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Abstract 

The equilibrium-like shaped single crystals of nonstoichiometric cuprous selenide were grown in its high-temperature phase from 480 0C to 530 0C using Ohachi’s method. The method had been developed for ionic-electronic mixed conductors, involving macroscopic transport of mobile metal atoms through the polycrystalline bulk, due to a fixed chemical potential difference, and utilising capillary narrowing for single crystal selection. In the solid state crystallisation mode several large equilibrium-like spherical single crystals were grown on the capillaries tips. Using the real geometry of the polycrystalline bulk and the growing crystal the chemical potential distribution along metal atoms diffusion path was calculated following Yokota’s theory of mixed conduction. The model calculations predict and experiments confirm that under stationary conditions the volume of a growing crystal is linear function of time. Also, the volume growth rate was shown to be inversely proportional to the total path resistance (or geometrical factor) for metal atom flow. The calculated and experimental growth rates are compared and discussed within constraints of the particular geometry. 
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1. Introduction 

In the late seventies, Ohachi and co-workers [1] have introduced and developed a new method for growing single crystals of specific two-component materials, thus introducing a new class of materials in the field of the equilibrium crystal shape (ECS) investigations [2]. 

The term “specific” relates to their unique property of exhibiting fast mass transport at moderately high temperatures, still in solid-state phase, the property upon which the growth method is based. These materials belong to the well-known subgroup of superionic conductors, called mixed superionic conductors, in which both, ions and electrons, are free to move. Therefore, in mixed superionic conductors ambipolar diffusion of cations and electrons is possible without net electric current. This means that immobile structure (“cage”), built by one component (and perhaps by the part of the other), forms open paths for mobile cations as well as an appropriate band structure for high electron mobility. We shall concentrate here on a good representative (Cu2-Se) of chemically and structurally the simplest superionic conductors; namely, silver and copper chalcogenides M2

Ch (M = Ag, Cu; Ch = S, Se, Te) [3]. Depending on their “cage” structure in the “superionic phases”, bcc or fcc, the respective ionic and electronic conductivities are 103 and 106 S/m (bcc) or 102 and 105 S/m (fcc).

The growth method, based on fast solid-state mass transport in a solid/vapour system, involves a polycrystalline (cylindrical) sample of M2

Ch, which serves as a medium for mass transport or more precisely for the metal atoms diffusion. At one end of the sample, metal atoms are being injected at constant rate, producing an excess concentration of metal atoms which diffuse toward the other end of the sample. This, free end of the sample surface is exposed to an opposite net flux of chalcogenide molecules driven by the equilibrium vapour pressure difference between the growing crystal and its surroundings. The surrounding equilibrium vapour pressure is produced by liquid chalcogenide bath kept at some independent constant temperature 

, in a vessel which is distant from the sample along the same glass tube. Both fluxes, i.e. particle flow densities, jM and jCh , interact at the free surface where the compound formation reaction occurs and the growth process takes place. Since the growing end is initially polycrystalline, many single crystal sprouts begin to grow. In order to select one among them, a capillary narrowing is introduced. The single crystal that happens to be selected grows through the capillary orifice into free space where it assumes a spherical form. Under stationary conditions, i.e. constant injecting rate, constant temperature of the growing surface 

 and constant chalcogenide vapour pressure, the shape of a growing surface on macroscopic scale will depend on the ratio of particle flow densities jM /jCh. If the metal atom current density is smaller than that of the chalcogenide molecules (the so-called solid-state crystallisation mode), the macroscopically smooth growing surface will appear [3,4], occasionally with well-developed facets. Moreover, in the case of growth with no spatial constraints (free space growth) the equilibrium-like shape will appear [1,5].

The four well known criteria have to be fulfilled [6,2] in order to proclaim that a certain free crystal form is indeed an ECS. Although the ECS investigations on spherical Ag2S single crystals [1,5] have not presented the required quantitative proofs, as Ohachi et al [1] have pointed out there are serious indications that the growth form of Ag2S crystals coincides with the equilibrium form, at least for the “ordinary size crystals”. Namely, the main mechanism that might hinder a fast equilibration of the metal ECS surfaces like Pb, Sn and Au [7], is the surface diffusion. In the case of M2

Ch, there is a great probability that the surface diffusion is replaced by more favourable complex events which relate two distant places on the crystal surface through desorption/(bulk relaxation)/adsorption. The bulk relaxation process alone is well-understood [8]. The time for mass transfer through the bulk 
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 is short, due to the large chemical diffusion coefficient (L is linear sample dimension along chemical potential gradient ranging from 1 mm to 10 mm and D* is the coefficient of ambipolar diffusion ranging from 5×10-8 to 10-6 m2s-1 depending on the deviation from stoichiometry [9]). For the majority of growing crystals  should rarely exceed 100 seconds. 

It seems that the “quality” of ECS in this particular type of growth experiments is, among other parameters, dependent on the growth rate, which in previous investigations [5] of silver and copper chalcogenides has not been treated with full care or precisely enough. The authors in [5] found that the surface of spherical crystal linearly increases in time (

). Our preliminary measurements showed strong indications that the volume of the growing crystal increases linearly in time. Therefore, in order to resolve the growth rate problem in the case of solid-state crystallisation mode, we performed careful crystal-growth experiments with nonstoichiometric cuprous selenide Cu2-Se. 

