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Abstract – The aim of this research was to determine an 
acceptable method of texture feature extraction that could 
be used for a visual inspection of ceramic tiles quality. 
Traditional extraction of statistical features has been 
carried out as well as feature extraction based on local 
binary pattern operators. For the purpose of testing the 
proposed methods good and defective ceramic tiles have 
been identified. The obtained results indicate a possibility 
for developing a system of a visual inspection of ceramic 
tiles quality and point out local binary pattern operators as 
a powerful tool applicable in this particular case. 

I. INTRODUCTION 
In the process of ceramic tiles production a visual 

inspection is done by human. Production lines move 
monotonously, and since humans tend not to work well if 
the job in question is uninteresting, classification often 
results in sets of inhomogeneous tiles. A bad classification 
is also influenced by limited capabilities of a human in 
safety manner as well as fatigue. This is hazardous and 
unhealthy environment for human beings. Visual quality 
testing done by machine vision has to be more robust and 
provide less costly inspection. On the other hand, it is 
rather difficult to implement human intelligence necessary 
for solving unexpected situations into a visual inspection 
machine system. 

The influence of training data on decision-making 
consistency concerning proper operation is extremely 
large. Therefore, special attention should be paid to its 
setting up. The training data set must cover every possible 
occurrence of a ceramic tile. There are also numerous 
classification methods which determine classes of 
unknown patterns on the basis of known class affiliation 
of elements belonging to the training data set [1, 2, 3]. 
Since generally there is not the best classification method, 
and the effect of different methods varies by different 
applications, due to its simple implementation the nearest 
neighbor method has been selected for the purpose of this 
research. 

Texture feature extraction is a key part of the visual 
inspection system [4]. The goal is to find the method that 
can separate those texture features on the basis of which it 
would be possible to detect a tile defect. Statistical 
methods of image analysis described in [5,6] have been 
lately successfully applied relative to texture analysis, thus 
feature extraction is carried out in accordance with these 
methods.  

A rather recent method of texture analysis based on the 
local binary pattern operator (LBP) has evolved through 
several scientific papers [7, 8, 9] and shown a great power 

of extraction of spatially variant information. These 
scientific papers encouraged the usage of local binary 
patterns for this application.  

Algorithms are implemented through functions written 
in MATLAB environment. According to feature vectors 
determined by some extraction method, a separation of 
good and defective ceramic tiles is carried out. A certain 
tile set previously classified by human is used as a training 
set by classification using the nearest neighbor method. 

II. THE PROBLEM OF CERAMIC TILE INSPECTION 
The class of a ceramic tile is determined by measuring 

dimensions, hardness, porosity, and texture imprint 
quality. There are various methods for determining 
physical characteristics of a tile, whereas imprint quality 
control still lies in the phase of scientific research. Various 
types of complex textures on ceramic tiles make this 
problem extremely complicated. This paper does not 
attempt to define the method that should classify tiles but 
the method aiming at separating good tiles. With respect 
to production quantity and major part of good tiles 
manufactured, the implementation of such system in 
ceramic tile industry implies a great deal of saving. After 
the separation of good tiles, the remaining defective tiles 
can be processed either in the existing or in some 
alternative way. 

For some experimental data 60 ceramic tiles of a rather 
complex texture were selected, 30 of which were good 
and 30 defective ones. Fig. 1 shows an example of 
ceramic tile with two defects. Defective tiles had defects 
in the form of black dots occurring due to impurity 
particles during texture imprint. Monochromes images of 
ceramic tiles 1142x1459 pixels were obtained by a 
scanner with a resolution of 72 dpi.  

Training images were selected by paying attention to 
different dimensions of defects at various locations on 
tiles. An experimental procedure was carried out with the 
training set of 10 images of good and 10 images of 
defective tiles. The remaining images underwent defect 
detection. 

III. APPLIED TEXTURE FEATURES 

A. First Order Statistical Features 
First order statistical features provide information on 

the distribution of pixels on a digital image, but do not 
give any information on their relative positions. Thus, 
these are the features characterizing brightness (strength 
of the patterns), but not its spatial structure. 



