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Abstract 

 
This paper presents the low-sensitivity realization of 
band-pass (BP) active resistance-capacitance (RC) 
filters using “uniform modified leap-frog” (UMLF) 
structure. Sensitivities with respect to filter passive 
components are investigated. It is shown how the 
optimization can be performed in order to achieve 
minimal sensitivities with relatively small values of Q-
factors. Multiple-feedback-structured filters have low 
sensitivities to passive component tolerances, and 
additional sensitivity reduction of 2nd-order building 
biquads is achieved by the “impedance tapering” 
design. As an example, the sensitivity analysis, using 
Shoeffler sensitivity measure, was performed on a 
Chebyshev 8th-order BP filter. The filters were realized 
using UMLF and leap-frog (LF) structures, where 
sensitivity-optimized single-amplifier (SAB) and Sallen 
and Key (SAK) biquads realize the 2nd-order biquads.  
 
1. Introduction 
 

The realization of BP active-RC filters with transfer 
functions (TFs) of high order and low sensitivities to 
passive component variations has been a research 
interest for many authors in the field [1]-[9]. It is 
known that the filter structures with multiple feedback 
loops can posses improved sensitivity properties, 
compared to the cascade structure of 2nd–and 1st-order 
filter blocks [1]-[9]. 

Particularly low sensitivities have leapfrog (LF) or 
active ladder structure [Fig. 1(b)], constructed by signal 
flow graph simulation of passive ladder LC filter. It is 
known that the sensitivities of the passive ladder LC 
filters are extremely low [6]. As a consequence, active 
filters which simulate passive LC networks, have low 
sensitivities as well. The most important characteristic 
of the LF structure, in the case of low-pass (LP) filter 
realization, is that all inner sub-circuits Ti(s) are 
realized using integrators. The first and the last section 
in the configuration have 1st-order transfer functions 
with real poles. Applying the LP-BP frequency 
transformation  
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where ω0 is center frequency and B is the pass-band 
width, to the LP filter prototype, we construct a BP 
filter, in which the integrators are transformed into the 
BP resonators with infinite pole Q-factor values. The 
first and last sections have finite pole Q values. From 

the point of realization complexity this can be a 
drawback of LF filters, because infinite values of pole 
Q factors are not realizable with some types of 2nd-order 
filter sections. For that reason, so-called “uniform 
modified leapfrog configuration” (UMLF) based on 
uniform losses of the passive-RLC prototype network 
has been introduced in [4]. The work in [4] is an 
extension of the previous work presented in [5] on the 
“modified leapfrog configuration” (MLF) used for the 
realization of BP filters with all 2nd-order sections 
having finite values of pole Q factors. 

In this work we first present a simple design 
procedure of MLF filter based on the ladder LC 
network simulation with uniform losses. In one 
example we calculate sensitivities for various values of 
losses, and demonstrate that by the appropriate choice 
of those values we can obtain optimal sensitivities and 
pole Q values of the filter sections. Additionally, we 
compare a cascade (CAS) structure as shown in Fig. 
1(a), to the filters using LF and UMLF structures as 
shown in Fig. 1(b) in order to reduce passive 
components sensitivity. The passive sensitivity is 
further reduced by the use of low-sensitivity 2nd-order 
biquads of the LF, which are designed using the 
recently introduced “impedance tapering” design 
method [10].  

2. The UMLF-structure BP filter realization 

In the design procedure of leap-frog BP filter we 
start with passive LP prototype of the BP filter, which 
is realized by a ladder LC network in the Fig. 2(a). 
Network in Fig. 2(a) and the corresponding procedure 
belong to the odd-order transfer functions. For the 
even-order transfer function the procedure is analogous, 
and will be demonstrated in the design example given 
below. Let F(s) be its transfer function. For that 
network, we can write the following equations for 
nodes and meshes: 
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Fig. 1. (a) CAS structure. (b) Leap-Frog structure. 
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Fig. 2. (a) LC-prototype of the LP filter. (b) RLC-prototype of the LP filter. 

 
Fig. 3. Signal-flow-graph of LC filter in Fig. 2(a). 