Cuprous selenide is a member of the M2

Ch family. Its structural, transport and thermal properties have been thoroughly investigated in our laboratory [10]. According to Heyding’s phase diagram [11] its high temperature 

phase (the phase with superionic properties) exists in a wide range of temperatures and compositions. The melting temperature, as well as the temperature of martensitic polymorfic transformation 

 depends strongly on composition (the deviation from stoichiometry 

 in Cu2-Se). In the case of Cu2Se, the phase transition is found at 140 0C and melting temperature at 1115 0C, while for Cu1.75Se they are -50 0C and 1000 0C, respectively. Depending on temperature, the high temperature  phase homogeneity range extends even up to about 2- 

 1.70 [11].

The structure of Cu2-Se consists of two interpenetrating subsystems: the fixed lattice and the mobile cation subsystem. The fixed lattice is of zinc blende type having Se atoms in fcc positions and equal number of Cu atoms in a half of tetrahedral positions. The mobile cation subsystem consists of the rest (1-

) of Cu atoms, which may easily diffuse along 6 “tunnels” in 

 directions. The overall symmetry is F

3m. There is also an equivalent structural model of Fm3m symmetry being different from the aforementioned one in the fact that all Cu atoms are assumed to be mobile. Irrespective of the exact structural model, the 

 phase exhibits high ionic conductivity ranging from 50 to 300 S/m. There is also a coexisting metal-like electronic conductivity (of the order up to 105 S/m) related to a well defined and composition independent parabolic valence band [12]. Thus, Cu2-Se may be taken as a representative of a mixed superionic conductor. 

In section 2 the experimental setup, the growth principles and procedure as well as the data acquisition during the growth are discussed in details. Section 3 is devoted to the treatment of the metal atom flow equation particularly accommodated to the presented experimental conditions. Within appropriate approximations the growth rate is expressed in terms of well known parameters like ionic conductivity, total chemical potential difference, stoichiometry and the particular growth geometry. Section 4 and 5 consist of the presentation of experimental data, their analysis and the comparison with the calculated values of the volume growth rate. 

2. Experimental

2.1 Apparatus

The experimental setup is schematically shown in Fig. 1. A vertical transparent three-zone furnace was constructed by winding a Kanthal wire (A series) of 0.75 mm diameter around a silica tube of 30 mm diameter. The constant winding pitch of 3 mm leaves enough space to observe the growth of a spherical single crystal, providing at the same time minimised axial and radial temperature gradients within the zones. For each zone, constant temperatures were maintained by independent temperature controllers. For the upper (TU) and lower (TSe) zone we used Haake TP 24 controllers with platinum resistance thermometers Pt100 as a feedback sensor. The central (growth) zone temperature (TG) was controlled by a programmable Eurotherm (818P15) controller with Pt-Pt13%Rh thermocouple as a feedback element. For the purposes of these particular measurements it was sufficient to use the furnace as two-zone furnace by keeping upper two zones at the same temperature (TU=TG).
The growth process was performed in an evacuated (better than 10-6 torr) and sealed transparent silica ampoule placed coaxially inside the furnace. The ampoule consists of two belly parts 6 cm long, and 17 mm in diameter (outer) connected with a tube of 7 mm in diameter (outer). On the top of the upper belly part the narrow tube (6 mm o.d.) with capillary ending was inserted in such a way that the capillary tip coincides with the centre of the belly part. The capillaries used in these growth experiments had orifice diameters between 60 and 200 m. The quasi-conical capillary ending contained an appropriately shaped polycrystalline Cu2-Se so that it tightly fitted the capillary interior and a disc of pure copper metal (Metal Crystals and Oxides, 99.999) put on the flat top of the polycrystalline sample. The lower belly part, sealed at the bottom, contains Se coarse powder (Fluka AG, 99.999) which melts above 218 0C. Temperature of Se-containing vessel (the bottom of the lower belly part) was measured by Pt-Pt13%Rh thermocouple attached from the outside to its bottom through the narrow tube. Temperature of the centre of the upper belly part, which we expect to represent truly the temperature of the capillary tip where the spherical single crystal is growing, was measured by a Pt-Pt13%Rh thermocouple (0.1 mm diameter) attached to the outer wall of the ampoule. The third thermocouple of the same kind was used to measure temperature of the centre of the furnace top zone.

Prior to inserting the polycrystalline sample, metal copper disc and Se powder into an ampoule, it was carefully washed with detergent, alcohol, chromsulphuric acid, alcohol again and subsequently with distilled water and than dried in a furnace. After the filling it was evacuated to vacuum better then 10-6 torr and sealed. The ampoule was placed into the furnace in such a way that the upper belly part centre coincided with the middle zone centre of the furnace. The lower belly part, which contained Se liquid, was designed so that Se liquid was placed in the centre of the bottom zone. The ampoule was axially centred by baked lava spacers, which also served as a thermal insulation between zones. 

