output ports. From the above, we 
readily conclude that the current TF I(s) to be obtained, has the 
following form:  
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where α is the current gain of the CCS, with the value α=β. 
In what follows we use SFG theory to realize the desired TF 

given by (10). For the two SFGs to have the same gain G, it is 
obvious from (5), that the following conditions have to be fulfilled,  
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Figure 2.  Voltage-based Biquad with positive feedback. 
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i.e. the two graphs must have: (i) the same forward path; (ii) the 
same loops; (iii) the same topological relations between the loops 
and the forward paths (i.e. the same common nodes) [10]. 

If we reverse the directions of all branches in the signal-flow 
graph in Fig. 3, the forward paths and loops as well as topological 
relations between them remain unchanged. Therefore the gain G 
also remains the same. Finally we can write down the rules for the 
special case of signal-flow graph transposition, by which we can 
construct the current-mode filter circuit: (i) change the direction of 
every branch in the SFG, while keeping the branch transmittances; 
(ii) make a mirror of the graph; (iii) exchange input and output 
nodes. The variables in the new graph are currents, thus the new 
transmittances are current gain, and current TFs. 

The new transposed graph is shown in Fig. 4; it realizes the 
desired current TF I(s) given by (10). Thus using SFG theory and 
Mason’s eq. (5), we proved the circuit transposition theorem. 

From the SFG in Fig. 4 we can realize the current-mode active-
RC biquad, which is shown in Fig. 5. The passive part remains the 
same. Note that the conditions for the passive RC network in (8a) 
V3=0 and in (8b) V1=0 are fulfilled. Furthermore, the branch with 
current gain α transmits the signal into node 2, which means that 
the current flows out of the current amplifier. Normally, the current 
direction into the current amplifier is referenced as positive, 
therefore we must choose the current opamp with current gain α=-β 
(i.e. α has the same value as β but opposite sign). 

III. LOW-SENSITIVITY CURRENT-MODE FILTERS 
An exhaustive classification, which includes all possible 

current-based single-amplifier biquads, and which is derived from a 
similar voltage-based classification, is given in [11]. We restrict 
ourselves to the class-4 networks in [11], and the new design 
method based on the method in [1], will be applied to the design of 
low-sensitivity current-mode circuits. In this section we will 
directly transform the previously sensitivity-optimized voltage-
based filters into current-based filters using transposition. 

2 31

+βV1 V2 V3 VOUTt12 1

t32

 
Figure 3.  SFG of voltage-based Biquad. 
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Figure 5.  Current-based Biquad with positive feedback. 

 
 
Example: Consider the practical example (as in [1]), with qp=5, and 
fp=86[kHz], of the 2nd-order current-mode LP filter in the first row 
and right column in Table 1. 

A sensitivity analysis for various designs of the current-mode 
LP filter is presented in what follows. Filters with various resistance 
(r) and capacitance (ρ) ratios are presented in Table 2 (they have an 
identical passive RC network as the voltage-mode filter examples 
researched in [1]). Corresponding Monte Carlo runs of the 
magnitudes of the current TF I(s)=IOUT(s)/IIN(s) with 1% Gaussian-
distribution, zero-mean resistors and capacitors were carried out 
using PSpice and are presented in Fig. 6. A simple CCS component 
“F” in PSpice, was used to model an ideal current amplifier. In Fig. 
6 circuit no. 3), and even more no. 4), have reduced sensitivities. 
 

TABLE I.  CURRENT TRANSFORMED CLASS-4 ACTIVE-RC BIQUADS, WITH DESIGN PARAMETERS FOR LOW-SENSITIVITY FILTERS. 

Type Design Voltage-Based Biquads Current-Based Biquads 

LP 

r=1; 
(or min 
GSP), 
ρ>>1 

1 2

43

3
+β

VIN VOUT

R1=R R =rR2

C2=C/ρ
C1=C

 

2
3

3

+α

IIN

IIN

IOUT

4

1

the next
stageR1=RR =rR2

C2=C/ρ
C1=C

HP 

r>>1; 
ρ=1 
(or min 
GSP). 

1 2

43

3
+β

VIN VOUTR1=R R =rR2

C2=C/ρC1=C

 

2
3

3

+α

IIN

IIN

IOUT

4

1
R1=RR =rR2

C2=C/ρ C1=C

 

BP-
Type 
Ba 

r=ρ>>1 
(or min 
GSP). 

