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Abstract. Modeling is a popular way of representing the behavior of a
system. A very useful type of model in computing is an abstract state ma-
chine which describes transitions over first order structures. The general
purpose model-based testing tool SpecExplorer (used within Microsoft,
also available externally) uses such a model, written in AsmL or Spec#,
to perform a search that checks that all reachable states of the model are
safe, and also to check conformance of an arbitrary .NET implementation
to the model. Spec Explorer provides a variety of ways to cut down the
state space of the model, for instance by finitizing parameter domains or
by providing predicate abstraction. It has already found subtle bugs in
production software.
First order structures and abstract state machines over them are also
a useful way to think about cryptographic protocols, since models for-
mulated in these terms arise by natural abstraction from computational
cryptography.
In this paper we explain this abstraction process, ‘experiments as struc-
tures’, and argue for its faithfulness. We show how the Dolev–Yao in-
truder model fits into SpecExplorer. In a word, the actions of the Dolev–
Yao intruder are the ‘controllable’ actions of the testing framework,
whereas the actions of protocol participants are the ‘observable’ actions
of the model. The unsafe states are the states violating say Lowe’s se-
curity guarantees. Under this view, the general purpose software testing
tool quickly finds known attacks, such as Lowe’s attack on the Needham–
Schroeder protocol.

Introduction: Why Yet Another Formal Model

A new ‘behavioral’ theory of algorithms has been developed in recent years in
a series of papers by Y.Gurevich, A.Blass [Gur00,BG03,BG04a,BG04b,Gur05],
and also B.Rossman and the authors [RR05]. The gist is that algorithms can
be mathematically captured at their own native level of abstraction - ex. the
native level of abstraction of the Euclidean algorithm is that of Euclidean rings.
Algorithms operate over abstract first-order structures, well studied and familiar
in mathematical logic, algebra and abstract mathematics in general.

The techniques developed for behavioral theory suggest a natural represen-
tation of Dolev-Yao assumptions in first-order structures, and a natural map-
ping of ad-hoc notations present in abstract models of cryptography. Unlike the



static abstract models, which necessarily invoke additional proof-theoretic de-
vices to capture dynamic aspects, the behavioral theory explicitly targets the
dynamic behavior of algorithms semantically. By recent work on behavioral the-
ory [BG04a,BG04b,RR05,Gur05], this also includes interactive algorithms talk-
ing to an environment between steps, and within a step, allowing us to repre-
sent the abstract content of oracle algorithms and adversary games typical of
computational cryptography directly. In the framework of intra-step interactive
algorithms exact abstract representations of computational security notions, de-
fined in terms of adversary games, emerge clearly. The experiments of asymptotic
computational cryptography can be naturally represented in terms of interac-
tive algorithms over first-order structures, this is our experiments-as-structures
paradigm, providing a setting for soundness/completeness proofs. The abstract
content of these proofs gets more clearly separated from the probabilistic aspects.

In this paper we execute a small initial segment of this program, in case of
confusion-free symmetric encryption. Abstract models for the standard asymp-
totic security notions in this case are provided, with proofs of their soundness
(under the assumption of acyclicity) and completeness. The relation of these
proofs to proofs in the literature [AR02,MW04a,AJ01,Ban04,ABS05] can best
be described as extraction of abstract content. We also briefly indicate how the
assumptions of confusion-freeness and acyclicity can be relaxed in our setting.
Partially establishing the exact relation to existing models of abstract cryptog-
raphy, we show how a variant of Abadi-Rogaway expressions with explicit coins
naturally embeds into our framework.

Section 1 is a (necessarily cursory) overview of the behavioral theory of al-
gorithms, essentially referring the reader to the literature. Section 2 is a brief
summary of the relevant assumptions of asymptotic computational cryptogra-
phy in the asymmetric (public key) case. Section 3 presents the experiments-as-
structures paradigm and our abstract model of cryptographic adversary games.
Section 4 contains sketches of soundness and completeness proofs, and how the
Abadi-Rogaway expression language variant embeds into our framework. Testing
model for public key protocols is in Section 5, together with an example of redis-
covery of Lowe’s attack on the Needham–Schroeder protocol by SpecExplorer.

In addition to quoted cryptographic literature, some understanding of the
framework as presented in [RR05] is expected of the reader.

1 Behavioral Theory of Algorithms

The behavioral theory of algorithms is not an attempt to question the Church-
Turing thesis, saying that every computable function over natural numbers can
be computed by a Turing machine, or the stronger implicit thesis, actually argued
for by Turing, that every algorithm can be simulated by a Turing machine. The
aim of the behavioral theory is to make semantical distinctions finer than that
precise.

While algorithms get implemented (simulated) exclusively over bits these
days, they are often intended to operate over much more abstract objects, ab-
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stract data-structures of algebraic or geometric or analytic or even not explicitly
mathematical character. The behavioral theory aims to capture algorithms as
they are intended, at their own level of abstraction.

The requirement of “capturing algorithms at their own level of abstraction”
is made precise as the requirement of simulation step-by-step. The technology
to achieve this is using first-order structures, well known to capture faithfully
arbitrary static mathematical situations, as states of algorithms. The dynamics,
the step, is also defined in terms of the abstract state.

This philosophy leads to a sharp mathematical definition, technically de-
veloped in [Gur00] and overviewed in [BG03], computationally realized in the
theoretical programming language of Abstract State Machines [Gur00] and the
implemented programming languages AsmL [AsmL] and Spec# [Spec#]. Models
written in these modelling languages are used by a model-based software testing
tool SpecExplorer, also developed at Microsoft Research [SpecExp].

1.1 Interactive Algorithms

Interactive algorithms issue queries to the environment, which contain labels and
data, and receive replies, which are data, elements of algorithm’s state, within a
step. This mechanism allows a clean separation of computational (the algorithm)
and declarative (the environment) aspects, and naturally models nondetermin-
ism, function calls, interaction with oracles, input and output,. . . The full theory
of (ordinary) interactive algorithms is developed in [BG04a,BG04b]; overviews
are given in [Gur05] and [RR05].

All algorithms in this paper are assumed to be small-step ordinary interactive
algorithms in the sense of [BG04a,BG04b,Gur05].

1.2 Accessibility, Reachability and Indistinguishability

The notions of accessibility of objects, reachability and indistinguishability of
states, as introduced in [RR05], will be important here. An object is accessible
at a state if it is the value of a term there. A state Y is reachable from a state
X if there is an algorithm turning X to Y . Two states X, Y are distinguishable
if there is an algorithm turning them into states distinct by values of a specific
term. Structures X, Y of the same vocabulary are similar, written X ∼ Y if they
induce the same equivalence on ground terms:

V al(t1, X) = V al(t2, X) iff V al(t1, Y ) = V al(t2, Y )

Precise definitions and the theory behind these notions can be found in [RR05].
Here we shall repeatedly use the following results from [RR05](where Y −X is the
set of differences of two states over the same carrier, see [Gur00,BG04a,RR05]
for definitions):

Theorem 1. State Y is reachable from state X iff

– X and Y have the same base set; and
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– Y −X is finite and every element in Y −X is accessible.

Theorem 2. State X and Y are indistinguishable by small–step algorithm iff
X ∼ Y .

1.3 Background Structures and Importing/Creating

An algorithms often needs to create a new object. A Turing machine often needs
to access a new tape location never used before.

In the TM case it obviously doesn’t matter whether we conceive its tape as
finite, creating new locations as needed, or as infinite, with all locations possibly
needed given in advance. In the latter case locations get activated as the TM
visits them for the first time.

