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Abstract

An open question in fuzzy logic control of robot manipulators is how to
modify the fuzzy controller parameters to guarantee appropriate perfor-
mance specifications. In this paper a new approach to performance tuning
of analytic fuzzy controllers for robot manipulators is presented. The ana-
lytic fuzzy control is a nonconventional approach that uses an analytic func-
tion for output determination, instead of a fuzzy rule base. The proposed
approach is based on construction of a parameter dependent Lyapunov func-
tion. With the appropriate choice of the free parameter an estimation of
integral performance index is obtained. The estimated performance index
depends on controller parameters and few parameters which characterize
the robot dynamics. The optimal values of the controller gains are obtained
by minimization of the performance index. An example is given to demon-
strate the obtained results.
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1 Introduction

A significant problem in the conventional fuzzy logic control (FLC) is the
exponential growth in rules as the number of variables increases. Conse-
quently, the application of the conventional FLC to the multivariable sys-
tems like robots, in the process of the real-time control, becomes difficult. It
becomes necessary to suggest ways to cope with a vexing problem in fuzzy
logic: the exponential growth in rules as the number of variables increases
[1].

These problems have been avoided in [2, 3] by introducing a new, noncon-
ventional analytic method for synthesis of the fuzzy robot control. For this
purpose a new analytic function is defined that determines the positions of



the centers of output fuzzy sets, instead of the definition of a fuzzy rule
base. In this way, the number of input and output variables and the number
of fuzzy sets of FLC system have not been limited, because there are no
fuzzy rules. In this way, the vexing problem in fuzzy logic has been solved.

Further, the analytic representation of proposed controller provide more
elegant stability analysis [4] then conventional approach that uses Takagi-
Sugenos’s fuzzy model. The basic idea of the Takagi-Sugenos’s fuzzy model is
to obtain representation of nonlinear plant model by linearized plant models
valid around different operating points. In the case of robot dynamics such
linearisation disable opportunity of using robot’s energy function as a part
of the closed-loop system Lyapunov’s function.

In this paper a new approach to performance tuning of analytic fuzzy
controllers for robot manipulators is presented. The proposed approach is
based on construction of a parameter dependent Lyapunov function using
passivity properties of Euler-Lagrange systems [5, 6]. With the appropriate
choice of the free parameter, which is not included in stability conditions,
an estimation of integral performance index is obtained. The optimal values
of the controller parameters are obtained by minimization of the estimated
performance index.

2 Fuzzy Control Without a Fuzzy Rule Base

A conventional FL.C system is composed of four principal elements: fuzzy
rule base, fuzzification interface, fuzzy inference machine, and defuzzifica-
tion interface. In order to create a new fuzzification interface process, we first
define a new type of the fuzzy membership functions s;;(z;), j = 1,...,m,
i =1,...,N;, where x; are input variables, m is the number of input variables
and N; is the number of fuzzy sets belonging to the j-th input variables.
The function s;;(z;) is positive, bounded, 0 < s;;(z;) < 1, and symmetric,
sji(xj) = sji(—x;). A possible choice of the fuzzy membership functions
sji(2;) is
55i(@5) = ji + Vji eXp(_ajiCU? = Bjilz;1), 1)

Whereﬁgzl—'yg and0<'yg < 1.

In order to create a new analytic inference algorithm, in this approach
max/min operators are replaced by sum/product operators. The activation
function w; of the j-th output fuzzy set can be computed by an analytic
form

N;
w;(z;) = Zsﬁ(a;j), j=1,..,m. (2)
1=1



The activation function w; denotes the grade of membership of input z; to
all of the input fuzzy sets.

Instead of using fuzzy rules, the function for an analytic determination of
the centers of output fuzzy sets has been defined using following intuitive
reasoning. If the membership of the input variable is smaller, then the dis-
tance z; to zero is bigger. Consequently, if the control error is bigger, then
the amplitude of the control variable should be bigger.

Thus, amplitudes of normalized positions of output fuzzy sets centers can
be computed by the equation

yoi(z;) = Kojpg (1 - wj]i,?)) sign(;). (3)

where Kc; is a gain of the output fuzzy set center position and u; =
1/(1 - 25\21 v;i/N;) is a normalization factor which ensure that —K¢; <
yoi(z;) < Koy

In order to generate a non fuzzy output (crisp value) of the FLC system
the centroid defuzzification method [7] is employed

U(T1y ey Tn) = ij(ﬂﬁj)ym(mj)fj / Z%‘(%‘)Ij (4)

where [; is area of j-th output fuzzy set. More details about fuzzy control
without fuzzy rule base is available in [2, 3].