2. 2 The growth process

The growth process was observed in situ by taking pictures of a growing crystal at one minute or longer (up to 2 hours) intervals depending on the magnitude of the linear growth rate (of the advancing spherical front). The picture taking system consisted of a CCD camera (Pulnix TM-765, 756(H)(581(V) resolution with 256 levels of grey) mounted as an ocular to a microscope (Technival 2000, with 5 enlargement steps, from 1 to 5). The signal from the camera was fed to a computer with an appropriate frame grabber (Matrox PIP-512B) as well as to a Sony monitor and a Panasonic videocassette recorder. The camera and the microscope system were first calibrated using a commercial micrometer scale for microscope calibration, having a total length of 1 mm with 10 m divisions. The final resolution of thus obtained computer images was between 10 m and 2 m for the microscope enlargement settings of 1 and 5, respectively. Under usual working conditions the microscope objective was between 8 and 12 cm distant from the furnace centre. 

Temperatures of all zones (at the centre of the upper zone, at the growing crystal position and of the liquid Se) were measured continuously (the sampling interval of 1 minute) using Pt-Pt13%Rh thermocouples connected to Keithley 705 scanner and Keithley 181 nanovoltmeter, whose output was fed to a computer with an IEEE488 card.

In order to activate the growth process we first raised simultaneously the temperatures of the bottom zone (temperature of Se vessel) and of upper two zones (temperature of crystal growth). The temperature of the Se vessel determines the equilibrium Se vapour pressure above the liquid, which is also the equilibrium vapour pressure around the growing crystal. The growing crystal must accommodate to this forced pressure by adjusting its stoichiometry. Therefore the Cu concentration at free end is fixed as well as the chemical potential. On the upper end of the polycrystalline sample the chemical potential is fixed by the metal copper disc and the composition there is expected to be stoichiometric (in equilibrium with copper). The desired temperatures (TG = 480 0C - 530 0C; TSe = 405 0C - 480 0C) were achieved in about an hour and were almost immediately followed by chemical potential difference and Cu concentration gradient establishing (relaxation time 

 is about 10-100 seconds). Within an hour or two a few growing crystal threads appeared in the capillary interior at the conical bottom of the polycrystal, close to the capillary orifice (see Fig. 2), growing at different rates. The first one which reached the capillary narrowing (see Fig.2; t = 47-94 min)) filled the whole available volume of inner part of the tip, thus stopping the supply of Se molecules for growth of all the others. The one which grew out through the capillary orifice assumed the shape of a spherical cap (see Fig.2; t = 99 min) with curvature which increased until it became hemispherical with radius equal to the radius of the orifice. After that it kept the perfect hemispherical shape and its radius increased until it reached the outer radius of the capillary tip (see Fig.2; t = 109 min)). Then, without any detectable shift of its centre, the spherical growth proceeded incorporating the capillary tip into a totally spherical volume, more and more as the growth progressed. Four examples of grown crystals photographed at different times with corresponding sizes are shown in Fig. 3. Each of them displays clearly visible rounded (111) facets and their relative orientations seem to perfectly reflect the expected symmetry of fcc crystal. The direction of growth is very close to one of <110> crystal directions. 

During the growth we measured the horizontal diameter of the spherical single crystal as well as the facets’ dimensions if these were present, with aforementioned resolution.

Prior to each growth we determined the relevant geometrical parameters of the given capillary: inner maximal radius 

, inner minimal radius (the orifice radius) 

, outer radius of the tip 

 and the length of the capillary 

, coinciding with the correspondingly shaped polycrystalline sample. We also took a picture of the longitudinal capillary profile in order to mathematically describe its inner and outer radius dependence on distance measured from the top of capillary tip (see Fig. 4). 

3. Atom transport calculation

Since our geometry of the growth ampoule was the same as in the work of Ohachi et al [4,5,13], we may adopt their formal analysis of the ambipolar solid state mass transport for Cu atoms. The detailed analysis was originally given by Yokota [8]. The total metal atom flow per unit area and per unit time along the growth axis, provided that there is no temperature gradient along the polycrystalline sample, is driven by Cu atom concentration gradient i.e., chemical potential gradient. Assuming the stationary conditions (t 

) and the constant temperature, the metal atom flow density is given [5,8] by 
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where 

 is the electronic charge, 

 is the ambipolar diffusion coefficient, 

 is the ionic conductivity, 

 is the gradient of particle concentration and 

 is the magnitude of the axial gradient of chemical potential. Aforementioned stationary conditions mean a time independent concentration or chemical potential gradient distribution along the bulk polycrystalline sample. At both ends of the polycrystalline bulk the chemical potential is fixed. At the upper end it is fixed by metal copper in contact with polycrystalline bulk 

. At the lower end, around the orifice of the capillary, the chemical potential (as well as the concentration 

) is fixed by the constant Se vapour pressure [14] maintained by the distant liquid Se bath kept at constant temperature 

 (

).

Due to the constant chemical potential difference one would expect a constant mass (Cu atoms) flow from upper to the lower end as long as the total resistance for the mass flow is constant. However, at the lower end, out of the capillary orifice, the single crystal starts to grow as soon as the chemical potential difference is established, which, in general, increases the resistance for the Cu atoms flow and, consequently, decreases the flow itself. It will be shown that this resistance increase has negligible effect on the magnitude of Cu atom flow.