1 2

443

3
+β

VIN VOUTR1b

R1a

R =R ||R1 1a 1b=R

R =rR2

C2=C/ρC1=C

 

2

3

3

+α

IIN

IIN

IOUT

4
R1b

R1a
1

4

R =R ||R1 1a 1b=R

R =rR2

C2=C/ρ C1=C

 

BR ρ>>1 

1 2

4
3

3
+β

VIN VOUT

C2=C/ρ

R2= Rρ
R3=R ρ

1+ρ

R1=R

C1=C

C3=C(1+1/ )ρ

Twin-T 3

+α

IIN

IIN

IOUT12

4
3

C2=C/ρ

R2= Rρ
R3=R ρ

1+ρ

R1=R

C1=C

C3=C(1+1/ )ρ

Twin-T

 
a. The name is according to [12]. In [12] is also presented 2nd-order BP filter type A. In [13] is shown that BP filter type A has higher sensitivity than BP filter type B.  
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Figure 6.  Monte Carlo runs of impedance-tapered current-mode 2nd-order LP filters given in Table 2. 

 
TABLE II.  COMPONENT VALUES OF 2ND-ORDER CURRENT MODE LP 

FILTER AS IN FIRST ROW OF TABLE 1. (RS IN [KΩ], CS IN [PF]). 

No. Filter R1 R2 r C1 C2 ρ β 
1) Imp.-Tapered 3.7 14.8 4 500 125 4 2.05 
2) Non-Tapered 3.7 3.7 1 500 500 1 2.8 
3) C-Tap. min. GSP 5.4 10 1.85 500 125 4 1.58 
4) Partially-Tap. (r=1) 7.4 7.4 1 500 125 4 1.4 

The results of the MC analysis in Fig. 6 are identical to those for the 
voltage-mode LP circuit in the corresponding example given in [1]. 

Thus, for the design of the low-sensitivity LP filter capacitive 
impedance tapering with equal resistors (r=1), or resistor values 
selected for GSP minimization, provides current-mode circuits with 
min. sensitivity to the component tolerances [1]. The strategy of 
desensitization to component tolerances using impedance tapering 
for all allpole filters (for HP and BP according to the results in 
[13]), and for biquads with finite zeros using potential-symmetry of 
a Twin-T (according to [14]) is provided in the second column of 
Table 1. The sensitivity of those filters realized in the current 
domain has also been investigated using MC runs. The obtained 
results confirmed all design strategies of the circuits in Table 1, 
(note that high impedance sections of the passive network are inside 
a rectangle). 

In recent years a number of new active devices have been 
proposed to overcome the limitations of conventional opamps. In 
[5] the design of a current opamp is presented, using current 
conveyors, which does not exhibit a GB trade-off. A comprehensive 
classification of all operational amplifiers and current conveyors 
known from the literature is presented in [15], in the form of nine 
basic and fundamentally different opamps. An explanation is given 
which pairs of amplifiers are mutually reciprocal (and can be used 
in the process of deriving transposed filter circuits), while some of 
them are self-reciprocal. It is shown how all of them can be 
implemented in CMOS using only a few basic transistor building 
blocks. 

As an example, a typical non-inverting opamp voltage 
amplifier, which realizes the gain β=1+R2/R1 of the class-4 filters, 
and its adjoint current amplifier with identical gain are shown in 
Fig. 7 [7][15]. Note that the latter is implemented with current 
mirrors, which sense and copy the supply currents of the whole 
opamp (since any current flowing into the opamp must flow through 
opamp supplies). The circuits in Fig. 7 at least permit a laboratory 
comparison between current and voltage circuits to be made. 

IV. CONCLUSIONS 
The connection between well-known active-RC voltage-mode 

filters and current-mode filters is provided. Note that in adjoint 
networks, the passive RC networks remain the same as those in the 
original network. Therefore, the circuits in [1][13][14], are good 
candidates for conversion to the current domain, owing to their low 
sensitivities to component tolerances. The new design procedure of 
current-mode filters using impedance tapering adds nothing to the 
cost of the derived circuits, only the component values must be 
judiciously chosen.  
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Figure 7.  (a) Opamp-based non-inverting amplifier. (b) Possible single-

input, single-output current amplifier. 
Other benefits of current mode-circuits (such as easier 

realization on an IC and wider operating bandwidth, etc.) are 
retained, whereas, additionally, their passive sensitivity is reduced. 
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