 
If we introduce the following notation: 
 NiniUV ii  ,,3 ,1 ,       ; K== , (3) 
 outNiRIV ii  ,1 ,,4 ,2 ,0       ; −== K ; 
where R represent an arbitrary real constant with 
dimension [Ω], then it is possible to present the system 
of equations (2) by the signal-flow-graph in Fig. 3. We 
choose the constant R=1Ω. Using structure in Fig. 1(b) 
it is possible to realize the signal-flow graph and the 
transfer function F(s). In that case the T2, T3, …, TN-1 
are integrators, and T1 and TN are the 1st-order transfer 
functions having single real negative poles. In the case 
of BP filter with N blocks, with LP-BP transformation 
of variable s we obtain: 
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From (4a) it can be seen that all inner BP sections of 
the LF structure have infinite pole Q values. To avoid 
that, we apply the design procedure proposed in [4], 
which results in the uniformly modified leap frog 
(UMLF) structure. 

We introduce a new variable p=s+δ for the LP 
prototype transfer function F(s), where δ is a positive 
and real constant. The function F(s) is transformed into 
a new function F1(p), which is given by: 
 )()()( 11 sFsFpF =δ+= . (5) 

The poles of the transfer function (5) in the complex 
p-plane in comparison to the poles of F(s) (in the 
complex s-plane), are shifted into the imaginary axis 
direction and parallel to the real axis for the amount δ, 
as shown in Fig. 4.  

        
Fig. 4. TF poles of 4th-order (a) F(s) (b) F1(s). 

The way of calculating the coefficients of the 
function F1(p) is rather simple, and identical to the way 
of the parameter calculation in [9]. For the new “pre-
distorted” function F1(p) it is possible to calculate 
elements of the new LC filter, which has the same form 
as the filter in Fig. 2(a). The impedances in the series 
branches of that network are 
 iLi pLZ = , (6) 
while in the shunt branches they are 
 )/(1 iCi pCZ = . (7) 
If we return back to the original variable s, they become 
 iiiLi RsLLsZ ')( +=δ+= , (8) 
 )'/(1])/[(1 iiiCi GsCCsZ +=δ+= , (9) 
and, as a result, each inductor is transformed into series 
connection of inductor and resistor, whereas every 
capacitor into parallel connection of capacitor and 
resistor. The filter takes on the form shown in Fig. 2(b). 
Its transfer function differs from the initial transfer 
function only in a multiplicative constant, a problem 
easily solved in the active filter realization. 

Using the previously described design procedure, 
starting from passive-RLC filter in Fig. 2(b) we obtain 
an active leap-frog filter structure of the form shown in 
Fig. 1(b), with the building blocks transfer function: 
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Thus we constructed UMLF filter, which has no 
integrators, but all Ti(s) sections have transfer functions 
of the 1st-order with real and finite poles. Constant δ, 
although arbitrary, has to be carefully chosen, in order 
to keep the poles of the transfer function F1(p) in the 
left half of the p-plane. Otherwise the passive LC filter 
in Fig. 2(b) could not be realized. For the common 
transfer functions such as Butterworth, Chebyshev, etc., 
it is possible to circumvent the step in which we 
calculate the coefficients of F1(p), because we can use 
the element values of such RLC filters for some discrete 
values of constant δ from the tables [11]. Applying the 
LP-BP transformation to the LP transfer functions Ti(s) 
in (10) we obtain the transfer functions of the filter BP 
sections. They have the form (4b), i.e. they have finite 
pole Q factors, which is an advantage compared to the 
standard LF structure. 

3. 2nd-order BP biquads realization 

We use Deliyannis or single-amplifier biquad (SAB) 
and Sallen-and-Key (SAK) biquads (with general 
impedance scaling factors r and ρ) as shown in Figs. 5, 
and 6, respectively.  
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Fig. 5. Deliyannis (SAB) section. 
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Fig. 6. Sallen & Key (SAK) section. 

The transfer function of the SAB (class-3; negative 
feedback) band-pass section in Fig. 5 is given by: 
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and the transfer function of the SAK (class-4; positive 
feedback) in Fig. 6 is given by: 
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The filters in Figs. 5 and 6 have the same passive RC 
network with the numerator and denominator given by: 
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The gain factors SABβ =1+RG/RF and βSAK=1+RF/RG 
represent the positive-feedback gain factors in class-3 
and class-4 circuits, respectively. Note that the gain 
factors are related by 1/ SABβ +1/βSAK=1. Both circuits are 
related by the complementary transformation [12], and 
the optimization conditions for the two, in terms of 
sensitivity, are identical. The attenuations αSAB and αSAK 
in both circuits are given by α=R12/(R11+R12). 
Comparing (11) and (12) we obtain: 
      )1/( SAKSAKSAB α−α=α ; )1( SAKSAKSAB α−β=β . (15) 

Consequently, if all passive elements of the SAK 
filter are known, we can use the shortcut way to 
calculate the passive elements of the SAB filter, and 
vice versa. We just need to calculate the values of the 
new αSAB and SABβ  from the known αSAK and βSAK using 
(15), or vice versa. In the new filter, passive elements 
such as R1, R2, C1 and C2 have the same values, whereas 
R11, R12, RG and RF readily follow from the new α and β. 