The case of a first-order structure is the same, a reserve pool (“the heap”) of
sufficiently many fresh amorphous objects can be given in advance, to be accessed
as needed. For interactive algorithms, they are available to the environment to
be returned in reply to an appropriate query (get me a new . . . ). The reserve
elements are amorphous in the sense that no “significant” functions are defined
on them, or denote them as values. For abstract cryptography the amorphous
reserve objects will represent random coins.

But if we have some infrastructure defined on all objects, such as ordered
pairs and/or finite sets and/or encryptions, it would be both unnatural and very
boring to have to establish all the infrastructure over a new element each time
one is introduced, brought forward from the reserve.

The notions of background structure and background class [BG00] serve ex-
actly this purpose: the axioms for a background class of [BG00] specify what
kind of structure can exist over amorphous atoms without imposing any specific
properties on them except for identity.

See [BG00,RR05] for definitions of background classes, background of algo-
rithms, exposed elements, active part, reserve.

A structure X is explicitly atom–generated if the smallest substructure of X
that includes all atoms is X itself. All background structures in the paper are
assumed to be explicitly atom-generated. Atomic support of a set S of elements
of a structure X from a background class K is the set of atoms of the envelope
of S, the smallest K-substructure containing S.

Corollary 1. If the atomic support SupX({x}) of an element x is accessible in
a state X, then x is accessible in X.

We assume that the set of exposed elements is finite, but not necessary uni-
formly bounded, in every state. Remember that the foreground of an algorithm
is its (generalized) memory, storing input data and results of previous calcula-
tions. As such, after a finite number of algorithm steps, only a finite number of
locations can be changed.

Let 0X denote the reduct of X to the background vocabulary, the structure
obtained by “forgetting” all foreground functions in state X. We assume that
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all states have an infinite but countable reserve. It follows immediately from the
axioms of [BG00] that if X and Y are K-states over the same carrier, then their
background reducts are isomorphic 0X

∼= 0Y .

Theorem 3. Let X be a state with background BC. Then there is an algorithm
A and an injective answer function α appropriate for 0X with only reserve ele-
ments in its codomain such that X = A(0X , α).

2 Computational Cryptography

2.1 Encryption Schemes

An asymmetric encryption scheme Π is a tuple of polytime algorithms (K, I, E ,D)

K : Parameter× Coins −→ DecryptionKey

I : DecryptionKey −→ EncryptionKey

E : EncryptionKey× String× Coins −→ Ciphertext ∪ {⊥}
D : DecryptionKey× String −→ Plaintext ∪ {⊥}

where String denotes the set of finite strings over {0, 1}, domains EncryptionKey,
DecryptionKey, Ciphertext, Plaintext are subsets of String, ⊥ is a distin-
guished string representing failure of the algorithm, and Coins is the set of all
infinite strings over {0, 1} . The polytime assumption for K means time poly-
nomial in η (not the size of its string representation) and ignores the Coins
argument representing random coin flips. Suppressing the Coins argument K, E
become probabilistic polytime algorithms, and K(η, c), E(k,m, c),D(K, m) are,
according to tradition, often written as K(η), Ek(m),DK(m) respectively.

The key-inversion algorithm I returns an encryption key matching the de-
cryption key.

Remark 1 (Usual Assumptions). We require that

– DK(Ek(m)) = m whenever k = I(K), for every key K sampled from K(η)
and every plaintext m such that Ek(m) doesn’t fail;

– the Plaintext domain is the set of all m for which, for some EncryptionKey
k, Ek(m) doesn’t fail; Ciphertext is the corresponding codomain;

– if K, K ′ are two outputs of K(η) for the same η, then
• K, K ′ have the same length;
• k = I(K), k′ = I(K ′) have the same length;
• if m,m′ are strings of the same length, then Ek(m) doesn’t fail if and only

if Ek′(m′) doesn’t fail, and then the encryptions have the same length.

Remark 2. Syntax of an asymmetric encryption scheme is usually defined as a
triple of algorithms (K, E ,D), where K returns a pair of both encryption and
decryption keys [BDPR98]. But then I is simply a projection and the decryp-
tion algorithm simply ignores one of the parameters. We find our variant more
convenient for the purpose of abstract modeling.
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We also assume a (polytime) encoding of ordered pairs, which means a triple
of functions Σ = (P,F ,S), where P is a binary pairing function on strings, and
F and S are unary projections, with the usual properties. We also assume a
type-flaw preventing tagging scheme, ensuring that the codomains of K, E , I,P
are pairwise disjoint, and that neither of them contains ⊥.

2.2 Notions of Security

Notions of security of encryption schemes are typically based on a notion of in-
distinguishability, represented by two sequences of oracles of the same length,
the good-oracles OG

1 , . . . , OG
n and the fake-oracles OF

1 , . . . , OF
n . Each of the se-

quences gets initialized by randomly generating a sequence of keys to be used by
respective oracles, good-init and fake-init. The oracles and the initializations are
implicitly paremeterized by the encryption scheme Π and possibly the pairing
scheme Σ, but we shall drop this from the notation. Some data resulting from
the initialization can be passed to the adversary algorithm as parameters—we
consider this to be a part of the initialization. Let us call the initialization and
oracle data just ATT, and let the notion of security defined by ATT be IND-
ATT. The idea is that no PPT-limited adversary can distinguish whether she is
working with the good or the fake oracles:

Definition 1. Let A be an algorithm working with n oracles. Its advantage for
IND-ATT is

Advind-att
Π (A) = Pr[good-init : A(. . .)OG

1 ,...,OG
n = 1]−

Pr[fake-init : A(. . .)OF
1 ,...,OF

n = 1]

The encryption scheme Π is IND-ATT secure if no probabilistic polytime algo-
rithm A can guess which set of oracles it is provided with probability negligible
in the security parameter η: Advind-att

Π (A) is negligible.

The A(. . .) notation denotes the adversary algorithm called with any param-
eters that the initialization chooses to provide. Thus the notion of security is
completely characterized by the initializations and the oracles selected.

By negligible we mean, throughout this paper, polynomially negligible func-
tions: f(n) such that for every c for all sufficiently large n we have f(n) ≤ 1

nc ,
and by overwhelming those negligibly close to 1.

We define oracles characterizing notions of securities called indistinguishabil-
ity under chosen–plaintext attack and indistinguishability under adaptive chosen–
ciphertext attack, denoted with IND-CPA and IND-CCA, respectively.

Example 1 (IND-CPA).

– Let good-init be K ← K(η), passing along to the adversary algorithm k =
I(K).

– Let good-oracles be O with O(m1,m2) = Ek(m1).
– Let fake-init be as good-init.
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– Let fake-oracles be O with O(m1,m2) = Ek(m2), where k = I(K).

This defines the notion of security known as IND-CPA, “security under known
plaintext attack”.

Example 2 (IND-CCA).

– Let good-init, fake-init be as for IND-CPA.
– Let good-oracles be O,Od where O is as good-oracles of IND-CPA, and
Od(e) = DK(e) given that e is not an output obtained from O; if it is, then
Od(e) fails.

– Let fake-oracles be O,Od, with O as fake-oracle of IND-CPA and Od as in
good-init.

This defines a strictly stronger notion of security known as IND-CCA or IND-
CCA2, “security under known ciphertext attack”.