3 System Description

We consider a nonlinear mechanical system with n-degrees of freedom in
closed loop with a analytic fuzzy PD plus saturated PID controller. The
saturated PID controller [8, 9] ensures global asymptotic stability of the
closed loop systems and analytic fuzzy PD controller provides performance
tuning.

3.1 Dynamics of Rigid Robot

The model of n-link rigid-body robotic manipulator, in the absence of fric-
tion and disturbances, is represented by

M(q)G+ C(q,4)q + 9(q) = u, (5)

where ¢ is the n x 1 vector of robot joint coordinates, ¢ is the n x 1 vector
of joint velocities, u is the n x 1 vector of applied joint torques, M(q) is



n X n inertia matrix, C(q, ¢)¢ is the n x 1 vector of centrifugal and Coriolis
torques, and g(g) is the n x 1 vector of gravitational torques obtained as
the gradient of the robot potential energy U(q). The following well known
properties of the robot dynamics, [6, 5], are important for stability analysis.

Property 1. The inertia matrix M(q) is a positive definite symmetric
matrix which satisfies

A MMdIP* < ¢"M(q)g < A {M Y], (6)

where A\, {M} and Ay {M} denotes strictly positive minimum and maxi-
mum eigenvalues of M(q), respectively.
Property 2. The matrix S(q,q) = M(q) —2C(q, ¢) is skew-symmetric, i.e.,

2T8(q,q)2 =0, VzeR"™ (7)
This implies M (q) = C(q,¢) + C(q, ).
Property 3. The Coriolis and centrifugal terms C(q, ¢)q satisfies
1C (g, d)dll < kelldl?, (8)

for some bounded constant k. > 0.
Property 4. There exists some positive constant kg such that gravity vector
satisfies

lg(x) =gl < kglle —yll, Vz,y R 9)
3.2 Analytic Fuzzy PD plus saturated PID controller

The analytic fuzzy PD plus saturated PID control law is given by

u=—-VYp(G,4)er(d) —¥p(qdep(q) — KpGg— Kpj— K, (10)
v =¢p(q) (11)

where ¢ = g — qq is the joint position error, Kp, Kp and K; are constant
positive-definite diagonal matrix, ¥;(¢,q), j = P, D, are positive definite
diagonal matrix functions which can be written in the following form

L~ Ljiwji(Xji)
ii\di>4i) = = —, 12
Viil@: @) Ipiwpi(@i) + Ipiwpi(ds) (12)
and ¢;(x;), =P, D, (xp = ¢, xp = ¢), is vector function
w‘i(X 1) .
wji(X5i) = ycji(xji) = Kcjiti <1 - 7JNHJ ) sign(x;i), (13)
j

where i = 1,...,n.



4 Construction of Lyapunov function

The stationary state of the system (5), (10), (11)is g =0, ¢ = 0, v = v*,
where v* satisfies g(qq) = —Kv*. If a new variable z = v—v* is introduced,
then system (5), (10), (11) becomes

M(q)G+C(q,9)q +9(q) — 9(qa) = u (14)
=—Vp(q,d)¢r(@) —¥p(7:9)¢p() — Kpqd— Kpg— Krz, (15)
z=pp(q) (16)

Further, an output variable y = ¢ + app(¢) with parameter o« > 0 is
introduced, and inner product between (14) and y is made, resulting in a
nonlinear differential form which can be separated in the following way

av(q, g, z; o)

150 — W(gdgsa), (a7

where V(q, ¢, z; ) is the Lyapunov function candidate parameterized by the
positive parameter «. For easier determination of conditions for positive-
definiteness of function V' and W, the following decompositions are made:
V=Vi+V, and W = Wy + W, where

Vi= L M ()i + 0pp(@)” +azKDz [ enterie +

+

O‘Z/ ¥pi(€, 6i(£))Ppi(4:(€))ppi(§)dS, (18)

n-y / " b€, G(€) i) + Ula) — Ulaa) — g(aa) +
i=1

+ %QTKPM " Kz + %azTK[z, (19)
Wi =q"Up(q, ')90 (@) + " Kp(@)q — aq"ppg(@)" M(q)q +

+ app(@)"[M(q) - Clq.4))4, (20)
Wa = awp(@)"Vp(G,§)er(d) + app(@) Kpq— op(q) KiG+

+ aop(@) " 9(q) — 9(qa)- (21)

where ¢pi(¢;) = vpi(di)/¢ > 0, ©p,;(q) is positive diagonal matrix of par-
tial derivatives pp g(¢) = dlagg{gopl,q1 (G1), s ©Pn g, (Gn)}, and ¢;(g;) denotes



explicit dependance variable ¢; on variable §;. Although we cannot find
explicit analytic expression for function ¥ p;(g;, ¢;(g;)) we can find its upper
and lower bounds.