Each high-order (i.e. nth-order; n>2) symmetrical BP 
transfer function can be written as a product of 4th-order 
factors if n=4k; k=1,2,… and eventually one 2nd-order 
factor if n=2(2k+1); k=1,2,…. The 4th-order factors 
have the form: 
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where ω01ω02=ω0, q1=q2=q; ω0 is the center frequency 
and ki is the pass-band gain of a BP filter. Equation (16) 
represents the cascade realization of a 4th-order BP 
filter. Note, therefore, that e.g. cascaded 8th-order BP 
filter has two pairs of identical pole Q-factors, i.e. q1=q2 
and q3=q4. 

In the design process of the SAB and SAK biquads 
in Figs. 5 and 6, we use the general scaling factors as 
defined above and given by: 
 ρ== /   ; 1212 CCrRR . (17) 

With known ki, ω0i and qi, (i=1, …, n/2) the step-by 
step design procedure for the 2nd-order biquad circuits 
(SAK and SAB) follow: 
(i) Choose capacitor C, and impedance scaling factors 
ρ=1, and r>1 and then calculate R: 

 
rC

R
i

ρ
ω

=
0

1 . (18) 

(ii) Calculate the values 
 )1/(0 rrq +ρ+ρ= , )1/(0 rrk +ρ+= , (19) 
and from (11)-(15) above calculate the αs and βs from: 
 rqr iSAB //)1(1 1 ρ−ρ++=β − ; (20) 

 SABiiSABSAKSAKSAK qkqk β+=β+αβ=β )/( 00 ; (21) 
 )/( 00 β=α ii qkqk . (22) 
The above design equations are readily obtained by 
introducing (17) into (14). Note that when we write α 
and β without subscripts they represent the gain and 
attenuation of both the SAB and SAK filter sections. 
Note also that SAB and SAK sections are suitable for (14)



the realization of both finite and infinite pole Q-factors 
[see (20)]. For the infinite pole Q case we have to 
include the value kiω0i/qi into (21) and (22), instead of ki 
(see Table 2 below). 
(iii) The component values follow from: 
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(iv) Finally, choose RG and compute RF using: 
 )1( −β= SAKGF RR , (24) 
where, for SAB filter design, we have: 
 )1/( −ββ=β SABSABSAK . (25) 
To design the circuit with minimum gain-sensitivity-
product (GSP)1, (for both SAB and SAK) we could 
modify the step (i) into: 
(i’) choose r>1 and then calculate ρ using: 
 222 ]1)/11(121[)36/( +++⋅=ρ rqqr ii , (26) 
and we could have reduced both passive (by choosing 
r>1) and active sensitivities. We can calculate the GSP: 
   ρβ=Γρα−β=Γ /  ;/)1( 22 rqrq SABiSABSAKSAKiSAK . (27) 

Finally, to realize the summing devices in the LF 
structure in Fig 1(b), we use the circuit having an 
operational amplifier as in Fig. 7(a). In the block 
diagram the summing element is shown in Fig. 7(b) and 
its representation in the SFG is shown in Fig. 7(c). 
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Fig. 7. Opamp realization of a summing 
device in the LF structure.  

5. Example 
As an example consider an 8th-order Chebyshev BP 

filter with normalized bandwidth B=1, center frequency 
ω0=1, and the pass-band ripple Rp=0.1dB. Its magnitude 
α(ω)=20logF(jω)[dB] is shown in Fig. 9(a). We 
proceed according to the UMLF filter design procedure 
given above. A passive-RLC LP filter prototype of the 
UMLF BP filter is shown in Fig. 8. It was derived from 
the ladder-LC filter with resistor RL at the output. For 
the above filter example, normalized element values of 
a passive-RLC LP prototype (with the cut-off frequency 
ωg=1) for 4 different values of the constant δ from the 
tables in [11] are given in the Table 1.  

R4Rn R2

RL

L2L4

C3 G3 G1C1Uin Uout

 
Fig. 8. RLC prototype of 4th-order Chebyshev 

LP filter. 
                                                           
1 The GSP gives a measure of a filters magnitude 
sensitivity to the open-loop gain (A) variation of the 
active component [14]. 

