
Moods and negation

Berislav Žarnić
University of Split

1 Two ways of negating a sentence

According to the received view (for example [9]), there are three logico-semantic
moods: indicative, imperative and interrogative, and there are two main com-
ponents in natural language sentences: modal element (which determines sen-
tence’s mood) and sentence radical. On the other hand, it seems that the
received view on the sentence components is challenged by the fact that there
are two ways to negate a sentence: by negating its content (its radical) and by
performing a negative speech act. Alf Ross, who was one of the founders of im-
perative logic, drew a cognate distinction: there are imperatives with ”negated
theme of demand” and there are imperatives with ”negated factor of demand”.

The use of the imperative mood in colloquial language does not
allow this important difference between I(x̄) and Ī(x) to be clearly
marked. All imperative in the grammatical sense are positive in the
sense that they poses a positive factor of demand. For example, ”Do
not close the door!” can only mean I(x̄) not Ī(x). Only by using
linguistically indicative mood the difference becomes apparent. For
example, ”It is your duty not to close the door” (I(x̄)), and ”It is
not your duty to close the door” (Ī(x)).

[7] p. 63

Recently, the distinction (between two ways of negating a sentence) as it
applies to indicatives has been discussed by Tappenden [10]: in a derivative
sense, to deny that S is the same as to assert that ¬S, while, in a non-derivative
sense, to deny that S is irreducible speech act of ”the commitment to the failure
to obtain of the conditions that would have to obtain for S to be true”.

1.1 Modeling two kinds of negation in dynamic semantics

The second type of negation (e.g. the imperative with negated ”factor of de-
mand”, the denial as irreducible speech act) is what I call ’negated speech act’.
Within the framework of dynamic semantics negated speech act of asserting ϕ
could be modeled as a semantic action which makes asserting ¬ϕ acceptable.
Using language of dynamic modal logic (De Rijke [6]), this kind of negation

1

(negation of a speech act) could be described as

con (do (exp (¬ϕ))) = {〈x, y〉 | y v x ∧ ∃z (〈y, z〉 ∈ exp (¬ϕ))} ,

i.e. it is contingent moving down along information ordering towards an equally
or less informative state which enables acceptance of ¬ϕ. It is important to note
that for the case of ’denial in a non-derivative sense’ withdrawal of a sentence
does not include acceptance of a new one.

Dynamic modal logic takes a relational approach while update semantics
[11] takes the functional one. A loose connection between dynamic modal logic
and update-downdate variant of Veltman’s system could be established by the
following propositions. Let σ[ϕUp] 6= ∅, σ[ϕDown] 6= ∅, σ[ϕTest] 6= ∅:〈

σ, σ[ϕUp]
〉

∈ ‖ex(fix(ϕ))‖ ,〈
σ, σ[ϕDown]

〉
∈ ‖con(do(ex¬ϕ))‖ ,〈

σ, σ[ϕTest]
〉

∈ ‖do (ϕ)?‖ .

The proposed ”downdate” modeling for ”negated speech act” shows that its
notion depends on the notion of speech act with negated content.

For the purpose of modeling denial as negated speech act of assertion we
will introduce downdate function into Veltman’s update system and introduce a
language that formalizes speech acts performed by uttering indicative sentences
(assertion, denial in a non-derivative sense, informative suggestion).

Definition 1 For a finite set A of propositional letters,W = ℘A, σ ⊆W is an
informational state over A.

Definition 2 If ϕ is a sentence of classical propositional logic built over finite
set A of propositional letters, then ϕUp, ϕDown and ϕTest are sentences of
LACT .

Definition 3 Truth definition: [atoms] h(P,w) = > iff P ∈ w; [compounds]
h(¬ϕ,w) = > iff it is not the case that h(ϕ,w) = >; h(ϕ ∧ ψ,w) = > iff
h(ϕ,w) = > and h(ψ,w) = >; h(ϕ∨ψ,w) = > iff h(ϕ,w) = > or h(ψ,w) = >;
and so on in the manner of classical propositional logic.

Definition 4 Difference relation D between members of W with respect to
proposition ϕ:

DW (ϕ) = {〈w, v〉 | w ∈W ∧ v ∈W ∧ h(ϕ,w) = ⊥ ∧ h(ϕ, v) = >} .