Let us examine the influence of the resistance change on the Cu atoms flow. In equation (1) the particle flow density 

 [A/m2] may be expressed as 












(2)

where 

 is total current, 

is the number of particles passing through a certain cross section per unit time and 

 is the magnitude of the cross section depending on the position along the sample. 

Introducing equation (2) into (1) one obtains 











(3)

where 

 denotes the true concentration and temperature dependence of ionic conductivity 

 or 

. Namely, under stationary conditions the chemical potential difference is accompanied by stationary Cu concentration distribution (stoichiometric composition Cu2Se (= 0) at 

; nonstoichiometric composition Cu2-Se  ( = G) at the growing end of the sample 

).

There are two possible ways of evaluating relation (3) provided that the cross section magnitude 

 is known all along the particle current path. The ampoule containing the polycrystalline sample and the growing spherical single crystal are both rotationally symmetrical and the polycrystalline sample tightly fits the ampoule interior. Thus, within the proposed model, for describing 

 it should be sufficient to determine the inner radius of the ampoule as a function of the distance l from the top of the ampoule tip. So, with 

 known, the integration may be completed as soon as the ionic conductivity vs. chemical potential dependence is known. Unfortunately, 

 or 

 is known in very limited range of temperatures (or concentrations) far below our range of interest [9,15,16,17]. Therefore, we shall take another approach in which 

 will be treated within the approximation stated below. 

Prior to any approximation the integration applied to both sides of (3) gives










(4)

where 

 is chemical potential of the growing spherical single crystal near its surface, 

 is chemical potential of stoichiometric cuprous selenide (Cu2-Se in equilibrium with metallic copper i.e. 

=0) and 

 is the distance of the growth front measured from the top of capillary tip (capillary orifice is chosen as origin). After the integration of the left hand side of the equation (4) one obtains










(5)

We have written this equation in the form which makes it obvious that it represents the simple Ohm’s law, EMF = ICu×R 
At both ends of the sample chemical potential is fixed and the current 

 of Cu atoms or equivalently the mass transport is constant as long as resistance 

 is constant. The resistance itself is dominantly determined by the given geometry i.e. by the shape of the polycrystalline sample and the size of the growing sphere. Therefore the resistance will increase as the growth advances. We shall show later that by taking the resistance as constant, i.e. independent of the size of the growing sphere above rc , the error involved is less than 1%.

The first step toward the solution of (5) is to present total resistance as the sum of resistances in series, each one corresponding to one of four distinct sections (see Fig. 4b). In each section the distance dependence of the cross-section S(l) is known.

We integrate (5) by sections in order to estimate the drop of chemical potential for each section, having in mind that total chemical potential difference is fixed and independent of shape:










(6)

The relevant geometry of the sections is shown in Fig. 4b. The sections are: the quasi-conical (polycrystalline sample in the capillary interior with narrowing - section I), the spherical cap (section II), the hemispherical (section III) and the spherical one (section IV) enclosing the capillary tip. It is quite obvious from Fig. 4b, except perhaps for the section I, that the cross section magnitude depends on l as follows 
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Here 

 is the outer and 

 inner capillary tip radius. Section I appears to be the most uncertain one, since the capillary shape is obtained by manual pulling of a quartz tube heated locally by flame. In spite of inability to produce capillary shape in a reproducible manner, its inner r(l) dependence can be reasonably well fitted by the following one-parameter function:











(8)

where n is adjustable parameter. The maximum radius of polycrystalline bulk (or maximum inner capillary radius) 

, the orifice radius 

 and the length of the conical part 

, are all measurable quantities. The function suggested for section I is used just to demonstrate the chemical potential distribution along the growth axis according to (6) and (7). The real calculation for section I will be done by numerical integration of the inverse square of the inner capillary radius along capillary length starting from the capillary orifice (l = 0; r(0) = 

). 

The section IV value is overestimated since the growing single crystal sphere is not fully realised due to the finite volume of the capillary tip, which the sphere encloses. 

In order to make an estimation of chemical potential dependence along all four sections we will start with the crudest approximation by replacing position dependent ik(l) by the common simple average 

. At this moment a few facts have to be noted. The basic reason for the distance dependence of the resistance (geometrical factor and resistivity) lays in the particular geometry of the whole sample assembly. The applied chemical potential difference on the particular geometry arrangement will cause the stationary Cu atom concentration distribution which in turn gives rise to the ionic conductivity distribution throughout the sections. The ionic conductivity itself scales, between two extreme values (from stoichiometric concentration - in equilibrium with copper to highly nonstoichiometric concentration - in equilibrium with Se), by no more than the factor of two. Therefore we may take that 

. In this way according to (6) the resistance of each segment becomes












(9)

where 

 is the geometrical factor of the k-th section. The evaluation of 

using cross-section magnitudes given in (7) yields:
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Typical values in most experiments have been: r1 = 2.5 mm, r0 = 0.05 mm, rc = 0.25 mm, and L = 10 mm and the fit of the r vs. l dependence (relation (8)) in section I gives 

. We usually stop the growth process when the sphere reaches the diameter of about 2 mm (r = 1 mm). By taking the above values the calculation gives the following series of resistances 

or geometrical factors (GFs): 

= 146.36 mm-1, 

= 5.0 mm-1, 

= 2.55 mm-1 and 

= 0.24 mm-1 (for the sphere having r = 1 mm). Using (10) and the 

 calculated values the chemical potential dependence on normalised distance is shown in Fig. 5. The total chemical potential change is taken to be equal to unity and the fractional change in sections is given by their geometrical factors. 