Nonces Nonces are random values enclosed with some formating data gener-
ated with a nonce generation algorithm N . They serve as a source of fresh,
unguessable data exchanged in protocols. Nonce generation algorithms can be
stateful, which somewhat complicates the appropriate definition of their security.
We define the advantage of an arbitrary algorithm A of breaking the security
of nonce generation algorithm N as a probability of succeeding in the following
game: k+ l+1 nonces are sequentially generated with N and then the algorithm
A is run on the first k and the last l nonces with the task to guess the value of
k + 1-th nonce:

Advnonce
N (A) = Pr[m, n,p

$←− N (η) : A(m,p) = n]

If this advantage is negligible in η for every ppt algorithm A, then N is secure.
In practice, this type of security is achieved by simply enclosing η long uni-

formly sampled string with formating data.

2.3 Confusion Freeness and Weak Key Authenticity

Neither the syntax of an encryption scheme nor the typical notions of security,
such as the one defined above, say much about what happens if we attempt to
decrypt an encryption with a key distinct from the decryption key. Syntax of
an encryption scheme allows for such decryption to fail, but it does not insist
on it. If it does not fail, notions of security forbid that the result is in any
meaningful way related to the underlying plaintext — a ppt algorithm has no
way of distinguishing it from any other potential plaintext with non-negligible
probability.

As a reader might already suspect, a failure to detect such situations would
affect the completeness of an abstract model of cryptography. It is implicitly
assumed that an abstract agent recognizes undecryptable encryptions in most
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if not all abstract models; if a ppt agent in the computational model is strictly
weaker, then the abstract model would be incomplete.

We might require that decrypting an encryption with independently gener-
ated fresh key fails with all but negligible probability (as a function of security
parameter η). This property was defined in [MW04a] and called confusion free-
ness. It is sufficient to prove the completeness of an abstract model. Similar and
independent definition can also be found in [AJ01].

However, confusion freeness is a quite strong requirement on an encryption
scheme. It turned out not to be a necessary one: a strictly weaker notion called
weak key authenticity was defined and shown to be both necessary and sufficient
for proving completeness [HG03]. Weak key authenticity requires only that an
attempt to decrypt an encryption with incorrect decryption key fails with non-
negligible probability.

3 The Abstract Model

3.1 Messages as Experiments

The act of creating a cryptographic message, in view of the probabilistic charac-
ter of cryptographic algorithms, is a probabilistic experiment. Say the message
is Ek(P(n, 0)). Without any contextual assumptions on the key k and nonce n,
meaning that they should be freshly generated, this implies the following cryp-
tographic experiment:

[K $←− K(η); k ←− I(K); n
$←− N (η); m←− P(n, 0); e

$←− E(k, m) : e]

While it is easy to formalize the above notation for experiments directly, we
skip it here. It should suffice to say that an experiment is a sequence of actions
delimited with semicolon; if the experiment has an output, then it is separated
from preceding actions by a colon. Left arrows are assignment operators, some-
times decorated with $ to emphasize the use of randomized algorithms on the
right hand side.

Expanding the shorthand for probabilistic algorithms, the above experiment
would take the form of

[c1
$←− Coins; K ←− K(η, c1); k ←− I(K); c2

$←− Coins;

n←− N (c2); m←− P(n, 0); c3
$←− Coins; e←− E(k,m, c3) : e]

We shall in the sequel assume that all experiments are so expanded, that $←−
appears only at the left of Coins.

3.2 Experiments as Terms

Here we develop a more systematic notation for representing cryptographic prob-
abilistic experiments, with well-known and widely used terms of first-order logic.
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In logic every function symbol comes equiped with its arity and, optionally,
can be marked as relational. We in addition mark some function symbols as
probabilistic and some as parameterized.

Here we list all vocabularies that will be used throughout this paper.

Vocabularies:

– Υlog is the vocabulary of logical constants, containing nullary symbols true,
false and undef, the usual boolean operators and the equality =.

– Υexp contains unary symbols key, inv, fst, snd and nonce, binary decrypt and
pair, and ternary encrypt. Symbols key, nonce and encrypt are marked as
probabilistic and symbols key and nonce are also marked as parameterized.

– Υconst contains nullary symbols for some constants, at least for bits 0 and 1.
– Υfun contains unary relation symbols PriKey,PubKey,Ciphertext,Pair, unary

len and a binary relation symbol sameKey.
– Υ = Υlog ∪ Υexp ∪ Υconst ∪ Υfun.

For experiment-representing terms the vocabulary Υexp∪Υconst∪{undef} will
suffice, together with some set of additional constants to denote some coins.

Definition 2. Let C be a set of constants. The set of experiment-representing
terms, in short e-terms, of vocabulary Υconst ∪ Υexp ∪ {undef} over C, is defined
inductively as:

– nullary symbols in Υconst and undef are e-terms;
– if n-ary symbol f ∈ Υexp is not marked as probabilistic and t1, . . . , tn are

e-terms, then f(t1, . . . , tn) is an e-term; and
– if n-ary symbol f ∈ Υexp is marked as probabilistic, t1, . . . , tn−1 are e-terms

and c ∈ C, then f(t1, . . . , tn−1, c) is an e-term.

Given an assignment of infinite strings to constants in C and a concrete value
of security parameter η, we can assign a concrete string to every e-term.

Definition 3. Let t be an experiment-representing term of vocabulary Υconst ∪
Υexp ∪ {undef} over C, Π = (K, E ,D) an encryption scheme, Σ = (P,F ,S) a
pairing scheme, N a nonce generation algorithm, and σ an assignment of infinite
strings to constants in C. Then a string JtKΠ,Σ,N

η,σ is defined inductively as follows
(when Π,Σ,N are known, we drop them from the notation):

– undef is interpreted as the failure string

JundefKη,σ = ⊥

– if g is neither marked as probabilistic nor marked as parameterized, then

Jg(t1, . . . , tn)Kη,σ = G (Jt1Kη,σ, . . . , JtnKη,σ)

– if g is marked as probabilistic but not as parameterized, then

Jg(t1, . . . , tn−1, c)Kη,σ = G (Jt1Kη,σ, . . . , Jtn−1Kη,σ, σ(c))
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– if g is marked as both probabilistic and parameterized, then

Jg(t1, . . . , tn−1, c)Kη,σ = G (η, Jt1Kη,σ, . . . , Jtn−1Kη,σ, σ(c))

for every (g,G) ∈ {(key,K), (encrypt, E), (decrypt,D), (pair,P), (fst,F), (snd,S),
(nonce,N )} and every c ∈ C.

Thus taking any e-term t, sampling for σ from the uniform distribution we
obtain a probability distribution Pr

[
σ

$←− U : JtKη,σ

]
; varying η we obtain an

ensemble.
The assumptions on the encryption scheme force that

Pr
[
c, c′

$←− U : D(K(η, c), E(I(K(η, c)),m, c′)) = m
]

= 1

must hold for any message string m, while the confusion-freeness assumption
forces

Pr
[
c, c′, c′′

$←− U : D(K(η, c), E(I(K(η, c′)),m, c′′)) = ⊥
]

to be overwhelming for every message string m. Similar equivalences are forced
by assumptions on the pairing function and projections.

We show that these equivalences carry over to formalization by e-terms, for
instance that

Pr
[
σ

$←− U : Jdecrypt(key(c1), encrypt(inv(key(c1)), t, c2))Kη,σ = JtKη,σ

]
must be overwhelming for every e-term t.