Definition 5 Relation µD of minimal difference with respect to proposition ϕ:

µDW (ϕ) =
{
〈w, v〉 ∈ DW (ϕ) | ¬∃z∃u

(
〈z, u〉 ∈ DW (ϕ) ∧ |z M u| < |w M v|

)}
,

where M stands for symmetrical difference.

Example 6 µDW (>) = µDW (⊥) = ∅

2

Definition 7 Set of ”the closest antipodes” for members of σ with respect to ϕ:
σ ↓ϕ↓µD =

{
v | ∃w

(
w ∈ σ ∧ 〈w, v〉 ∈ µDW (ϕ)

)}
= mem2

(
(σ ×W) ∩ µDW (ϕ)

)
.

Notation 8 Expressions mem1 and mem2 stand for function that delivers first
and second members of a binary relation R, i.e. mem1 (R) = {x | ∃yR (x, y)}
and mem2 (R) = {y | ∃xR (x, y)}.

Definition 9 Interpretation function [·] takes a state σ ⊆ W and a sentence
ϕ ∈ LACT and delivers a state σ′:

- σ
[
ϕUp

]
= {w ∈ σ | h(ϕ,w) = >},

- σ
[
ϕTest

]
=

{
σ if σ [ϕ] 6= ∅,
∅ otherwise,

- σ
[
ϕDown

]
=

{
σ ∪σ ↓¬ϕ↓µD if σ [¬ϕ] Up = ∅,
σ otherwise.

Example 10 Let wpq = {p, q}, wp = {p}, wq = {q}, w∅ = ∅. For A = {p, q}
and σ = {wq}:

µDW (p) = {〈wq, wpq〉 , 〈w∅, wp〉} ,
σ ↓p↓µD = {wpq} ,

σ [¬p] Down = σ ∪σ ↓p↓µD = {wq, wpq}

Using the notions of acceptability and acceptance [11], we may introduce
four semantic values that a sentence may have at a state:

ACCEPTABILITY ACCEPTANCE

v(ϕ, σ) [ϕ]σ 6= ∅ [ϕ]σ = σ
1 Yes. Yes.
n Yes. No.
0 No. No.
b No. Yes.

Propositional negation stays fixed for n and b, while values commute for 1
and 0. The symbols 1, n, 0, b are chosen in order to suggest connection to other
four-valued logics [3], where n stands for ’neither true nor false’ and b stands
for ’both true and false’. On the other hand, downdate secures acceptability
except for the absurd state.

v(ϕ, σ) v(¬ϕ, σ) v(¬ϕ, σ
[
ϕDown

]
)

1 0 n
n n n
0 1 1
b b b

3

2 Imperatives, commands and permissions

Compared to the language of indicative sentences, imperative language seems
to show in a more obvious way the distinction between the speech act, the
speech act with negated content and the negated speech act. While the first
two are requests, the third is permission. In order to examine the possibility of
dynamic modeling of the distinction, we will follow the tradition that links the
imperative semantics with action semantics. In particular, we will relay on the
following ideas: imperatives contain change expressions, Lemmon [5], the con-
tent of imperative is a prescribed action, Belnap [1], Segerberg [8], the semantics
of action requires existence of negative condition (counter-state, ”null-point”,
avoidability) Kanger [4], Belnap [1], Von Wright [12]. According to Von Wright,
a minimal semantics of action should delineate the following three elements:
(1) the initial state, which the agent changes or which would have changed if
the agent had not been active, (2) the end-state, which results from the action
and (3) the counter-state, which would have resulted from agent’s passivity. On
that grounds Von Wright developed fourfold classification of actions: producing
(¬ϕ/ϕ), destroying (ϕ/¬ϕ), sustaining (ϕ/ϕ) and suppressing (¬ϕ/¬ϕ) state
of affairs ϕ. The classification of actions can be used as the basis of twofold
classification of imperatives: 1. complementary imperatives, which are used for
requesting production or destruction of a state of affairs: !(¬ϕ/ϕ), !(ϕ/¬ϕ),
2. symmetric imperatives, which are used for requesting maintenance or sup-
pression of a state of affairs: !(ϕ/ϕ), !(¬ϕ/¬ϕ). To those two a third type of
imperatives should be added: ”one-sided” imperatives !(>/ϕ), !(>/¬ϕ), which
have drawn much attention in the literature.