It follows that within the aforementioned approximation about 95% of the chemical potential drop is located in the section I. In fact, due to the high-order polynomial dependence of 

 and consequently 

, the drop is located in the last quarter of the section I or practically on the capillary orifice (see Fig. 5). Of course, the fraction of drop is dependent on both r0 and n but, in the range of investigation (

0.1 mm and 3

5), never falls below 90%. 

Now we are able to refine the approximation made for the value of the ionic conductivity. From our previous investigations [9,16] as well as that of Ishikawa and Myatani [15], we know that the ionic conductivity is a monotonic function of deviation from stoichiometry  or of the chemical potential (

 for 

), and that the ratio of ionic conductivities for the stoichiometric sample (in equilibrium with copper) and for highly nonstoichiometric one (in equilibrium with Se) is roughly 2. Therefore instead of using common average 

, we shall take the averages of each section as stated in (6). 

Firstly, since the drop of chemical potential along the single crystal segment (last three sections) is about 5% of the total drop (see Fig. 5a) we may approximate all three associated average ionic conductivities with ionic conductivity for the composition of the growing single crystal: 

. Secondly, due to the fact that main contribution to the resistance of section I comes from the capillary orifice and its close neighbourhood the average ionic conductivity may be taken at the position of the centre of gravity of 

 which is found to be at (l/L)CG = -0.07 (see Fig. 5). At this point about 81% of the chemical potential drop is realised within section I itself or about 77% of the total drop. Since the ionic conductivity scales as chemical potential distribution, the fraction of drop (77%) applied to ionic conductivity change between two extremes, 

 and 

 gives more realistic average being 

. 

In all sections there is now a common factor 

, which can be extracted in front of the sum in (6). The geometrical factor series must be corrected due to more realistic ionic conductivity average in the section I. Therefore, if the calculated 

values are taken in cm-1 equation (6) may be written as 





           (11)
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Expressed in terms of the particle current 
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where 

 is in Volts, 

 is in Coulombs and 

 in 

cm-1. 

In the relation (13) the total geometrical factor (GF) is just a sum of GFs of all four sections. We will always include in the total GF calculation the sequence of sections preceding the section in which the growth is observed. In our experiments, we monitored the growth in sections I, II, III and IV but the data analysis will be reserved for the section IV. Therefore the total GF must consists of the sum of GFs of first three sections and thus the value from relation (13) has to be slightly diminished to a value of 1265.4 cm-1. With such configuration the current of Cu atoms may be regarded as constant within the error of about 0.2% during the spherical crystal growth even up to 5 mm in diameter (the resistance increase due to single crystal growth has indeed a negligible effect on the Cu atoms flow). 

For given geometry of the quartz ampoule growth system (

) and for given material at constant temperature and with fixed growing composition, the particle current depends on the chemical potential difference (or 

). Considering the geometry, the orifice size seems to be the most relevant parameter that determines the particle current or the growth rate. Under stationary conditions; i.e. a constant temperature of the growing sample and fixed chemical potentials of both ends, the particle flow is constant and it is relatively easy to calculate the growth rate within the approximations stated above.

A constant particle flow implies a constant volume growth rate since the density of growing single crystal is fixed by constant growth temperature and constant Se vapour pressure (i.e. constant composition of growing crystal). Each Cu atom transferred to the surface of a growing crystal will create, after reaction with Se vapour, a volume 












           (14)

where 

 is lattice parameter taken for the growing concentration G. It is known that there are 4 molecules of Cu2-Se within a unit cell. Equation (13) multiplied by 

 yields the volume growth rate
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or more generally






           (16)

The right hand side of (16) is constant (within less than 1% error) during the growth process and consequently the volume increases linearly in time, 









           (17)

The present result in (17) directly contradicts the model calculation presented in [5] where 

 was declared (L being radius of growing spherical crystal). There, the 

 result is a logical consequence of a too crude approximation about the concentration distribution inside the growing sphere. Namely, the authors have assumed linear concentration distribution from the centre of the sphere to its surface. 

What we found is qualitatively different (see Fig. 5a), although expressed in terms of the chemical potential dependence. From (1) it follows that the concentration and chemical potential gradients are related by 

, where D is a chemical diffusion coefficient and N is particle concentration. Assuming that both i and D are constant throughout the last three sections i.e. the growing crystal sphere (as we already did regarding the approximation for i  - see Fig. 5a) there is direct proportionality between these two gradients. 