Definition 4 (Equivalence of E-Terms). Let T be a set of e-terms of vocab-
ulary Υconst ∪ Υexp ∪ {undef} over C. Then .= is the smallest equivalence over T
induced by the clauses

– for every pairwise distinct c1, c2, c3 ∈ C and every e-term t

decrypt(tk, te) =
{

tm if tk = key(ck) ∧ te
.= encrypt(inv(tk), tm, ce)

undef otherwise

– for all e-terms t1, t2, t, where t 6= pair(x, y) for all x, y, then

fst(t) =
{

tf if t
.= pair(tf , ts)

undef otherwise snd(t) =
{

ts if t
.= pair(tf , ts)

undef otherwise

Let [t] .= be the standard notation for the class of .= equivalent terms. The
above definition justifies the common representation of cryptographic messages
with terms without decrypt, fst and snd symbols:

Corollary 2. For every e-term t there is an e-term t0 in which decrypt, fst and
snd do not occur and t0

.= t.

Finally, we will show that the equivalence just introduced is justified by its
computational interpretation.
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Lemma 1. Let t1, t2 be experiment-representing terms of vocabulary Υconst ∪
Υexp ∪ {undef} over C, Π = (K, E ,D) a confusion-free encryption scheme, Σ =
(P,F ,S) a pairing scheme, N a nonce generation algorithm. If t1

.= t2, then

Pr
[
σ

$←− U : Jt1Kη,σ = Jt2Kη,σ

]
is overwhelming in η.

Proof. The proof is by induction on the definition of equivalence .=. Use the
assumptions on Π,Σ, the confusion freeness property of Π and the fact that
negligible functions are closed under addition. ut

Remark 3. A corresponding statement can be made in the case of weak key
authenticity. Under this assumption, the statement of the above lemma becomes

Pr
[
σ

$←− U : Jt1Kη,σ = Jt2Kη,σ

]
is not negligible in η. The proof is (almost) the same.

We shall often assume the following properties of encryption schemes:

Pr
[
c1, c2

$←− U : K(c1) = K(c2)
]

Pr
[
ck, c1, c2

$←− U : E(K(I(ck)),m, c1) = E(K(I(ck)),m, c2)
]

are both negligible in η. We shall name these properties, which easily follow from
the usual security notions such as IND-CPA, but are themselves much weaker,
as “random keys” and “random encryption” properties.

Lemma 2. Let Π be a confusion-free encryption scheme with random keys and
random encryption properties, Σ a pairing scheme, N a secure nonce generation
algorithm and t1, t2 e-terms. If [t1] .= 6= [t2] .= then

Pr
[
σ

$←− U : Jt1KΠ,Σ
η,σ = Jt2KΠ,Σ

η,σ

]
is negligible in η.

Proof. By Lemma 1 and Corollary 2, it suffices to show that

Pr
[
σ

$←− U : Jt1K = Jt2K
]

is negligible for terms t1 and t2 in which decrypt, fst and snd do not occur. The
rest of the proof is straightforward simultaneous induction on the structure of
construction terms t1 and t2. ut
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3.3 Experiments as Structures

Given a set of abstract representatives of coins to interprete constants from C,
we can organize the e-terms modulo .= to a first-order structure. What it buys
us is possibility to harness the well-developed theory of interactive algorithms of
[BG04a,BG04b], which operate over such structures as their states.

If elements of the structure are essentially equivalence classes of e-terms,
and .= is closed under substitution, the interpretation of any function g in the
vocabulary Υconst ∪ Υexp ∪ {undef} is naturally defined as

g([t1] .=, . . . , [tn] .=) = [g(t1, . . . , tn)] .=

The logical part of the structure is defined in the usual way. Some additional re-
lations are added to the interpretation, reflecting the assumptions on the tagging
scheme T , holding in codomains of functions key, encrypt, pair and nonce.

We proceed with a verbose definition of an isomorphism-closed classes of
structures K.

Definition 5. Let K be an isomorphism closed class of Υ–structures such that
X ∈ K if and only if there is a uniquely defined set CoinsX such that:

– true, false and undef denote distinct elements; elements in domains and codomains
of all logical constants except equality are logical elements in X; the inter-
pretations of logical connectives in Υlog are the usual ones, and

– each k ∈ Υconst denotes a unique non-logical element, we denote the set of
such elements Const;

– domains and codomains of functions in Υconst and Υexp, and the set CoinsX

contain non-logical elements only;
– the non-logical part of X is freely generated with functions key, inv, encrypt, pair

and nonce from CoinsX ∪ Const;
– PriKey, PubKey, Ciphertext, Pair and Nonce hold on codomains of functions

key, inv, encrypt, pair and nonce respectively,
– sets CoinsX , Const, PriKey, PubKey, Ciphertext, Pair, Nonce are pairwise dis-

joint, and we define Msg = Const∪PriKey∪PubKey∪Ciphertext∪Pair∪Nonce;
– functions key, inv, encrypt, pair, nonce are injective, with the domains CoinsX ,

PriKey, PubKey ×Msg × CoinsX , Msg ×Msg, CoinsX , respectively;
– decrypt, fst and snd are defined as

fst(pair(m1,m2)) = m1

snd(pair(m1,m2)) = m2

decrypt(key(c1), encrypt(key(inv(c1)),m, c2)) = m

for every m,m1,m2 ∈ Msg and every c1, c2 ∈ CoinsX ; elsewhere these func-
tions take the value undef;
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– function len assigns an integer to each m ∈ Msg such that, assuming len(m1) =
len(m′

1), len(m2) = len(m′
2), we have:

len(pair(m1,m2)) = len(pair(m′
1,m

′
2))

len(encrypt(inv(key(c1)),m1, c2)) = len(encrypt(inv(key(c′1)),m
′
1, c

′
2))

len(m1) + len(m2) ≤ len(pair(m1,m2))
len(m1) ≤ len(encrypt(inv(key(c1)),m1, c2));

for every m1,m
′
1,m2,m

′
2 ∈ Msg and every c1, c

′
1, c2, c

′
2 ∈ CoinsX ;if the argu-

ment is not in Msg, len takes the value undef.
– relation sameKey holds in e1, e2 iff e1 = encrypt(inv(key(c)),m1, c1) and e2 =

encrypt(inv(key(c)),m2, c2) for some c, c1, c2 ∈ CoinsX , m1,m2 ∈ Msg.

Defining the structure, we have used e-terms with set of constants C =
CoinsX .

What exactly is the relation of e-terms and structures just defined? Elements
of CoinsX are not accessible by ground terms in a structure X ∈ K, and therefor
e-terms cannot be directly evaluated in X. But if we expand the structure X
with constant symbols denoting CoinsX , then non-logical elements can be seen as
a class of .= equivalent terms. For X ∈ K, we will denote with X+ its unique ex-
pansion with constants CoinsX denoting themselves in X+. Since the non-logical
part of X is freely generated by key, inv, encrypt, pair, nonce from Const∪CoinsX ,
there is a unique ground term tXx of vocabulary {key, inv, encrypt, pair, nonce} ∪
Υconst ∪ CoinsX denoting every non-logical x in X+. Denote with TX

x the set of
all ground terms denoting x in X+. Then TX

x is exactly [tXx ] .=. This reading of
the definition allows us to attach the computational interpretation to elements
of structures as well.

Definition 6. Let X ∈ K, x a non-logical element in X and σ an assignment
of infinite strings to CoinsX . Then

JxKX,η,σ = JtXx Kη,σ.

If any of the parameters is determined by the context, we might suppress it and
ultimately write JtK and JxK if all parameters are understood from the context.

By Lemma 1 and Lemma 2, both equality and inequality on non-logical part
are preserved with overwhelming probability. If we fix some distinct coding of
the logical elements, then we can extend the computational interpretation to
all elements of the structure. The abstract interpretation will be preserved with
overwhelming probability by the computational representation.