Example 11 Let C stand for ’The door is closed’. (i) ’Close the door!’ and (ii)
’Don’t close the door!’ are complementary !(¬C/C) and symmetric imperatives
!(¬C/¬C), respectively. Intuitively, they are used for the same kind of speech
act, namely, request. Their contents differ and each may be understood as hav-
ing negated content with respect to the other. On the other hand, permission
expressed by (iii) ’You don’t have to close the door’ or ’You may leave the door
open’ relate to imperative (i) as a negation of speech act performed by uttering
(i).

Following Von Wright’s action semantics, the semantics for imperatives as
commanded actions should include: two moments, before and after, relation
of commanded changes, and set of possible after situations.

Example 12 The meaning of complementary imperative ’Close the door!’ may
be depicted by its implications: (initial state) ’The door is open at the moment
before’, (end-state) ’The door shall (ought to) be closed at the moment after’,
(negative condition) ’It is possible that the door will not be closed at the moment
after’, (positive condition) ’It is possible that the door will be closed at the
moment after’.

According to the proposed approach, the negated speech act a performed by
uttering the sentence ϕ (where ϕ stands for a full fledged sentence and not for

4

its radical) is conceived as a semantic action con(do(exp(¬ϕ))) which enables
acceptance of the speech act a with the negated content ¬ϕ. In order to apply
the approach in the case of speech acts performed by uttering imperatives,
one must define the negation of imperatives. As I have argued elsewhere [13],
a pair of affirmative and negative imperative comprises a complementary and
symmetric imperative, e.g. negation of ! (¬C/C) is ! (¬C/¬C), Example 11.

I will formalize imperatives as change expressions [5] having peculiar phe-
nomenology in regards to their ”direction of fit with the world”; the left part
should fit the world while it is the world that should fit the right part:

!

commanded changeword to world fit︷︸︸︷
ϕ︸︷︷︸

initial state

/

world to word fit︷︸︸︷
ψ︸︷︷︸

end state

.

2.1 Language LACT
IMP

2.1.1 Syntax

Definition 13 Let language LPL of classical propositional logic built over fi-
nite set D of propositional letters be given. If ϕ ∈ LPL, then · (ϕ/>) is indica-
tive before-sentence in LIMP and · (>/� ϕ), · (>/ � ϕ) are indicative after-
sentences in LIMP . If ϕ ∈ LPL and ψ ∈ LPL, then ! (ϕ/ψ) and ! (>/ϕ) are
imperative sentences in LIMP . If ϕ is indicative before-sentence in LIMP and
if ψ is imperative sentence on LIMP , then (ϕ→ ψ) and (ψ → ϕ) are conditional
imperative sentences in LIMP . Nothing else is a sentence in LIMP .

Definition 14 If ϕ ∈ LIMP , then ϕ Up, ϕ Down, ϕ Test are sentences in the
language LACT

IMP .

2.1.2 Semantics

Definition 15 Set Σ of cognitive motivational states is the set constructed in
the following way:

- D is a finite set of propositional letters,

- W = ℘D is a set of bare situations,

- Moments = {before, after} is a set of moments,

- Init = W × {before} is a set of initial situations,

- Res = W × {after} is a set of resulting situations,

- Changes = Init×Res is a set of commanded changes,

- Σ = Changes×Res is set of cognitive-motivational states.

5

Definition 16 For ϕ ∈ LIMP , |τ |tX is set of ϕ bare situations in X ⊆ W
coupled with moment t ∈Moments:

|ϕ|tX = {〈w, t〉 | w ∈ X ∧ t ∈Moments ∧ h (ϕ,w) = >} .

Definition 17 Intension ‖ϕ/ψ‖ of a change expression (ϕ/ψ) is the set

‖ϕ/ψ‖ = |ϕ|before
W × |ψ|after

W .