We have found that the chemical potential gradient 

, as expressed in relation (3), is inversely proportional to the current flow cross section 

, which is proportional to the square of the distance 

(measured from the capillary orifice and thus being equal to sphere radius; sections II, III and IV, as specified in (8)). If this had been taken into account in relevant expressions in [5], the resulting dependence would have been 

, as described in (17). 

4. Volume of the growing sphere 

The single crystal grows on the top of capillary tip having the spherical form without any detectable shift of its centre. The crystal sphere is truncated due to the capillary tip enclosed by the growing sphere. During the growth we measure the sphere horizontal radius as a function of time. In order to relate measured sphere diameters to the real volume of Cu2-Se single crystal (as defined in (16) and (17)), we have to subtract the capillary tip volume from the volume of the full sphere. It is convenient to express the capillary tip (CT) volume in terms of the measured radius of the growing sphere 









           (18)

The capillary tip volume is calculated using the simplest approximation in describing the outer shape of the capillary tip (outer radius vs. distance measured from the capillary end). Two outer shape edges (1, 2) of the capillary visible on the photograph are fitted with a second order polynom of the form 










           (19)
up to 

 (see the shape of outer capillary profile in Fig. 4c). For the CT volume calculation we use the normalised and averaged (over 1 and 2) form of (19) 
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where 

.


The capillary tip volume is calculated by integration of 

 from 0 to the height of the vertical truncated radius 

 (see Fig. 4b), to which the volume of spherical cap (extending from 

 to 

) is added, yielding the following relation:



  (21)

where 

 and 

. 

 is a function of 

 through their geometrical relation as follows






           (22)

For each 

 there is a single real solution 

 of the equation (22) for which the volume of (21) can be calculated. The real solution of (22) i.e. the functional dependence 

 is very close to a positive x-axis wing of a hyperbola. 

Therefore the normalised raw data, 

 for each growth experiment are numerically processed to give real sample volume vs. time using relations (22), (21) and (18) and provided that the capillary profile shape has been previously determined by digitising its photography. 

5. Results and Discussion

Under stationary conditions the crystal grew as a sphere whose horizontal diameter r was measured as a function of time. The sphere diameter was measured on computer screen from pictures of growing crystal taken at suitable time intervals, either by direct pixel counting or using an appropriate edge recognition program. The average resolution limit was about 5 m so that the error due to this source never exceeded 4%. These raw data 

, normalised by the outer capillary radius measured from the same pictures, i.e. the quantity X(t)=r(t)/rc, is shown in Fig. 6 as a function of time for a series of grown crystals. Six independent growth experiments were performed, each one with different capillary orifice size and temperatures 

and 

 (see Table 1).

In the intervals of growth, where temperatures (TG and TSe) were kept constant, we performed the analysis of X(t) data shown in Fig. 6 in order to correlate the measured sphere radius and the volume of grown crystal as stated in (22), (21) and (18). The data processed in this way are shown in Fig. 7 for all growth experiments. The non-linear portions in the beginning of the growth of A, C, F crystals are due to temperature variations which were applied for purposes which are beyond the scope of this article, otherwise they were kept constant within 

2 0C as stated in Table 1. In the ranges where temperatures were constant a linear time dependence of the volume of the growing crystal 

 is evident. 

Among all growth experiments the most representative one is that of the G crystal shown separately in Fig. 8 together with TG and TSe during the growth. There, the expected volume vs. time linearity is achieved during a 120 hours growth with the volume growth rate (GR) of 0.19 mm3/h. Compared to the result shown in [5] where L2 vs. t linearity is shown on one-and-a-half decade (time scale in seconds), here we have demonstrated the volume linearity on more than five decades (also in seconds). In the linear region the relative sphere diameter changed from X = 1 to X = 7.6 or up to 1.71 mm. Beyond X = 7.6 the radial growth rate, 

 becomes so low that axial and radial thermal gradients most likely begin to influence the shape formation. Also, compared to data from ref. [5] where the average radial growth rate of 80 mm/h was obtained, our radial growth rate range falls between 1.26 mm/h at 

 and 0.02 mm/h at 

. 

The well-established sphere volume linearity in time allows regarding our model volume growth rate calculation as realistic. It states that under constant thermal conditions during the growth and the fixed chemical potentials at both ends of growing assembly, the magnitude of GR is determined by the inner capillary geometry and most of all by its orifice diameter. 

In order to support this conclusion let us calculate GR for each particular case. All relevant data for six growth experiments are summarised in Table 1, where in the last two columns the calculated and experimental GR (linear slopes in Fig. 7) are compared. 

The compositions of the ECS growth spheres were roughly estimated using previously found calibration curve 

 vs. (TG,TSe) [18], and by weighting the initial components and final products. In order to be more convincing about the concentration estimation we note that the support for the numbers in column (2-

) of Table 1 can be found as soon as Se vapour pressure vs. reciprocal temperature diagram is used [14]. Each pair of temperatures (TG, TSe) (i.e. reciprocal growth temperature (1/TG in K-1) and equilibrium Se vapour pressure (p = f(1/TSe) in atmospheres)) determines a point in the vapour pressure diagram of Se and nonstoichiometric cuprous selenide. Therefore, five of our six crystals B-G lie on the line almost parallel to pure Se equilibrium line meaning that their composition is about the same. According to data for previously grown crystals, for which 

 was measured at 150 0C [18,12], their concentration comes out to be very close to (2-G) = 1.75. The crystal A is more distant from Se equilibrium line and coincides with approximately 1.76 composition. 