Table I Passive RLC UMLF filter elements (LP prototype). 
δ 0.0 (LF) 0.0333 0.05 0.1 
RL 1.0 1.0 1.0 1.0 
G1 0.0 0.019953 0.031175 0.07124 
C1 2.3545 0.5986 0.6235 0.7124 
R2 0.0 0.041497 0.063445 0.13481 
L2 0.7973 1.2449 1.2689 1.3481 
G3 0.0 0.049403 0.074785 0.15466 
C3 2.6600 1.4821 1.4957 1.5466 
R4 0.0 0.03951 0.057595 0.1035 
L4 0.3623 1.18530 1.1519 1.035 
Rn 0.5 0.0 0.0 0.0 

The transfer functions of LP prototypes and the 
resulting BP filter building blocks in UMLF structures 
[obtained by the application of the LP-BP frequency 
transformation as in (1)] are given by: 
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Note that equations (28) are also valid for LF 
structure (δ=0) and they have Ri=0 (i odd) and Gj=0 (j 
even). If we introduce component values from Table 1 
into (28) we obtain parameters of the UMLF and LF 
2nd-order BP filter building biquads Ti(s) presented in 
Table 2. The parameters of the cascaded filter sections 
are presented in Table 2, as well. Note that the gain 
values ki and feedback values βi (i=1,…,4) are 
optimized by the method given in [13], to provide 
maximum dynamic range. 

Table II Parameters of CAS, MLF and LF filter structures 
realizing the 8th-order Chebyshev BP TF 

 i qi ω0i ki βi 
 1 1.614261 1.273988 1.0 - 

2 1.614261 0.7849368 1.62324 - CAS 3 4.348187 1.713654 2.38031 - 
 4 4.348187 0.583548 10.4435 - 

1 30 1.0 18.5665 1.23371 
2 30 1.0 22.3663 0.800498 
3 30 1.0 27.2443 0.755939 

MLF 
δ= 

0.0333
4 0.58689 1.0 1.14721 - 
1 20 1.0 12.515483 1.2288789
2 20 1.0 15.09540 0.769634 
3 20 1.0 18.140981 0.72885 

MLF 
δ=0.05

4 0.60465 1.0 1.156040 - 
1 10 1.0 6.4292709 1.235372 
2 10 1.0 7.8654263 0.6723273
3 10 1.0 9.0697914 0.6429369

MLF 
δ=0.1 

4 0.665024 1.0 1.187481 - 
 1 0.7246 1.0 1.058576 0.66666 

2 ∞ 1.0 1.065412* 0.9140019LF 
δ=0.0 3 ∞ 1.0 0.484207* 1.011555 

 4 2.3545 1.0 2.5606887 - 
*Instead of k the value of kωp/qp is given 

(a) (c) 

(b) 

(28)



     
Fig. 9. (a) Frequency response of the 8th-order Chebyshev BP filter example. (b) Shöffler sensitivity 

of filters examples: CAS to LF with design strategy 1. (c) CAS to LF with design strategy 3. 

 
Fig. 10. Shöffler sensitivity of filters examples. (a) CAS. (b) LF. (c)-(d) Min. sensitivity SAK vs. SAB. 

 
In what follows we design the 8th-order BP filter 

using all structures in Table 2 having building biquads 
realized with SAK as in Fig. 6. In the design we apply 
various ways of impedance tapering to the SAK 
biquads, in the CAS, UMLF and LF structures, i.e.: 
1) r=1, ρ=1; 2) r=4, ρ=4; 3) r=4, ρ=1; and 4) r=1, ρ=4. 

In a sensitivity analysis we assume the relative 
changes of the biquad resistors and capacitors to be 
uncorrelated normal random variables, with zero-mean 
and 1% standard deviation. The feedback-resistor 
sensitivity influence was not considered. 

First, we demonstrate that the sensitivities of the 
UMLF filter depend on the chosen value of the constant 
δ (see [4]). In that sense, the parameter δ can be used 
for optimization of the sensitivities of the filter, in that 
we try to find its value, for which the minimum 
sensitivities of the filter with relatively low pole Q 
values of the sections will result. Figs. 9(b) and (c) 
show how the sensitivities of the UMLF filter change 
for different values of the constant δ. The results of the 
sensitivity analysis of all 5 filters examples, in Table 2, 
are presented. The corresponding standard deviation 
σα(ω) [dB] (related to the Shöfflers sensitivities) of the 
variation of the log gain ∆α=8.68588 ∆|F(jω)|/|F(jω)|, 
with respect to passive elements, for the design 
strategies no. 1) and no. 3) are shown in Figs. 9(b) and 
(c), respectively. 