Definition 18 For ϕ ∈ LIMP , |ϕ|tµDρ is set of ϕ bare situations in W mini-
mally differing from bare situations in ρ sharing the same moment t:

|ϕ|before
µDρ = mem1(mem1(ρ)) ↓ϕ↓µD

=
{
v | ∃w

(
w ∈ mem1 (mem1 (ρ)) ∧ 〈w, v〉 ∈ µDW (ϕ)

)}
,

and

|ϕ|after
µDρ = mem1(mem2(ρ)) ↓ϕ↓µD

=
{
v | ∃w

(
w ∈ mem1 (mem2 (ρ)) ∧ 〈w, v〉 ∈ µDW (ϕ)

)}
.

Definition 19 Set Φ of absurd states:

Φ = {〈ρ, π〉 | ρ = ∅ ∨ ¬mem2 (ρ) ⊆ π} .

Definition 20 For 〈ρ1, π1〉 ∈ Σ and 〈ρ2, π2〉 ∈ Σ, operation d of merging struc-
tures is defined as: 〈ρ1, π1〉 d 〈ρ2, π2〉 = 〈ρ1 ∪ ρ2, π1 ∪ π2〉.

Definition 21 Interpretation function [·] for the language LACT
IMP is function

from Σ× LACT
IMP into Σ such that:

-

〈ρ, π〉[ϕ1]... [ϕn] = 〈ρ, π〉 [ϕ1; ...;ϕn] =
(((〈ρ, π〉[ϕ1]) ...) [ϕn−1]) [ϕn] ,

for ϕ1, ..., ϕn ∈ LACT
IMP ,

- 〈ρ, π〉[!(>/ϕ)Up] =

{
〈ρ ∩ ‖>/ϕ‖ , π〉 if |ϕ|after

mem1(π) ⊂ π,
1 otherwise;

- 〈ρ, π〉[·(ϕ/>)Up] = 〈ρ ∩ ‖ϕ/>‖ , π〉;

- 〈ρ, π〉[(>/� ϕ)Up] = 〈ρ ∩ ‖>/ϕ‖ , π ∩ |ϕ|after
W 〉;

- 〈ρ, π〉
[
(·(ϕ/>) →!(>/ψ))Up

]
=

〈ρ, π〉
[
!(>/ψ)Up

]
if 〈ρ, π〉

[
·(ϕ/>)Up

]
= 〈ρ, π〉,

〈ρ, π〉
[
·(¬ϕ/>)Up

]
d
〈ρ, π〉

[
·(ϕ/>)Up

] [
!(>/ψ)Up

]
otherwise;

6

- 〈ρ, π〉[!(>/ϕ)Down] =

〈

ρ ∪
(
mem1 (ρ)× |¬ϕ|after

µDρ

)
,

π ∪ |ϕ|after
µDρ ∪ |¬ϕ|after

µDρ

〉
if 〈ρ, π〉[!(>/¬ϕ)Up] ∈ Φ,
〈ρ, π〉 otherwise;

- 〈ρ, π〉[·(ϕ/>)Down] =

〈ρ ∪

(
|¬ϕ|before

µDρ ×mem2 (ρ)
)
, π〉

if 〈ρ, π〉[·(¬ϕ/>)Up] ∈ Φ,
〈ρ, π〉 otherwise;

- 〈ρ, π〉[· (>/� ϕ)Down] =

〈ρ ∪

(
mem1 (ρ)× |¬ϕ|after

µDρ

)
, π ∪ |¬ϕ|after

µDρ 〉
if 〈ρ, π〉[· (>/� ¬ϕ)Up] ∈ Φ,
〈ρ, π〉 otherwise;

- 〈ρ, π〉
[
(·(ϕ/>) →!(>/ψ))Down

]
=

〈ρ, π〉

[
! (>/ψ)Down

]
if 〈ρ, π〉 [·(ϕ/>) →!(>/¬ψ)]Up ∈ Φ,
〈ρ, π〉 otherwise;

- 〈ρ, π〉[ϕTest] =
{

〈ρ, π〉 if 〈ρ, π〉[(ϕ)Up] /∈ Φ,
〈∅, ∅〉 otherwise,

where ϕTest ∈ LACT
IMP ;

- 〈ρ, π〉[! (ϕ/ψ)Up] = 〈ρ, π〉[· (ϕ/>)Up]
[
! (>/ψ)Up

]
;