The following step is determination of conditions for positive-definiteness
of functions V and W. First, we consider function V' which can be rearranged
to be of the form

n qi 1
VoY Koo [ eri©d - gotm (M ler@IF +
i=1

1 1 N
+ 3 (b= Daartn}) lal? 2 o (22)
o
where k1 = A\, {Kp} — kg > 0, that is positive-definite function if

kl)\m{KD} > )\M{KI})\M{M}AM{WP,d} (23)

Further, we consider condition which ensure that time derivative of Lya-
punov function is negative definite function, i.e., W > 0. Applying proper-
ties (6) and (8) we get

W > Xn{Kp}lg)l* — adn{ M} q)|* — ckesarlldll* +
+ (aky = A {K1 1§ ep(q) > 0, (24)

that is positive-definite if the following condition is satisfied
kl)\m{KD} > )\]\/[{KI}()\]\/[{M})\]W{@R{;‘} + k‘cSM) (25)

where sy = Ay {Kcp}. Notice that the condition (23) is trivially implied
by the condition (25). So, the condition (25) is the final stability condi-
tion which guaranty global stability. Finally, invoking the LaSalle’s invari-
ance principle we conclude asymptotic stability. More details about stability
analysis of analytic fuzzy control and saturated PID control of robot manip-
ulators can be found in [4].

5 Performance Optimization

The Lyapunov function V and its time derivative V' = —W contain free
parameter o > 0 which is not included in stability condition. This fact can



be employed for the evaluation of the following performance index
I=1 +7%0, (26)

where the constant 72 is the weighting factor, and

L- / Fop(@dt, I = / ldl|2t. (27)
0 0

Also, in this section, because of compactness, following shortened notation
is introduced: kjm = M {K;}, ki = A {K;}, m = Au{MIu{ops} +
kesar, 1y = Am{K;}/An{K;}, where j = P,I,D. The performance index
(26) can be evaluated using Lyapunov function (22) and its time derivative.
From the equation (17) we can get

o0

V(0) = ; W(q(s), q(s))ds, (28)

where we used V(00) = 0. Putting (24) in (28) we get
V(O) > (kDm - Ozm)lg + (ak1 - k[M)Il. (29)
The next step is the estimation of the upper bounds on V(0). We have

G(0) = —qa, 4(0) = 0, 2(0) = —v* = K;'g(qa), so that V(0) satisfies the
following expression

1 1 _ n —qdi
V(0) = §q§Kqu + §ag(qd)TK1 '9(qa) + > Km/ epi(§)dE +
i=1 0

—ddi

+U(0) - qd+az / Ui(€, 0:(6) $pi(di (€))pil€)de +

—qdi
+ Z / i€, (€)pi(€)de. (30)
So, we can estimate the upper bounds
_ k:2
V(0) < wy (kPM + kpa(a) + a? + OéQPMkDM> (31)

where wy = %qu||2, opv = A {®p} and
];)p]\/[(oé) = [QAN[{\I/D}AN[{CDD} + )\M{\IIP}] )\IV[{(I)p}. (32)
Finally, comparing (29) and (31) we have

(kpm — am)Is + (aki — k)i < woappmkpn +



_ k2
+ wo (kPM +kpm(a) + ak‘f) . (33)

From the above mentioned expression we can get integral terms I; and I5 in
the following way. Because the choice of the free parameter « is not limited
by stability conditions (25), we can put @ = a; = kpy,/m in expression
(33) so that

w - _ kpm
L < sz |:(kPM + kpa(ar))m + kg% +opmkpmkpm |, (34)
M Im
where Syr = k1kpm — krapem > 0.
The positivity of Sys follows from stability conditions (25). Similarly, if
we put o = ay = kypr/k1 in expression (33) we get

w _
I, < ﬁ [(kPM + k‘pM(OZQ))kl + k;/l«l + kIMQPMkD]\/I} . (35)

Finally, if we put expressions (34) and (35) in (26) we get

w2

j:
Sm

kpm
kp + ppopvkpm(kpm + T2 ki) + prk] <ka + T2>} . (36)

where I > I is the estimation of the upper bounds of the performance
index (26), and k;; = (m + T2k)1)kPM + ]%PM(Oél)m + T2EPM(Q2)I€1- The
optimal values of the controller parameters can be found by minimization
of expression (36).

