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ABSTRACT
This paper uses line process technique from computer vi-
sion to enhance optical flow computation for the problem
of cardiac motion estimation. The basic idea is to intro-
duce the line process as a tool for handling discontinuities
of the optical flow field. Optical flow showing cardiac mo-
tion can then become piecewise smooth instead of globally
smooth. Points of interest usually lie on the boundaries
of the heart and this method is especially accurate at such
points. The general problem is stated as a Bayes estima-
tor and uses MRF framework to encode a priori knowl-
edge. The MAP estimation is found as the minimum of
the non-convex energy function using Highest Confidence
First (HCF) algorithm. The advantages of HCF algorithm
are that it is deterministic and the result is not dependant
on the initialization step. The procedure is applied to ECG-
gated MR image sequence of the beating heart.
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1 Introduction

Useful information about the cardiac function can be ex-
tracted from the motion analysis of the beating heart. Very
important aspect of cardiac analysis is motion estimation.
Here we try to calculate optical flow from the sequence
of MR images of the heart. We shall restrict to 2-D mo-
tion estimation i.e. we shall calculate optical flow between
two slices at different times. Later research will be fo-
cused on applying the algorithm to full volumes of the
heart thus calculating 3-D optical flow. Very interesting
result was achieved by Song and Leahy [1]. They man-
aged to calculate full 3D optical flow of the beating heart.
Same was achieved by Gorce et al. [2]. These methods,
which rely on work by Horn and Schunk [3], have the
same problem as the original method, which is, the smooth-
ing of the boundaries. Since in computer vision the same
problem was successfully tackled by the introduction of
line process, we wanted to see what would be the effect
of it in the medical imaging. Towards the calculation of
full 3-D optical flow, we first wanted to explore the 2-D
paradigm. Major effect of line process is that it turns op-
tical flow field from globally smooth to piecewise smooth.

First time line process was used was in paper by Geman
and Geman [4]. They used it for image restoration. Later
Heitz and Bouthemy [5], and Konrad and Dubois [6] inde-
pendently implemented line process for motion estimation.
Some interesting work with the same topic was later done
by Tian and Shah [7].

The rest of the paper is organized as follows. In Sec-
tion 2 we postulate the problem as a MAP estimation which
is solved in Section 3. Results are given in Section 4, and
Section 5 concludes the paper.

2 Energy function

Let F be the random field (RF). F has sites placed on a reg-
ular grid corresponding to image pixels. Each random vari-
able of the random field F takes a two-dimensional contin-
uous vector (u(i, j), v(i, j)) that represents motion vector
of that point. Such field is called, the optical flow field. Fi-
nal configuration of that random field is of primary interest
to us. We also introduce random field L. Unlike RF F ,
RF L has sites placed midway between two pixels. Vari-
ables of field L can have binary values i.e. {0,1}. Random
field L is known as line process. lh(i, j) and lv(i, j) rep-
resent horizontal and vertical line process variables which
connect pixels (i,j) to (i+1,j) and (i,j) to (i,j+1) respectively.

The problem is postulated as the Bayes labeling. Our
observation of the sequence are spatio-temporal gradients.
Observation is marked with d. Gradients are noted by dx,
dy, dt. We are trying to find a maxiumum a posteriori
(MAP) solution to our problem.

P (F = f∗, L = l∗|d) ≥ P (F = f, L = l|d) (1)

∀f 6= f∗, l 6= l∗

Using the Bayes rule we may write.

P (F = f, L = l|d) =
P (d|F = f, L = l)P (F = f, L = l)

P (d)
(2)

Since denominator is constant, it does not influence the
MAP estimation, thus it will be further neglected. Here we
can see two factors. First one is called likelihood proba-
bility and denotes the relationship between our observation
and resulting random fields. The brightness constancy con-
straint is used for the likelihood probability. Random field



Figure 1. Heart slices no. 3,7,10,12,14,16

L does not depend on that constraint.

P (d|f, l) = P (d|F = f) = (3)

= exp(
1

2σ2

∑

i

∑

j

(u(i, j)dx(i, j) + v(i, j)dy(i, j)

+dt(i, j))
2)

On the other end we have a priori probability func-
tion. Markov Random Fields (MRF) framework is utilized
for displaying prior knowledge. We turn F and L from
RF to MRF by defining neigbourhoods and cliques. Thus
we obtained coupled MRF. A 4-point neighborhood and
cliques up to second order were used. Now we can ex-
press prior probability. We can also write P (F = f, L =
l) = P (F = f |L = l)P (L = l). P (F = f |L = l) should
present interaction between two fields. Typical expression
for this is.

P (f |l) = (4)

exp(−
1

βf

∑

i

∑

j

[(ux(i, j)2 + vx(i, j)2)(1 − lv(i, j))

+(uy(i, j)
2 + vy(i, j)2)(1 − lh(i, j))])

Our a priori knowledge consists of the fact that mo-
tion vectors are not necessarily smooth across the edges of
the image. So line process is used to help us signaling po-
tential discontinuity of the motion field. Additionally we
need to make a penalty every time line process signals dis-
continuity because otherwise we would end up with every
site of line process having value 1. To make things easier,
motion discontinuity should only appear if there is a corre-
sponding edge discontinuity.