Corollary 3. Let Π = (K, I, E ,D) be a confusion-free encryption scheme with
random keys and random encryption properties, Σ = (P,F ,S) a pairing scheme,
N a secure nonce generation algorithm, X ∈ K and t1, t2 terms of X+. Then
V al(t1, X+) = V al(t2, X+) if and only if Jt1Kη,σ = Jt2Kη,σ with overwhelming
probability.
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3.4 Experiments and Algorithms

If we wanted to capture full static logic of asymptotic computational cryptog-
raphy, we would need much more involved logical constructions. But full static
logic is not what we are after, capturing equality and inequality suffices for our
purposes. Equality and inequality, which means similarity, suffices to determine
the behavior of abstract interactive algorithms of [BG04a,BG04b].

Under the computational interpretation, concrete ppt Turing machines op-
erating on concrete cryptographic messages can simulate abstract algorithms
operating over structures representing such messages. A concrete ppt Turing
Machine, run on a tape containing a finite set of cryptographic messages, can
analyze the messages by running deterministic algorithms such as decryption D
and projections of pairs F and S, testing parts of analyzed messages for equality
etc. It can also create new messages by running probabilistic key and nonce gen-
eration algorithms K andN , encryption algorithm E , or deterministic algorithms
such as the pairing algorithm P.

The fact that concrete ppt Turing machines can do essentially no more than
the abstract algorithms will be forced by security assumptions on the encryption
schemes.

Abstract algorithms represent all possible internal actions of an algorithm
with evaluation of terms, and external actions, such as receiving of input mes-
sages, with an answer function attached to a state. Internal memory of the ab-
stract algorithm will be modeled with additional functions expanding the struc-
tures. The modeling choices we just made are quite obvious and sufficient for
everything but coin flipping, e.g. creation of fresh nonces, encryptions etc.

The behavioral theory of algorithms has a well developed theory of importing
of fresh objects. Almost every non-trivial application of the theory use import-
ing over a background structure. There is nothing fundamentally different in
extending the working space of an algorithm with a fresh atom used to build
hereditarily finite sets, or with a fresh atom representing a fresh coin flip used
for probabilistic functions. Only atoms that are not used in any meaningful way
in the state can be imported, and the exact choice of the atom imported is
irrelevant since they all produce isomorphic states.

The isomorphism-closed class of structures K is a background classes with
Atoms(X) = CoinsX for every X ∈ K. We will denote it by BCcpa.

Let A be an ordinary interactive small–step algorithm with background
BCcpa. In every state X, A evaluates a finite set of terms, possibly using re-
sults of interaction with its environment α, and finally, based of the result of the
evaluation, generates an update set ∆+

A(X, α). We will make no limitations on
coins that can be imported by α, except the usual one that an imported coin
must be a reserve atom.

Definition 7. Let A be an ordinary interactive small-step algorithm with back-
ground BCcpa and X its state. Let Π an encryption scheme, Σ a pairing scheme
and N a nonce generation algorithm. Then

– JXKη,σ is a concatenation of strings JxKη,σ for all accessible x ∈ X.
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– JAKη is a Turing machine that evaluates computational interpretations of
abstract terms evaluated by A.

Example 3. An abstract algorithm modeling the first action of responder B in
the Needham–Schroeder protocol:

A
{kA, nA}kB−−−−−−−−−−−−−→ B
{nA, nB}kA←−−−−−−−−−−−−−

is given with the following ASM program:

let p = decrypt(B, in), kA = fst(p), nA = snd(p) in

if PubKey(kA) and Nonce(nA)
then

import c1, c2 in

let nB = nonce(c1) in

a := kA

n := nA

m := nB

out(encrypt(kA, pair(nA, nB), c2))

The program is executed in a state X with background BCcpa and a context
α. State X contains a constant B denoting the private key KB , and undefined
constants n, m, and a. Context α is

α = {(c1, c1), (c2, c2), (in, e1), (out[e2], ack)}

for some c1, c2 ∈ Reserve(X) and encryptions e1, e2 ∈ X. Queries in and out are
used for communicating for the environment, while c1 and c2 represent internal
coin flips made by the algorithm—environment replies to queries c1, c2.

The corresponding Turing machine JAKη operates on three tapes. The first
tape represents the internal memory of the algorithm and contains the string
JKBKη,σ. The second one represents internal randomness needed by the algo-
rithm, it is an infinite sequence of random bits. The third tape represents inter-
action with an environment, containing Je1Kη,σ at beginning and Je2Kη,σ at the
end of the calculation.

The interpretation of actions of an abstract algorithm with experiments de-
serve some additional attention. The (abstract) work performed by an algorithm
is measured in ground terms it evaluates. Evaluation of a term is inductively de-
fined as:

1. interpretation of a background function,
2. interpretation of a foreground function, and
3. querying and receiving an answer from the environment.
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Work performed in (1) amounts to evaluation of the appropriate function G rep-
resented by a background function g. Foreground functions represent the internal
memory of an algorithm, and therefore (2) is usually a simple memory lookup.
Work performed by the environment (3) is not done by the algorithm, as it
simply creates queries and uses the answers provided. This view has the follow-
ing simple consequence when A is instantiated with a concrete implementation
working on strings:

Corollary 4. Let A be a small–step algorithm with background BCcpa, Π an
encryption scheme, and Σ an pairing scheme. Then JAKη is a ppt Turing ma-
chine.

As already said, we will assume that every algorithm is capable of performing
experiments on its own, and therefore we will pose no restriction on importing of
fresh coins from the reserve of a state. However, algorithms might also receive,
within a step, results of experiments from its environment, such as answers
obtained by oracles. Specific modeling circumstances, such as a specific notion
of security, will determine our restrictions on such answer functions.

Theorem 4 (Completeness). Let Π = (K, I, E ,D) be a confusion-free en-
cryption scheme with random keys and random encryptions, Σ = (P,F ,S) a
pairing scheme and N a secure nonce generation algorithm. Furthermore, as-
sume that for all but a finite number of values of η:

– len(x) = len(y) in X iff |JxKη,σ| = |JyKη,σ| for every state X with background
BCcpa;

– encryption scheme Π is equipped with a ppt algorithm that can distinguish
two encryptions created with different keys.

Let X and Y be states with background BCcpa. If X 6∼ Y then there is a ppt
algorithm distinguishing JXKη and JY Kη with overwhelming probability.

Proof. If X 6∼ Y , then there are ground terms t1 and t2 such that V al(t1, X) =
V al(t2, X) and V al(t1, Y ) 6= V al(t2, Y ). By Corollary 3, the equality and in-
equality of terms is preserved with overwhelming probability by the computa-
tional interpretation. Let A be an algorithm outputting true when t1 = t2 and
false otherwise. Then JAKη distinguishes JXKη and JY Kη with overwhelming prob-
ability. By Corollary 4, JAKη is a ppt algorithm. ut

3.5 Abstract Notions of Security

Abstract interactive algorithms of [BG04a,BG04b] allow us to model the oracle
adversary games defining cryptographic security notions directly on the abstract
level!

The security of an encryption scheme is completely characterized with the
corresponding oracles attached to a ppt algorithm trying to break the secu-
rity of an encryption scheme, as described in section 2.2. The oracles attached
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to the algorithm also perform experiments, and the results of the experiments
are already representable by elements of the base set of the background classes
BCcpa. From the algorithm’s point of view, actions of oracles are actions of its
environment. Interaction of an algorithm and environment is well studied in
the behavioral theory of algorithm. It is represented with a collection of answer
functions attached to a state completely characterizing all possible reactions of
environment.