 
Figure 1.  An example of ceramic tile with two defects 

First order image histogram (P(I)) is defined according 
to [5], as a ratio between the number of pixels with value I 
and the total number of pixels. The characteristic 
coefficients are defined using (1), (2) and (3). 
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By arranging the above mentioned coefficients into a 
vector we obtain a feature vector. The most efficient 
method so far has been obtained by combining the 
following coefficients, and therefore they were used in 
this paper: µ=m1 - mean, σ2=µ2 - variance, µ3 - central 
moment related to skewness, µ4 - central moment related 
to kurtosis, H – entropy. 

B. Second Order Statistical Features 
Second order statistical features consider pixels in pairs 

and give information on their relative positions. Hence, 
they characterize a texture by providing information on 
brightness and spatial structure. A pair of pixels is 
determined by two values, relative distance and relative 
orientation. Relative distance d is measured by the number 

of pixels (d=1 for neighboring pixels, etc.). Relative 
orientation Φ is quantized in four directions: horizontally, 
diagonally, vertically, and anti-diagonally (0°, 45°, 90°, 
and 135°). For every combination of d and Φ a two-
dimensional histogram is defined, according to [5], as a 
ratio between the number pixels pairs at distance d in 
direction Φ with values (I1, I2) and the total number of 
possible pairs of pixels. 
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For each of those histograms we define a field known 
as a co-occurrence matrix. A co-occurrence matrix for pair 
(d,Φ) is defined as an Ng x Ng matrix, where Ng is the 
image depth. E.g. if Ng = 4, then the co-occurrence matrix 
is equal to: 
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Figure 2.   Calculation of LBP code of a particular neighborhood  

Figure 3. An example of circular symmetric neighborhoods 

where η(I1,I2) is the number of pixel pairs at relative 
position (d,Φ) with values (I1,I2). R is the total number of 
possible pixel pairs. The definition of the co-occurrence 
matrix implies its symmetry, which enables further 
reduction and gives a possibility of separating certain 
coefficients that efficiently encode image texture. 
According to [5, 6], the following seven coefficients are 
used in this paper: energy, entropy, homogeneity, inertia, 
correlation, cluster shade, cluster prominence. 

By connecting these elements into a vector we obtain a 
feature vector. There is a great correlation of pixel pairs 
within small relative distances, whereas by increasing the 
distance, that correlation vanishes. The consequence is an 
efficient texture representation by co-occurrence matrices 
for small relative distances. Co-occurrence matrices are 
sensitive to changes of brightness, which makes them 
inadequate for comparing objects recorded in various light 
conditions. 

C. Features of the original LBP operator 
The original LBP (local binary pattern) operator was 

introduced for the first time according to [7]. It operates in 
the neighborhood of eight pixels, using the value of the 
central pixel as a threshold. An LBP code of a particular 
neighborhood is calculated by assigning corresponding 
weights to every pixel and adding products as shown in 
Fig. 2. Boundary pixels do not have neighborhoods, 
therefore a central pixel of first existing neighborhood is 
pixel addressed by second row and second column. Every 
existing image neighborhood is encoded by a respective 8-
bit code. Thus, there can appear the total of 28=256 
different LBP codes. The image can be given by an LBP 
histogram of 256 elements, which is also a feature vector 
at the same time.  

Correlation between pixels is great within a small 
environment defined by a neighborhood, so that the spatial 
texture structure can be efficiently represented by this 
method. The histogram of LBP operators contains only 
information on local patterns, i.e. spatial image structure, 
thereby neglecting brightness (strength of patterns) 
completely. 

D. Features of a general LBP operator 
A general LBP operator is defined according to [8]. Let 

texture T of an image local neighborhood be defined as an 
integrated distribution of grey scale values on P+1 (P>0) 
pixels. 

( )10 ,...,, −= Pc gggtT   (9) 

gc is the value of the central pixel of a local 
neighborhood. gP(P=0,…P-1) are values of P pixels 
equidistant along the circumference with R(R>0). The 
circumference forms a set of circular symmetric 
neighbors. On the domain of the digital image coordinates 
of individual neighbors gp are given by (10). 
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Where (xc,yc) are coordinates of the central pixel. Fig. 3 
illustrates three circular symmetric neighborhoods for 
different values of P and R. Values not hitting the exact 
pixel center are determined by a bilinear interpolation.  