In researching the influence of the constant δ value 
we start from the UMLF minimum value of δ=0.0333 
for which the curve σα(ω) takes on smaller values than 
those for CAS realization in the whole pass band. By 
further increase of the δ value the sensitivities decrease 
further, thus σα(ω) for the curve with δ=0.05 has lower 
values than for the curve with δ=0.033. We conclude 
that with δ increase the sensitivities decrease. From 
Table 2 it can be seen that with increase of the constant 
δ, pole Q factors of the UMLF sections decrease, as 
well. For δ=0.1 they are lower than the minimal pole Q 
factors values of the cascaded filter. This is an 
important advantage of the UMLF type of filter over 

cascaded filter and over LF filter. Together with pole Q 
decrease the corresponding sensitivities of UMLF 
filters decrease, as well. This is logical since 
sensitivities to component tolerances of "medium-Q" 
filters are proportional to the filters pole Q [14]. In the 
special case when δ=0 we have the LF structure, which 
has the minimum sensitivity. In the stop band the 
sensitivities of all analyzed structures are higher and 
near each to other [4]. 

The standard deviation σα(ω) [dB] for CAS and LF 
structures for all design cases from 1) to 4) are shown 
in Figs. 10(a) and (b), respectively. Observing the 
standard deviation in the Fig. 10(a) one can investigate 
which is the proper impedance tapering design strategy 
of biquads in the cascade (CAS), in order to reduce the 
overall sensitivity of the 8th-order BP filter. It can be 
seen that the “ideally impedance-tapered” biquads (no. 
2) and even more the “partially-tapered”2 biquads with 
equal capacitors (no. 3), decrease sensitivity with 
respect to component variations, compared to the non-
tapered standard circuit (no. 1). 

Further desensitization is obtained by an application 
of a negative feedback, which has a LF structure as in 
Fig. 1(b). The sensitivity curves of LF filters, designed 
with all four impedance-tapering strategies applied to 
2nd-order biquads, are shown in Fig. 10(b). The 
sensitivity curves in Fig. 10(b) have the same order as 
those in the CAS case in Fig. 10(a), i.e. 4, 1, 2, 3, 
starting from the curve with highest and ending with the 
lowest sensitivity. Note, that all LF curves in Fig. 10(b) 
are lower than those for the CAS structure in Fig. 10(a). 

Finally, the Schöffler sensitivities of the LFs with 
SAB and SAK section for the design strategies 1) and 
3) are presented separately in Fig. 10(c) and (d), 
respectively. In both cases SAB biquads produce 
slightly lower sensitivity than SAK, although both 
circuits have the same passive-RC networks. Note that 
the 1st biquad in LF realization had to be realized by 
                                                           
2 The terms “ideal tapering” and “partial tapering” are 
used according to the definition in [10]. 

(a) (b) (c) 

(a) (b) (c) (d) 



non-tapered SAB (i.e. using design strategy no. 1), 
because of its very low pole Q-factor value. 
 
6. Conclusions 

In this work a procedure for the realization of BP 
active filters using UMLF structure was presented, by 
which all 2nd-order building sections have finite values 
of pole-Q factors. The structure is based on the 
calculation of passive RLC filters that have uniform 
losses. It was demonstrated that the sensitivities of this 
structure are somewhat higher than those of the well-
known LF structure, but they are still much lower than 
those of the standard cascade structure. Changing the 
amount of the loss in the passive RLC prototype δ, it is 
possible to optimize parameters of the sections in order 
to obtain minimum sensitivities together with obtaining 
the low values of pole Q-factors [4]. Finally, the leap-
frog structure (LF) which has δ=0 (lossless prototype) 
has minimum sensitivity. 

By application of a recently introduced “impedance 
tapering” design method of 2nd-order biquads, their 
passive sensitivities are additionally decreased. In this 
paper, we therefore present a twofold sensitivity 
reduction, one by introduction of negative feedback 
(application of the LF structure) and the other by the 
proper design of the 2nd-order sub-circuit building 
blocks in LF. The optimum design strategy that reduces 
passive sensitivities is tapering the resistors and 
keeping the capacitor values equal. 

By application of the complementary transformation 
it is demonstrated that the realization of optimized 
biquads using SAK also provides optimized SAB 
biquads, whereas the latter realization shows slightly 
lower passive sensitivities of the 8th-order LF filter. 
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