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Abstract: In this paper the nonlinear dynamic discrete-time 
neuron model, the so-called Dynamic Elementary Processor 
(DEP) is proposed. This dynamic neuron disposes of local 
memory, in that it has dynamic states. To accelerate the 
convergence of proposed extended dynamic error-back 
propagation learning algorithm, the adaptive neuron activation 
is applied. Instead of most popular unipolar and bipolar 
Sigmoidal neuron activation functions, the Gauss activation 
function with adaptive parameters is proposed. Based on the 
DEP neuron with adaptive activation function in hidden layer, 
and without Bias neuron for hidden layer, a Dynamic Multi 
Layer Neural Network is proposed and used for the 
identification of discrete-time nonlinear dynamic system. 
Key words: dynamic neural network, adaptive activation 
function, bias neuron, identification 
 
1. INTRODUCTION 
 
Error-back propagation is one of the most famous training 
algorithms for multilayer neural networks. Over the last decade, 
many improvement strategies have been developed to speed up 
the error-back propagation, and improve neural network 
learning and generalization features. All of these strategies can 
be separated in three basic categories. The first category deals 
with the improvement of the error back-propagation learning 
algorithm (Smagt, 1994). The second category deals with the 
neurons weights initial values (Nguyen & Widrow, 1990; 
Darken & Moody, 1991) and the third category deals with 
neural network topology optimization (Lawrence at al., 1996). 
  In this paper the neuron structure modification and 
activation function (AF) with adaptive parameters are proposed. 
With adaptive Gauss AF we wish to eliminate the Bias neuron 
for hidden layer. Before doing that, we must answer to some 
fundamental questions. The first one is, why is the Bias neuron 
so important, and the second one is, can we eliminate Bias 
neuron for hidden layer?  
 It is well known that any nonlinear, smooth, differentiable, 
and preferably non-decreasing function can be used as AF in 
hidden layer. The two most popular activation functions are the 
unipolar Logistic and the bipolar Sigmoidal functions. For 
those types of activation functions, Bias neuron is very 
important, and the error-back propagation neural network 
without Bias neuron for hidden layer does not learn (Kecman, 
2001). Shortly, the Bias weights control shapes, orientation and 
steepness of all types of Sigmoidal functions through data 
mapping space. However, if one uses Gauss AF in hidden layer 
with adaptive parameters, than the Bias neuron and his weights 
can be neglected. Gauss function parameters controls the AF 
shapes and orientation, and the position of activation functions 
in data mapping space. 
 
2. DYNAMIC NEURAL NETWORK 
 
The basic idea of the dynamic neuron concept is to introduce 
some dynamics to the neuron activation function (AF), such 
that the neuron activity depends on the internal neuron states. In 
this study, an ARMA (Auto Regressive Moving Average) filter 

is integrated within the well-known static neuron model. Such a 
filter allows the neuron to act like an infinite impulse response 
filter, and the neuron processes past values of its own activity 
and input signals. The structure of a proposed dynamic neuron 
model is plotted in Fig. 1. The filter input and output at time 
instant (n) are given in (1) and (2) respectively (Novakovic at 
al., 1998): 
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Fig. 1. Discrete-time dynamic neuron model 
 
Widely used nonlinear Sigmoidal bipolar AF and Gauss AF 
with adaptive parameters, are described in (3) and (4) 
respectively. 
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The network proposed in this study has three layers. Each i-th 
neuron in the first, input layer has single input that represents 
the external input to the neural network. The second layer 
consists of dynamic neurons, which are presented by Fig. 1. 
Each j-th dynamic neuron in hidden layer has an input from 
every neuron in the first layer. Each k-th neuron in the third, 
output layer has an input from every neuron in the second layer. 
 