If the central pixel value is subtracted from the values 
of individual neighbors, local texture can be represented 
as an integrated distribution of the central pixel value and 
differences using (11). 

( )cPcc gggggtT −−= −10 ,...,,  (11) 

If we assume that differences are independent of gc, the 
distribution can be factorized in the following way: 

( ) ( )cPcc ggggtgtT −−≈ −10 ,...,  (12) 

Equation (12) has a sign „≈“ since the assumption 
concerning independence of differences is false, but with 
an insignificant loss of information we have independence 
of grey scale shifts. T(gc) describes a general image 
brightness and most of the information on original 
integrated distribution texture remains in the distribution 
of differences: 

( )cPc ggggtT −−≈ −10 ,...,   (13) 

P-dimensional difference distribution records 
occurrences of various texture patterns in the 
neighborhood of every pixel. In order to have 
independence on any monotone grey scale transformation, 
only the difference signs are taken into consideration. 

( ) ( )( )cPc ggsggstT −−≈ −10 ,..., , (14) 
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Figure 4.   An example of 8-bit rotation invariant LBP codes 

 
Figure 5.   8-bit uniform LBP codes 

Binomial weight 2P is assigned to every sign s(gp–gc), 
transforming neighborhood differences into a unique LBP 
code using (15), which characterizes local texture around 
(xc,yc). 
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An LBP code is a P-bit binary number that can assume 
2P various values. A texture feature vector is obtained as a 
2P element histogram of LBP codes. A balance between P 
and R values has to be established. LBP code could 
contain a lot of redundant texture information or could not 
contain texture information at all if the balance is not 
established. 

Rotation invariance is based upon circular indexing of 
neighborhoods, since every image pixel is considered to 
be a rotation center. Rotation of every LBP code into a 
referential position results in the same LBP code for every 
occurrence of its rotation versions. That transformation is 
defined using (16). 

( ){ }1...1,0  ,RORmin ,, −== PiiLBPLBP RP
ri

RP  (16) 

Where ri comes from „rotation invariant“. Function 
ROR(x,i) shifts a P-bit binary number x i times to the 
right.  

Fig. 4 shows an example of 8-bit rotation invariant LPB 
codes. Binary value 0 is represented by black and binary 
value 1 is represented by white. The first row comprises 
referential positions of LBP codes, whereas other rows 
contain LBP codes resulting in the same referential LBP 
code. We can notice that the first two LBP codes are 
invariant as such, the third one can specifically occur only 
in two rotation versions, whereas the other three codes 
might appear in seven various rotation versions, two of 
which are represented. 

It is also noticed that certain local patterns represent 
fundamental texture features and that, according to [9], 
they carry more than 90% of information. These patterns 
are uniform since they share one common feature, i.e. in 
their circular binary codes occur at most two transitions 
one-zero and zero-one. For a formal definition of 
uniformity a local uniformity measure U of neighborhood 
GP is used: 
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Patterns in which value U assumes 2 or less than 2 are 
called uniform. Uniform LBP patterns can be seen in Fig. 
5. The first (000000002) and the last (111111112) LBP 
patterns have value U=0. The remaining LBP patterns 
have value U=2, since in their circular binary code there 
occur exactly two transitions, one from 0 to 1, and the 
other from 1 to 0. 

The total number of uniform patterns is P+1. The 
feature vector is obtained as a histogram of P+1 elements 
of uniform patterns and one element of all other patterns 
summed together. By applying uniformity and rotation 
invariance the number of possible LBP codes is 
significantly reduced. E.g. by applying 8-bit rotation 
invariant and uniform LBP codes we obtain a histogram of 
only 10 elements, which represents a significant decrease 
with respect to a 256-element histogram of the original 
LBP operator. 