We will show how to view definitions of the notions of security from section
2.2 abstractly as a set of abstract answer functions attached to a state of an
algorithm. Recall the IND-CPA notion of security given by Definition 2. Its ab-
stract representation is as follows, minding that n, pk, eo(x, y) are queries asking
the environment for a new nonce, a new private key, an encryption of one of the
two messages respecitvely:

Definition 8. Let X be a state with background BCcpa. Then

– a context α of an ordinary interactive small–step algorithm A in X is IND-
CPA good if there are distinct elements ck, c1, . . . , cn, ce

1, . . . , c
e
k in the reserve

of X such that

α(ni) = ci

α(pk) = invX(keyX(ck))

α(eoj(xj , yj)) =
{

encryptX(invX(keyX(ck)), xj , c
e
j) if lenX(xj) = lenX(yj)

undef otherwise

for some xj , yj ∈ X, i = 1, . . . , n, j = 1, . . . , k; and
– a context β of an ordinary interactive small–step algorithm A in X is IND-

CPA fake if there are distinct elements ck, c1, . . . , cn, ce
1, . . . , c

e
k in the reserve

of X such that

α(ni) = ci

α(pk) = invX(keyX(ck))

α(eoj(xj , yj)) =
{

encryptX(invX(keyX(ck)), yj , c
e
j) if lenX(xj) = lenX(yj)

undef otherwise

for some xj , yj ∈ X, i = 1, . . . , n, j = 1, . . . , k.

Let A be the set of all IND-CPA good contexts and B the set of all IND-CPA
fake contexts in state X. Then A,B is the abstract model of IND-CPA oracle
interaction in X.

Instantiations of these answer functions with concrete encryption schemes
are exactly the experiments defined with the IND-CPA notion of security in
Definition 2.

Both IND-CCA good and fake contexts are extension of IND-CPA good and
fake contexts with additional queries and answers representing the decryption
oracles

α(do(xl)) = β(do(xl)) = decryptX(keyX(ck), xl)
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for some xl such that xl is not one of the answers to encrypt queries in α or β,
for l = 1, . . . ,m.

The abstract model of interaction of IND-CPA notion of security induces
an equivalence relation on states in the following way. We say that a small–step
algorithm A reduces state X to state Y for answer functions α, β if X = A(0X , α)
and Y = A(0Y , β). State X is reducible to Y for α, β if such a small–step
algorithm exists.

Definition 9. Let A,B be the abstract model of IND-CPA interaction. Then
X is reducible to Y for IND-CPA, denoted with X

cpa−→ Y , if X is reducible to
Y for some α ∈ A and β ∈ B. If both α and β are parameterized with the same

oracle encryption key K, then we also write X
K−→ Y .

The equivalence induced by the reducibility relation for IND-CPA relation,
its transitive and symmetric closure, is denoted with X

cpa= Y .

Lemma 3. Let Π be a confusion-free IND-CPA secure encryption scheme, Σ a
pairing scheme and N a secure nonce generation algorithm. Let X and Y states
with background BCcpa. If X

cpa= Y , then JXKη is indistinguishable from JY Kη by
probabilistic polynomial time algorithms with all but negligible probability.

Proof. Since computational indistinguishability is an equivalence, it is sufficient
to show that JXKη ≈ JY Kη when X

cpa−→ Y .
We argue by contradiction. Suppose there is a ppt algorithmA distinguishing

JXKη and JY Kη with non-negligible probability. We will use this algorithm to
distinguish oracles characterizing IND-CPA security.

Denote with α an IND-CPA good context and with β an IND-CPA fake con-
text such that for some algorithm A we have X = A(0X , α) and Y = A(0Y , β).
Run the algorithm JAKη with an IND-CPA oracle to create JXKη,σ or JY Kη,σ,
depending on whether you are provided with a good oracle or a fake one. Run
A on the resulting state. If A can distinguish JXKη,σ from JY Kη,σ with non-
negligible probability, then we can break IND-CPA security of the encryption
scheme used. ut

The above lemma tells us that certain challenges are indistinguishable as a
simple consequence of the notion of security. If two inputs of a challenge can
be generated by the same abstract algorithm, but using two different oracles,
then it is clear that this algorithm, if successful, would break security of the
underlying encryption scheme.

Remark 4. Given some enumeration of coins c1, c2, . . . in a state X, we will
often use the following notation for elements of X: ni for nonceX(ci), Ki for
keyX(ci), ki for invX(keyX(ci)), 〈m1,m2〉 for pairX(m1,m2) and {m}iKj

for
encryptX(kj ,m, ci). If a state has a single nullary foreground symbol, then we
will identify the state with the unique element the symbol is denoting in it. E.g.
a state X with f denoting encryptX(invX(keyX(c2)), keyX(c1), c3) for some coins
c1, c2, c3 ∈ Reserve(X) is identified with {K1}3K2

.
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Example 4. We will show that

{{K1}4K2
,K3}5K1

K2−→ {{0}4K2
,K3}5K1

K1−→ {0}5K1

for IND-CPA security (assuming that 0 denotes a zero string of an appropriate
length). Let A1 and A2 be algorithms with programs Π1 and Π2:

Π1 = import c1, c3, c5

let K1 = key(c1), K3 = key(c3), k1 = inv(K1) in

f := encrypt(K1, pair(eo(K1, 0),K3), c5)
Π2 = import c2, c3, c4

let K2 = key(c2), K3 = key(c3), k2 = inv(K2) in

f := eo(pair(encrypt(k2, 0, c4),K3), 0)

and let IND-CPA positive α1, α2 and IND-CPA negative β1, β2 be

α1 = {(c1, c1), (c3, c3), (c5, c5), (eo[K1, 0], {K1}4K2
)}

β1 = {(c1, c1), (c3, c3), (c5, c5), (eo[K1, 0], {0}4K2
)}

α2 = {(c2, c2), (c3, c3), (c4, c4), (eo[〈{0}4K2
,K3〉, 0], {〈{0}4K2

,K3〉}5K1
)}

β2 = {(c2, c2), (c3, c3), (c4, c4), (eo[〈{0}4K2
,K3〉, 0], {0}5K1

)}

Then

A1(0, α1) = {{K1}4K2
,K3}5K1

A1(0, β1) = {{0}4K2
,K3}5K1

A2(0, α2) = {{0}4K2
,K3}5K1

A2(0, β2) = {0}5K1

By Lemma 3, we can conclude that

Adv(A) = Pr
[
K1,K2,K3

$←− K(η); e $←−: Ek1(P(Ek2(K1),K3)) : A(e) = 1
]

−Pr
[
K1

$←− K(η); e $←− Ek1(0
`) : A(e) = 1

]
is negligible for every ppt algorithm A (we use ki = I(Ki)).

4 Soundness and Completeness of the Abstract Model

4.1 Indistinguishability

If we prove that state X and Y are indistinguishable by small–step algorithms,
what have we proved? We hope that than there is no probabilistic polytime
algorithm that can distinguish strings produced by experiments encoded by X
and Y with all but negligible probability.

For the IND-CPA notion of security, the background class BCcpa, an en-
cryption scheme Π, a pairing scheme Σ and a nonce generation algorithm N ,
we have three equivalence relations on abstract states with background BCcpa

representing experiments
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1. computational indistinguishability;
2. abstract indistinguishability; and
3. abstract reducibility.

If JXKη and JY Kη are indistinguishable by ppt algorithms, we write X
Π
≈ Y .

Computational indistinguishability is the semantical relation on states, defined
independently from our formalism in terms of capabilities of probabilistic poly-
nomial time Turing machines.