6 Simulation Example

The manipulator used for simulation is a two revolute jointed robot (planar
elbow manipulator) with numerical values of robot parameters which have
been taken from [10]. The most simple form of the analytic fuzzy controller
is considered

wji(xji) = 85i(X5i) = vji + Vg0 exp(—Bilxjil), (37)

©ji(Xji) = yoji(xji) = Keji [ — exp(=Bjilxyil)] sign(x;i),  (38)
where j =P, D ,i=1,...,n, N; =1, a; =0, ( xpi = §i, Xpi = ;). In that
case we have

A{®r} = Au{erg) = max KcpiBpi, Au{®p} = max Kepifpi, (39)
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Figure 1: The transient response of the closed loop systems for different
values of controller gains kp,, and kjy; and for kp,, = 200 .

Ip; Ip;
A{®p} = max Pi A {®p} = max Di

N B D (g
i Ipi+7pilpi i Ipi+ypilpi (40)

We can make further simplification: Ip; = Ip; = 1, vp; = vp;i = 0,
Bp = Bpi, Bp = Bpi, Kcp = Kcpi = 1, Kcp = Kepi = 1 for 1 =
1,2, so that )\M{(I)P} = )LM{(I)D} = 1, AM{(bp} = )\M{Lppﬁ} = chﬁp,
Ai{®p} = KepfBp, and kpy (o) = [aKepfp + 1] Kepfp.

In the case when Sp > 1 function pp,;(g;) tend to function K¢ p;sign(g;)
what means that performance index Iy — [ [|g||1dr, where [|G|1 is the Ly
norm of the vector ¢. In other words, we have mixed Lo/L; optimization
problem. Note that upper bounds on values of the parameter Gp is limited
by stability conditions (25). In Fig. 1 we can see the transient response of
the closed loop systems for different values of controller gains. The optimal



values of controller parameters are k%, = 26.5, k7,, = 41.9, Bp = 10.

7 Concluding Remarks

In this paper a new approach to performance tuning of analytic fuzzy con-
trollers for robot manipulators is presented. The proposed tuning rules pro-
vide fast transient response without oscillations and large overshoots, over-
coming undesirable effect of high control jumps which is characteristic for
conventional linear PID controllers. The performance tuning rule involve
only few parameters which characterize the robot dynamics.

References

[1] Kosko, B., Fuzzy Engineering. Prentice Hall, Englewood Cliffs, N.J.,
1996.

[2] Novakovic, B., Fuzzy logic control synthesis without any rule base.
IEEE Trans Syst, Man, Cyber, B, 29(3), pp. 459-466, 1999.

[3] Novakovic, B., Fuzzy Theory Systems: Techniques and Application, Vol.
2, Academic Press, chapter Adaptive fuzzy logic control synthesis with-
out a fuzzy rule base, pp. 781-808, 1999.

[4] Kasac, J., Novakovic, B., Majetic, D. & Brezak, D., Stability analysis
of fuzzy robot control without fuzzy rule base. Proceedings of 2003
International Joint Conference on Neural Networks, Portland, Oregon,
2003.

[5] Ortega, R., Loria, A., Nicklasson, P. & Sira-Ramirez, H., Passivity-
based control of Euler-Lagrange Systems: Mechanical, Electrical and
Electromechanical Applications. Springer-Verlag: London, 1998.

[6] Arimoto, S., Control Theory of Nonlinear Mechanical Systems: A
Passivity-Based and Circuit-Theoretic Apprach. Oxford University
Press, 1997.

[7] Pacini, P.J. & Kosko, B., Adaptive fuzzy systems for target tracking.
IEE Intelligent Systems Engineering, 1(1), pp. 3-21, 1992.

[8] Arimoto, S., A class of quasi-natural potentials and hyper-stable PID
servo-loops for nonlinear robotic systems. Trans Soc Instrument Contr
Engg, 30(9), pp. 1005-1012, 1994.

[9] Kelly, R., Global positioning of robot manipulators via PD control plus
a class of nonlinear integral actions. IEFE Trans on Autom Control,
43(7), pp. 934-938, 1998.

[10] Kelly, R., A tuning procedure for stable PID control of robot manipu-
lators. Robotica, 13, pp. 141-148, 1995.