As a prerequisite we should first find the spatial edges.
That was done using Canny edge detector. If we want the
penalty for creating discontinuity outside the correspond-
ing intensity edge to be 10 times higher than if there exists

intensity edge, we would use:

P (l) = (5)

exp(−
1

βl

∑

i

∑

j

((1 − edgeh(i, j)) · 9 · lh(i, j) +

lh(i, j) + (1 − edgev(i, j)) · 9 · lv(i, j) + lv(i, j)))

It is interesting to note that the output of the edge de-
tector should have values located at the same positions as
the line process i.e. midway between pixels. Normal edge
detector gives output on a regular grid which corresponds
to pixel sites. That is why we had to take orientation of the
edge into account. Our implementation of Canny edge de-
tector produced edge always on the brighter side of the real
edge that lays between pixels. By moving in the opposite
direction from the orientation of the edge by half a pixel,
we can come to the actual position of the edge.

When we multiply all the factors, and if we want
MAP estimate, we have to minimize the following energy
function.

U(f, l|d) = (6)

=
∑

i

∑

j

1

2σ2
(u(i, j)dx(i, j) + v(i, j)dy(i, j) + dt)

2

+
1

βf

[(ux(i, j)2 + vx(i, j)2)(1 − lv(i, j)) +

+ (uy(i, j)2 + vy(i, j)2)(1 − lh(i, j))] +

+
1

βl

(lh(i, j) + lv(i, j))

We have three parameters in this equation. if we take

1

2σ2
= 1 ; λ =

1

βf

1

2σ2

; γ =

1

βl

1

2σ2
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Figure 2. Optical flow for slice no. 10, λ = 30, γ = 1

then we have only two parameters. We have not found an
efficient way to estimate these parameters so they were cho-
sen ad hoc.

We can point out though, what is the threshold needed
for the discontinuity to appear. If discontinuity appears en-
ergy will rise by γ otherwise it will rise by λ(grad(vel)2).
So the threshold required for the discontinuity to appear
will be

√

γ
λ

. If grad(vel) ≥
√

γ
λ

discontinuity will appear
otherwise it will not.

3 Energy minimization

Minimization was performed with HCF (Highest Con-
fidence First) algorithm, first presented by Chou and
Brown [8]. The good thing about that algorithm is that it
is does not require accurate initialization of random fields.
The energy defined by equation 6 which we have to mini-
mize is non-convex. That means it has multiple minima and
any kind of steepest descent algorithm will get trapped into

local minimum too easily. HCF algorithm uses advanced
system for site visiting which enables to avoid most of the
local minimums.

At the beginning, sites of both fields (F and L) pos-
sess label l0, meaning uncommitted. Also sites from both
fields are treated equally. Every site is visited in order of
its stability. Stability presents measure of validity of their
current label. At the beginning when all sites are uncom-
mitted the stability shows whether the observation is strong
enough at that point for site to know its label. least sta-
ble sites will be visited early since their current label obvi-
ously is not valid. Also sites which do not possess a strong
observation will be visited the least, when labels of their
neigbours will be committed and decision can depend on
context.

In such a way HCF is able to evade some local min-
ima. Since it is deterministic results are obtained quite fast.
Compared to Simulated Annealing algorithm it is couple
of orders of magnitude faster with the results being quite
similar.



4 Results

The heart is presented as 16 slices with resolution 100x100.
The whole sequence consists of 16 volumes in time. Re-
sults will be presented on slice 10 since it depicts the mid-
dle slice where left ventricle and myocardium are most vis-
ible. We needed three time slices to calculate temporal gra-
dient since we used three-point central difference.

All images were smoothed with Gaussian filter before
calculating spatio-temporal derivatives due to strong noise.
Typical slices of heart are given in figure 1. The resulting
optical flow for slice no. 10 is given in figure 2. Result
given by edge detector for slice no. 10 is given in figure 3.
Line process field is depicted on figure 4.

Figure 3. Result of Canny edge detector on slice no. 10

Figure 4. Resulting line process field of slice no. 10

It is visible that only edges of the image surround-
ing the moving heart produce discontinuity in motion field.
That proves that the line process performs well.

The resulting optical flow field needs further valida-
tion from the physicians.

In the past major drawback of algorithms based on
MRF, was slow execution time. Since processors are be-
coming faster and faster that drawback is slowly disappear-
ing. We were able to produce the results on Pentium III
(933 MHz) processor within 10 seconds.

5 Conclusion

From the results it seems that line process can be valuable
in cardiac analysis. Resulting optical flow field is indeed
piecewise smooth instead of globally smooth. Additional
advantage of line process is that it performs simultaneously
with optical flow field. In this way both fields help each
other to acquire correct values.

Experiments have shown encouraging results but still
require further clinical validation.

The next logical step would be to fully implement 3-D
optical flow estimator. The heart is 3-D object undergoing
3-D motion and results obtained in two dimensions cannot
present accurate estimate needed for modeling of real heart
motion.
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