If X and Y are indistinguishable by small–step algorithms, we write X ∼ Y .
Abstract indistinguishability articulates our intention about what an encryption
scheme should achieve. It can also be seen as the power explicitly given to an
agent by an encryption scheme: if an agent can distinguish two states with an ab-
stract algorithm, then she can use an instantiation of the program to distinguish
instantiations of the states, all with the concrete instantiated encryption scheme.
This property is usually called completeness, and it can be phrased as “whatever
an abstract algorithm can do, a concrete instantiation can do with overwhelming
probability as well”. The proof given in Theorem 4 is quite straightforward, but
it involves some simple reasoning about probabilities. This is necessary, since it
relates an abstract relation with semantics defined in terms of ppt algorithms.
We get

X 6∼ Y ⇒ X
Π

6≈ Y,

or equivalently

X
Π
≈ Y ⇒ X ∼ Y. (1)

Abstract reducibility tells us what a concrete ppt algorithm cannot do as
a direct consequence of the notion of security. The proof given in Lemma 3 is
again very simple, it is nothing more than expressing what is the true meaning
of a particular notion of security. We get

X
cpa= Y ⇒ X

Π
≈ Y (2)

From equations (1) and (2), we have

X
cpa= Y ⇒ X

Π
≈ Y ⇒ X ∼ Y (3)

If we could relate abstract notions of equivalence by showing that

X ∼ Y ⇒ X
cpa= Y, (4)

we could, using (3), conclude that all three notions are equivalent

X ∼ Y ⇔ X
cpa= Y ⇔ X

Π
≈ Y.

The theorem establishing (4) is the essence of the computational soundness
of abstract wrt computational cryptography. It is also the most difficult one to
prove. However, it is expressed and proved completely in abstract terms, with
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no mention of Turing machines and their probabilities to distinguish concrete
strings in ppt time.

A state X is said to be in (IND-CPA) normal form if every accessible en-
cryption with inaccessible decryption key has zero string (of appropriate length)
as a subject.

Let A,B be the model of interaction for IND-CPA security in 0X . If an
inaccessible key k is not a subject of any used message in a state X, then X can
be constructed from 0X by a small–step algorithm A and some α ∈ A. If A is
run on 0X , β for some β ∈ B, we can produce a state X ′ in which k encrypts
only zeros, like we did in Example 4.

Lemma 4. Let X be a state with background BCcpa and K a decryption key
not occurring as a submessage of any used encryption in X. Then X

cpa−→ X ′

for some state X ′ with the same background reduct and the same accessibility of
nonces and keys such that

– all keys and nonces are accessible with the same terms in both X and X ′;
– key K encrypts only zero strings in X ′; and
– if encryption key k1 encrypts decryption key K2 or nonce n in X ′, then k1

encrypts K2 or n in X as well.

Now we have everything we need to prove that acyclic states are reducible
to normal form.

Lemma 5. Let X be an acyclic state with background BCcpa and accessible all
exposed elements. Then X is IND-CPA reducible to its normal form.

Proof. Enumerate inaccessible decryption keys such that encryption key kj does
not encrypt Ki if i ≤ j. Since the state is acyclic, such numeration is possible.

We will reduce X in n steps to a state Xn such that 0 is the only used subject
encrypted by an inaccessible encryption key. The proof is by induction on the
enumeration of inaccessible decryption keys. Key K1 is inaccessible and does not
occur as a submessage of subject of any used encryption in X. By Lemma 4, then
there is a state X1 such that X0

cpa−→ X1, k1 does not encrypt any decryption
key in X1 and encrypts in X1 is a subrelation of encrypts in X. Hence, the
enumeration of keys in X is good for X1. Since key k1 does not encrypts any
decryption key in X1, there is no key in X1 that encrypts K2 in X1. But then
K2 satisfies the condition of Lemma 4 in X1 and we can make another step of
the induction.

In Xn, subject of every undecryptable encryption is zero. Thus Xn is in the
normal form. ut

An example of a reduction of a (cyclic) state to its normal form is given in
Example 4.

Since a normal form is a representative of its similarity class, we have:

Corollary 5. Let X and Y be acyclic states with background BCcpa and acces-
sible all exposed elements. If X ∼ Y then X

cpa= Y .
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Theorem 5 (Soundness). Let Π be an IND-CPA secure encryption scheme,
Σ a pairing scheme, N a nonce generation algorithm, and X and Y acyclic states
with background BCcpa. If X ∼ Y , then JXKη and JY Kη are indistinguishable by
probabilistic polynomial time algorithms.

Proof. We will assume that all exposed elements are accessible in both states. If a
state contains exposed but inaccessible elements, replace it with a state obtained
by undefining all foreground functions on such elements. The resulting state is
clearly computationally indistinguishable from the original one, it provides the
same information to the intruder. By Corollary 5, we have X

cpa= Y . Finally, by
Lemma 3, JXKη and JY Kη are indistinguishable. ut

4.2 Accessibility

If an element x is not accessible by a term in X, α for some state X with back-
ground BCcpa and α whose codomain is in the reserve of the state, can we
conclude that no ppt algorithm can output JxKη when run on JXKη with non-
negligible probability? The similar theorem was proved for an Abadi–Rogaway
language in [MW04b]. We will extend the soundness result of the previous sub-
section to accessibility here.

Lemma 6. Let X be a state with background BCcpa and x ∈ X with non-empty
support in X: SupX({x}) 6= ∅. Then

Pr
[
σ

$←− U : A = JxKX,η,σ

]
is negligible for every ppt algorithm A.

Intuitively, this means that a ppt algorithm cannot guess an independently
created key, nonce or encryption if no data is provided to it.

Lemma 7. Let Π be an IND-CCA secure encryption scheme and X, X ′ non-
isomorphic states with background BCcpa such that X

K−→ X ′ for IND-CCA
contexts α and β. If some ppt algorithm A can produce JxKX,η,σ with non-
negligible probability when run on JXKη,σ, then

– decryption key K is not as a submessage of x in X (key invX(K) can occur
as a submessage or as an encryption key);

– there is a term t such that x = V al(t,0X , α) and A can produce Jx′KX′,η,σ

with non-negligible probability when run on JX ′Kη,σ for x′ = V al(t,0X′ , β);
– x is accessible in X iff x′ is accessible in X ′.

Proof. We argue by contradiction. Suppose that K is a submessage of x in X. All
decryption keys are accessible in 0X , α except K, and every encryption created
by encryption oracle in α does not contain K in the subject. Hence we can
use IND-CCA decryption oracle and decryption with accessible keys to retrieve
JKKX,η,σ from JxKX,η,σ. But then we can distinguish JXKη,σ and JX ′Kη,σ with
non-negligible probability, which is a contradiction by Lemma 3.
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Since K can only occur in x as an encryption key, there is a term t such that
x = V al(t, α). Suppose that A can produce Jx′KX′,η,σ with negligible probability
only. Then

Pr
[
σ

$←− U : JtKη,σ = A(JXKη,σ)
]
− Pr

[
σ

$←− U : JtKη,σ = A(JX ′Kη,σ)
]

is non-negligible and can be used to distinguish states X and X ′, which is a
contradiction.

The last part is a simple consequence of X and X ′ being indistinguishable.
ut

Lemma 8. Let Π be an IND-CCA secure encryption scheme and X a state with
background BCcpa in the IND-CPA normal form. If x is not accessible in X, then
JxKX,η,σ is not accessible with non-negligible probability to ppt algorithms.