The estimated compositions allow us to determine values of the parameters in (16) like ionic conductivity 

, electromotive force 

 and lattice parameter 

. The 

 is obtained by an extrapolation of data reported in [12] using relation EMF(TG, 0.25) = (375.0 + 0.385 × (TG - 512 K)) mV and EMF(TG, 0.24) = (363.3 + 0.385 × (TG - 512 K)) mV. The lattice parameter values were estimated from [19] by an extrapolation of the data presented in the article. 

The problem arose when we had to choose the source of the ionic conductivity data. The natural choice would have been data from [17] but, for the concentration range we are dealing with, they are insufficient. Namely, data do not exist beyond 

0.18. If linearly extrapolated toward higher 

, the values apparently tend to zero as concentration 

 approaches 

0.24 irrespective of temperature range. On the contrary, our results on the temperature and concentration dependence of the ionic conductivity (up to 500 K, up to  = 0.26) [9], together with those of Myatani (at 410 K) [15] clearly demonstrate that ionic conductivity does exist even up to 

0.26 (and even further according to Heyding’s phase diagram [11]) and that it increases with increasing temperature. Therefore we used our data and extrapolated them to cover the required range of temperatures, 

(1.94×106/T) × exp(-2018/T) (in Sm-1). 

The last quantity left to be determined is geometrical factor GF which has a simple l-dependence everywhere except in section I - inside the capillary narrowing. Concerning the GF calculation we found that the most relevant part of capillary geometry is the orifice and its neighbourhood Therefore, instead of one-parameter function used in (8), we rather concentrated on the capillary tip and used much simpler procedure to achieve GF i.e. a numerical integration of the reciprocal value of inner capillary cross section 

 (the integral factor in (9)). As can be seen in Fig. 9 (measured for G crystal) reciprocal cross section magnitude becomes negligible if we go far enough from the capillary orifice i.e. above 50 r0 or 10 rc or L/5 (2 mm in this case). By the integration of 1/S(l), assuming rotational symmetry of the polycrystalline sample and the tight sample fitting of the capillary interior, we expected easier and improved calculation procedure. As can be seen in Fig. 9a the integral of reciprocal cross section rapidly saturates (exponentially in our cases) with the increase of the upper integral limit (interval of integration). The cut-off approximation at 

 and the extrapolation to infinity mutually differ by 5% at most. Therefore the first term in (10), for the sake of the GR calculation, is replaced by the to infinity extrapolated value of the numerical integral of reciprocal cross section of the capillary interior. The sections II and III are calculated as in (10) so that the total GF is a sum of the integral and two terms (II and III) like in (10),
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where 

, 

, 

 and 

 inside square brackets are measured on the same pictures in pixels, while 

 in front of square brackets is directly measured inner radius in meters. 

Using values shown in Table 1 we are able to compare calculated and experimentally determined growth rates. This is shown in Fig. 10. where experimentally determined GRs are shown as a function of calculated GR. Since the magnitude of the factor A(G,T) containing temperature and concentration dependent quantities (see (16)) varies in the whole range of investigation by less than 10%, the main cause for the GR linear increase from 0 to 0.85 mm3h-1 comes from reciprocal geometrical factor (see relation (23)). 

First, having in mind several approximations applied during the GR evaluation one can realise fairly good linearity of experimental data as a function of the reciprocal geometrical factor. The linearity may be taken as evidence that within the experimental error the volume GR scales as can be expected from our model calculation. This means that, under stationary thermal conditions and fixed chemical potentials of both growth assembly ends, the volume GR is controlled solely by the resistance (geometry) for the Cu atoms flow. 

Our data show that there is a disagreement between calculated and experimentally determined growth rates by a factor of 2.20

0.15. It is not so surprising since the calculated values of GR dominantly rely on the assumption that the growing part of the sample completely fills the capillary interior. The calculated value is thus the upper limit for the GR, since it is calculated using the inner capillary profile. In reality, shown in a series of pictures taken during the initial growth (Fig. 2.), this is realised only in the very close neighbourhood of the capillary orifice. Going deeper into a capillary interior one can see that there is a thin single crystal sprout bridge connecting the bulk polycrystalline part and the filled narrowest part. The bridging single crystal thread may be thin and long enough to make a substantial contribution to Cu atom flow resistance or geometrical factor. Unfortunately, our pictures of the capillary interior growth are not of a desirable quality to enable the detailed analysis of the true 3-D geometrical shapes of the crystal threads. As an indication of what a more realistic approach would give we used the picture of growth shown in Fig. 11 (enlarged Fig. 2 at t = 94 min). We made more detailed integration using this G crystal shape profile, and assuming that all projected crystal parts are rotationally symmetrical. Applying the same procedure as described above and given by (23), we obtained the GF value increased by more than 50% and consequently GR abscissa value decreased by the same amount (see Gc point in Fig. 10 and extra row values in Table 1).