IV. CLASSIFICATION METHOD 
The problem of separating good ceramic tiles can be 

considered as a classification of tiles into two groups: 
good and defective class, whereby defective tiles are all 
those tiles with any possible sort of damage. There is not a 
general classification method which could be said to be 
better than any other, but efficiency of various methods 
varies depending on the application. For the purpose of a 
simple implementation, classification in this paper is done 
according to the nearest neighbor method. The training set 
of vectors with defined class affiliation is used for 
determining the class of an unknown vector. On the basis 
of calculating the unknown vector distance from every 
individual training vector it is assigned the class of the 
closest training vector. „Proximity“ of vectors is measured 
by Euclidean distance. If feature vectors consist of b 
coefficients and if we denote a pattern feature vector by S, 
and one of the training feature vectors by T, Euclidean 
distance D can be calculated using (18). 
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Hence, equation (18) should be first applied to all 
training vectors, and then an unknown vector is assigned 
the class of the training vector with minimal value D. 

V. EXPERIMENTAL RESULTS 
As it was expected, the influence of the image spatial 

structure information is much greater than the influence of 
the image brightness information, so that the feature 
extraction methods based upon local binary patterns were 
much more efficient. For every texture feature extraction 
method a classification was made with a training set of 10 
good and 10 defective tiles. Percentage error ranges from 
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Figure 6.   Classification efficiency 

22.5% (first order statistical coefficients) to outstanding 
0% (LBP_riu243). Percentage errors and classification 
efficiency are given in Table 1 and Fig. 6, respectively. 

Most of the errors are made by the first order statistical 
coefficient method, since it neglects an image pixel spatial 
structure. Results of the second order statistical 
coefficients for distances d1=1 and d2=2 are almost 
identical and characterize homogeneity very well, since 
they did not make any false defect error in any case. 
Results obtained by the original LBP operator and 
LBP_riu81 operator method are identical. These two 
operators are defined similarly, but the original LBP 
operator uses 256 elements in the feature vector, whereas 
LBP_riu81 uses only 10, which is, if we reject the 
inefficient first order statistical coefficient method, a 
method representing an image by the smallest feature 
vector. Despite a more complex algorithm and a greater 
feature vector, LBP_riu162 operator was a bit worse than 
LBP_riu81, which indicates imbalanced values of number 
of neighboring points (P) and radius of neighborhood (R). 
In both classifications the LBP_riu243 method was 
dominant, with no errors at all. The balance of P and R 
values is obviously well established. That method has the 
most complex algorithm, starting computing demands on 
the system. However, feature vectors are still small 
enough; only 26 elements, which makes the classification 
process faster. 

VI. CONCLUSION 
Results indicate that it is possible to build a visual 

inspection system of ceramic tiles using one of the 
proposed texture feature extraction methods. An efficient 
quality inspection can be reached by analyzing ceramic 
tiles texture features from an image obtained by a black-
and-white camera. Such camera is easily mounted on the 
assembly line enabling thereby computer-made decisions 
about possible defects. Such simple implementation of a 
visual inspection system of ceramic tiles is of great 
practical importance.  

First order statistical coefficients were less efficient. 
Since they do not have any pixel spatial structure 
information, but just the information on their values, we 
can conclude that for defect detection it is important to use 
features characterizing spatial relations between pixels. 
All other methods include spatial structure information 
which in line with that show good results.  

The most efficient method of texture feature extraction 
is the method of a general rotation invariant and uniform 
LBP operator defined for 24 points distant form the 
central pixel for radius 3 (LBP_riu243). This method 
represents the first choice for a visual quality inspection 
system.  

An interesting case is a rather high level of efficiency of 
an LBP operator defined for 8 points distant from the 
central pixel for radius 1 (LBP_riu81). Namely, that 
histogram of LBP codes characterizes the whole tile 
texture, demanding small computer power, with only 10 
elements. By a proper selection of the training set, this 
method could give excellent results even on very weak 
computer systems. 
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TABLE I.   
CLASSIFICATION ERRORS IN PERCENTAGES 

 false defect 
error 

undetected 
defect error 

total error 
(%) 

STAT_r1 25 20 22.5 
STAT_r2d1 0 5 2.5 
STAT_r2d2 0 10 5 

LBP 10 5 7.5 
LBP_riu81 15 0 7.5 
LBP_riu162 10 10 10 
LBP_riu243 0 0 0 

 