Proof. If x is not accessible in X, then some inaccessible key K must occur as
a submessage in x. Use IND-CCA decryption oracle and keys not used in X to
retrieve it and break the IND-CCA security. ut

Theorem 6. Let Π be an IND-CCA secure encryption scheme and X a state
reducible to its normal form. If x ∈ X is not accessible in X to a small-step
importing algorithm, then

Pr
[
σ

$←− U : A(JXKη,σ) = JxKX,η,σ

]
is negligible for every ppt algorithm A.

Proof. Let Xn be the normal form of X and

X
K1−→ X1

K2−→ X2
K3−→ . . .

Kn−→ Xn

for some inaccessible decryption keys K1, . . . ,Kn. Let x, x1, x2, . . . , xn be ele-
ments from Lemma 7. Then xn is inaccessible in Xn. By Lemma 8, JxnKXn,η,σ

is not accessible by ppt algorithms with non-negligible probability, which is a
contradiction by Lemma 7.

5 Model–based Testing of Protocols

In this section we will show how to encode ASM programs working over BCcpa

in Spec# and how to use SpecExplorer to explore all possible execution traces
for a bounded number of roles and agents.

The interactive algorithms of [BG04a,BG04b] are implemented in AsmL and
Spec#. SpecExplorer is a tool developed at Microsoft Research for exhaustive
exploration of (finitized) state spaces of specifications written in AsmL or Spec#,
in order to test an implementation for conformance and to generate unit tests.

We have found that it can be effectively used to explore state spaces of
protocol adversary situations, given a finite number of roles ensuring that the
state space is finite. Our analysis shows that this exploration also has direct
computational significance.
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class Coins {}

structure Message{

public virtual int len(){ return 1; }

case Nonce{

private Coins c;

}

case Pair{

public Message fst;

public Message snd;

public override int len(){ return fst.len() + snd.len(); }

}

case PrivateKey{

private Coins c;

public PublicKey inv(){ return PublicKey(this); }

}

case PublicKey{

private PrivateKey sk;

}

case Encryption{

public PublicKey pk;

private Message subject;

private Coins c;

public Message decrypt(PrivateKey sk)

require sk.inv() == pk;

{

return subject;

}

public bool sameKey(Encryption e){ return pk == e.pk; }

public override int len(){ return subject.len() + 1; }

}

public PrivateKey key(){ return PrivateKey(new Coins()); }

public Encryption encrypt(PublicKey pk, Message subject) {

return Encryption(pk, subject, new Coins());

}

public Pair pair(Message f, Message s){ return Pair(f, s); }

}

Fig. 1. BCcpa background encoding in Spec#
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5.1 Encoding in Spec# and SpecExplorer

The original idea of modeling abstract properties of cryptographic primitives by
an object–oriented programming language is from [RRS03]. An encoding of the
BCcpa background in Spec# is given in Figure 1. The encoding should be clear
to a reader with some basic understanding of accessibility modifiers private
and public in OO programming languages. A more elaborate discussion of the
similar encoding in AsmL language can be found in [RRS03].

An honest role will be represented with a Spec# encoding of an ASM program
operating over BCcpa background, such as the one given in example 3. On the
other hand, the intruder will not be represented explicitly in the model with a
concrete program. We will use the exploration capabilities of SpecExplorer to
explore all possible execution paths with a given set of honest roles. It is not
very difficult to teach SpecExplorer to completely analyze a message created by
an honest role, but we have a dramatically different situation when it comes
to creating a message that would be accepted by a role, forcing it to make a
step and possibly output a fresh message. The set of states of an honest role
is closed under isomorphisms and therefore infinite. We will look into a very
common class of protocols in which the set of messages that can be created by
an intruder and accepted by an honest role is infinite, but representable with
a finite set of messages. Every step that a role can make will produce a state
isomorphic to one of the states obtained by running the role with one of the
representative messages.

A role of a protocol exposes a very simple interface to the outside world.
It analyzes an input message and, if certain conditions are satisfy, outputs a
message. If conditions are not met, it typically hangs, not producing a new
messages regardless of any future inputs. If A is an action with a message m
given as input in a state X and an answer function α with only reserve elements
in its codomain, then τA(X, m,α) is a state

An action of such role is called simple if it checks the type of all submessages
of an input message. This means that any encryption must be decrypted, any
pair must be analyzed, and type of any nonce and key must be checked. A
protocol is simple if all actions of its roles are simple.

Theorem 7. Let A be a simple action and I an intruder with a finite set of
messages accessible by ground terms. Then there is a finite set of messages M
accessible to I in X, α such that for every message m′ accessible to I in X, β
there is m ∈M such that

τA(X, m,α) ∼= τA(X, m′, β)

Proof. If action A is simple, then atomic support of m′ in X SupX(m′) is finite
and bounded. It suffice to import |SupXm′| fresh coins from the reserve of X
and create all messages of a fixed submessage structure using freshly created
coins and known messages. ut

We use the above fact, together with theorems 1 and 6, to produce abstract
representations of all non-negligible computational traces representable by the
BCcpa background for a bounded number of honest roles.
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Fix a simple protocol P . Let k be a maximum number of coins in support
of any message accepted by an action of an honest role in P . At the initializa-
tion phase, SpecExplorer creates a fixed number of honest agents and corrupted
keys. In each subsequent step, SpecExplorer imports k fresh coins from the re-
serve, and creates all messages from fresh coins and already know messages that
could potentially be accepted by some honest role. Each role is ran with each
such message used as its input by SpecExplorer, thus producing a set of all
reachable states in the model. The exact order in which states are explored is
non-deterministic, although the tool allows different priorities to be assigned to
states. A role accepting an input message, can possibly output a message. The
output message gets analyzed by the tool, thus updating the internal memory
of the intruder. At the end of each step, the protocol guarantees are checked in
new states by the tool. If any of protocol guarantees is not satisfied, the explo-
ration is aborted and a graph with explored states, including the one in which
the guarantee is not fulfilled, is rendered by the tool. The trace that resulted
with the bad state can be explored and studied using the tool.

One optimization of the exploring process can be achieved by a grouping
of states and further exploration of a single state representative of a group.
The exploration space can be dramatically reduced for an appropriate grouping,
but an optimal grouping is not always easy to find. In our case, isomorphism
seems like a good choice of grouping relation on states. Since SpecExplorer does
not have a built-in option of grouping of isomorphic states, we use an ad–hoc
coding of states resulting in a grouping relation finer than isomorphism, but still
significantly reducing the exploration space.

Example 5 (Lowe’s attack on Needham–Schroeder protocol). One example of a
simple protocol in the above sense is the public–key variant of the Needham–
Schroeder authentication protocol. The flaw found by Lowe is easily (re)discovered
by SpecExplorer, usually in less than 100 explored states.

The model is initially in a state marked as Initial in Figure 2. The first
step of initialization is performed by calling CreateAgentFactory, which creates
an object capable of creating honest agents of the protocol. The next invocation
of CreateAgents(2,1) creates two honest agents and one corrupted private
key. The internal memory of the intruder is enriched with public keys of the
honest agents and the private corrupted key. The resulting state is marked with
Agents Created. The exploration process starts here. SpecExplorer now can
create fresh roles of already created honest agents using CreateInitiatorRole
and CreateresponderRole, or run already an created role using RunRole. The
parameters for RunRole are picked up from the finite set of representative of
messages using the Theorem 7.

The Lowe’s attack on the protocol is found after creating one initiator and
one responder role, and then calling RunRole four times with the appropriate
parameters. In the resulting state, protocol guarantee is violated and the explo-
ration process is terminated. The resulting state is clearly marked and the trace
leading to the state is included in its description in the exploration graph in
Figure 2.
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Fig. 2. SpecExplorer discovers Lowe’s attack on the Needham–Schroeder protocol
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