6. Conclusion

The ECS-like crystals of -Cu2-Se have been grown using Ohachi’s method. The growth of spherical crystals was characterised by fixing both the growth temperature and the Se vapour pressure at the growing crystal. Chemical potential was fixed at both ends of the crystal growth assembly, providing that magnitude of Cu atom flow controlled the growth rate (solid-state crystallisation mode). 

Applying Yokota’s diffusion theory to the Cu atom transport within the experimental geometry we calculated detailed distance dependence of the chemical potential between fixed end values (cuprous selenide in equilibrium with Cu metal and the growing crystal of fixed concentration of Cu atoms). We obtained that 95% of total chemical potential drop is concentrated at and in the close vicinity of capillary orifice. Therefore, during the growth, Cu atom flow is constant within 1% and the magnitude of the flow is predominantly determined by the size of the orifice. Contrary to previous findings, the calculation yields that the volume of the growing crystal linearly increases in time and that the volume growth rate linearly depends on reciprocal total resistance for Cu atom flow (i.e. on reciprocal geometrical factor). Both findings were experimentally confirmed by six independent growth experiments of nonstoichiometric cuprous selenide. The discrepancy between calculated and experimentally found growth rates (ratio is 2.2) was ascribed to inability to fully reconstruct the geometry of growth inside the capillary interior. 
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Figure Captions 

Fig.1. Schematic diagram of the experimental arrangement used for the growth of equilibrium shaped crystals: three-zone transparent furnace (used in these experiments as two-zone) with an evacuated and sealed quartz ampoule and the instrumental setup.

Fig.2. Sprouting of thin crystal threads at the bottom of the polycrystalline bulk of G crystal (up to t = 97 min); hemispherical (t = 99 min) and spherical (above t = 125 min) growth shape in free space. (Numbers in photographs denote growth time duration in minutes).

Fig.3. Most likely equilibrium form of Cu2-Se spherical single crystals B, C, E, G. Growth duration and corresponding sphere diameters are shown in photographs. All facets visible on the photographs are of (111) type.

Fig. 4. Longitudinal cross sections of the capillary: a) profile simulated using relation (9); distance 

 is normalised by the capillary length (L= 10 mm); b) schematic presentation of the growth process divided in sections: section I - growth through the capillary tip, section II - spherical cap growth until crystal reaches the final curvature, section III - continuous hemispherical growth up to 

and section IV - spherical growth with the capillary tip incorporated into the sphere; c) capillary tip profile (inner and outer) digitised from the photograph of the G capillary.

Fig. 5. Chemical potential change along all four sections calculated using relations (6) and (10). Abscissa is normalised by the capillary length L = 10 mm; r0 = 0.05 mm and rc = 0.25 mm. The total chemical potential drop 

=1 is chosen (with 

 and 

). The inset (a) shows the radial dependence of the chemical potential within the crystal sphere.

Fig. 6. Horizontal radius of growing sphere normalised by the outer radius of capillary tip X(t)=r(t)/rc as a function of time. The six independent growth experiments are designated by capital letters A, B, C, E, F, G. The parameters related to each growth are collected in Table 1.

Fig. 7. True volume of the Cu2-Se vs. time, together with the best linear fit in the range of constant thermal conditions. The growth beginning is shown in inset.

Fig. 8. The most representative example of the ECS-like growth of Cu2-Se - the G crystal: a) The normalised radius and the true volume (volume of the capillary tip subtracted) vs. time; b) Temperature TG of the growing sphere and c) temperature TSe of the vessel with liquid Se vs. time. (Both temperatures were kept constant from the very beginning). 

Fig. 9. Inverse of the G capillary inner cross section area S(l) = r2(l) (normalised to r02 ) obtained from digitised data in Fig. 4c. a) Geometrical factor (the integral of 1/S(l) as a function of the extent of integration interval starting from the top of capillary tip as the origin (shown as percentage of the value obtained by extrapolation to infinity).

Fig. 10. Correlation of the experimental (

) growth rate (the slope of 

 linear fits in Fig. 7.) and the calculated growth rate. (The vertical error bars originating from linear fits in Fig. 7. fall within the size of the symbols.) GRcalc is obtained from data in Table 1 with GF determined using relation (23) (see Fig. 9.). The full line represents ideal correlation, while the dotted line is the best fit through the experimental points. GC (o) is obtained by shifting the G abscissa value, after the correction of its GF, according to Fig. 11. 

Fig. 11. The photograph of G capillary profile with a growing crystal, showing the thin single crystal bridge deep inside the capillary. The inner capillary profile and the crystal shape profile used for evaluating the GC geometrical factor are outlined. 

Table Caption

Table 1. In first five columns are the measured parameters characteristic for the performed growth experiments, used to determine the A factor and the growth rate (dV/dt)calc from eq. (16). EMF, (i and a values are extrapolated from references [12], [9] and [19], respectively. The geometrical factor GF is calculated according to expression (23). The experimental growth rate values (dV/dt)exp are obtained from linear fits of volume vs. time dependencies shown in Fig. 7. 
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