3.  THE LEARNING ALGORITHM 
 
The goal of the learning algorithm is to adjust the neural 
network learning parameters ϑ in order to determine the 
optimal parameter set that minimizes a performance index E 
(Kecman, 2001) as follows : 
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where N is the training set size, and the error is the signal 
defined as difference between the desired response )(nOd  and 
the actual neuron response O(n). This error is propagated back 
to the input layer through the dynamic filters of dynamic 
neurons in hidden layer. Iteratively, the optimal parameters 
weights, filter coefficients and DEP activation function 
parameters (c and σ) are approximated by moving in the 
direction of steepest descent: 
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where η is a user-selected positive learning constant (learning 
rate). According to (6) and for the purpose of easier comparison 
of different activation functions, we did not use any off learning 
accelerator algorithms. All error measures are reported using 
non-dimensional Normalized Root Mean Square error index 
NRMS (Lapedes & Farber, 1987, Novakovic et al., 1998). 
 
4. EXPERIMENTAL RESULTS  
 
As an interesting application of the proposed neural network 
algorithm, the identification of the dynamic discrete-time 
nonlinear system is performed. The system behavior is 
governed by the 1st order difference equation (Kecman, 1994), 
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with sampling time T0=1s and a state-dependent time constant 
of about T≅10s. Such system is difficult to identify by classical 
methods when the mathematical structure of nonlinearity is 
unknown, because nonlinearity cannot be separated from the 
linear dynamics like e.g. a Hammerstein model. In order to 
obtain a good model of a nonlinear process, it is important that 
the learning data completely cover the relevant state space and 
contain a rich spectrum of frequencies. Thus, the process is 
excited with a pseudo-random binary noise  (PRBS) signal with 
amplitude modulation. Output data are spoiled with pink noise 
of variance 0.05 xmax. The set of 621 data samples is plotted in 
Fig. 2. 
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Fig.2. The set of 621 data samples 
 
The identification of above described system is performed by 
neural network topology with 1 input neuron (u(n)), 5 dynamic 
neurons in hidden layer and 1 static neuron (x(n+1)) in output 
layer. For the training procedure the first 350 values of single 
input-output data set plotted in Fig. 2 is used. The goal for the 
neural network with adaptive Gauss AF was achieved with only 
5 hidden nodes and in only 5000 learning steps. The neural 
network with bipolar Sigmoid AF in hidden layer (with Bias 
neuron weights) achieved the similar learning error 
(NRMS<0.08) after 35.000 learning steps. To illustrate the 
networks generalization capabilities, the new 800 test data 
points for the adaptive Gauss and bipolar Sigmoid AF are given 
in fig. 3. 
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Fig. 3. Test for the 5-5-1 neural network topology with Gauss 

and bipolar Sigmoid AF 

According to the Fig. 3 it is obvious that both neural networks 
solved the problem. These, and some other experiments 
(Majetic, et al., 2003) shows that neural network with adaptive 
activation function performs better mapping. Adaptive Gauss 
AF eliminates the Bias neurons weights, which means that the 
number of neurons and the number of those neurons learning 
parameters are reduced. 
 Therefore, the proposed neuron structure modification 
concerning integrated ARMA filter and adaptive Gauss AF 
gives very promising results. 
 
5. CONCLUSION 
 
We established a basic dynamic neuron model, which processes 
multi inputs and does not require past values of the process 
measurements or prior information about its activity functions. 
 The main advantage of proposed dynamic neuron model is 
that it reduces the network input space. Additionally, because 
of elimination of the Bias neuron for hidden layer, the neural 
network with adaptive Gauss activation function has the less 
number of neurons and learning parameters. It reduces CPU 
time and memory needed; it learns much faster and has better 
generalization property. Such AF shows the great possibility in 
solving the local minima's problems. Finally, trained neural 
network with smaller topology has much faster response, which 
is more promising in real-time domain applications. 
 The proposed neural network offers a great potential in 
solving many problems that occurs in system modeling with a 
special emphasis on the systems with characteristics such as 
nonlinearity, time delays, saturation or time-varying 
parameters. 
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