- 〈ρ, π〉[! (ϕ/ψ)Down] = 〈ρ, π〉[· (ϕ/>)Down]
[
! (>/ψ)Down

]
;

- 〈ρ, π〉[· (>/ � ϕ)Up] = 〈ρ, π〉[· (>/� ϕ)Test];

- 〈ρ, π〉[· (>/ � ϕ)Down] = 〈ρ, π〉[· (>/� ϕ)Down];

- 〈ρ, π〉
[
(!(>/ϕ) → ·(ψ/>))Up

]
= 〈ρ, π〉

[
(·(¬ψ/>) →!(>/¬ϕ))Up

]
;

- 〈ρ, π〉
[
(!(>/ϕ) → ·(ψ/>))Down

]
= 〈ρ, π〉

[
(·(¬ψ/>) →!(>/¬ϕ))Down

]
.

Almost all of the proposed interpretations require explanation, which will
be omitted here due to the limited space. I will briefly comment only on imper-
atives. Von Wright’s ”three points of action semantics” are built in the update
semantics for the complementary and symmetric imperatives as commanded ac-
tions. Information on initial state is encoded into the set mem1 (ρ), information
on the end state is encoded into the set mem2 (ρ), information on the counter
state (which would have or could have resulted if the agent had refrained from
performing commanded action) is encoded in the set π, which also encodes in-
formation on the possibility of end-state (π shows avoidability and possibility
of the end-state).

7

Example 22 Implications listed in Example 12 hold (for discussion of vari-
eties of relations of meaning inclusion that can be distinguished within dynamic
semantics see [2]). If 〈ρ, π〉

[
! (¬C/C)Up

]
= 〈ρ, π〉, then

〈ρ, π〉
[
· (¬C/>)Up ; ! (>/C)Up ; · (>/ � ¬C)Up ; · (>/ � C)Up

]
= 〈ρ, π〉 .

Pragmatics within semantics and universality of logic The language
LACT

IMP and interpretation function [·] provide an uncommon approach which
drags the pragmatics into the syntax of the formal language and, consequently,
it equates pragmatic effects with semantic actions. It is the speech act that gets
a formal translation and not the sentence by whose utterance it is performed.
If this approach is sound, then logic might claim universality of its scope over
the language. Pragmatics might lie within the scope of logic.

Example 23 Command ’Close the door!’ is formalized as ! (¬C/C) Up; per-
mission ’You don’t have to close the door.’ (’You may leave the door open.’) as
! (¬C/C) Down; suggestion ”Maybe you should close the door’ as ! (¬C/C) Test.

Example 24 The puzzle of distribution of permission over disjunction has been
much discussed in the literature: (i) ’You may see to it that A or B’ intuitively
implies (ii) ’You may see to it that A’ and (iii) ’You may see to it that B’. On
the proposed approach (i) is translated as ! (>/¬A ∧ ¬B)Down and interpreted
as cancellation of (iv) ’See to it that both ¬A and ¬B’. In the same vein, (ii)
and (iii) are translated as ! (>/¬A)Down and ! (>/¬B)Down, respectively. If
〈ρ, π〉

[
! (>/¬A ∧ ¬B)Up

]
= 〈ρ, π〉, then

〈ρ, π〉
[
! (>/¬A ∧ ¬B)Down

]
=

= 〈ρ, π〉
[
! (>/¬A ∧ ¬B)Down

] [
! (>/¬A)Down

]
=

= 〈ρ, π〉
[
! (>/¬A ∧ ¬B)Down

] [
! (>/¬B)Down

]
.

2.2 Expressive completeness

There are several interesting questions that arise at the interface between nat-
ural language and its logical formalization. In the natural language there are
three kinds of imperatives (the complementary or produce imperatives, sym-
metric or sustain imperatives, and ”one-sided” or ”see to it that” imperatives).
Therefore, the translation of natural language sentences will yield a proper sub-
set of imperative sentences in LIMP . Namely, we will find only ! (¬ϕ/ϕ), ! (ϕ/ϕ)
and ! (>/ϕ) types of sentences in the subset. Is the subset strong enough to gen-
erate each non-absurd cognitive-motivational state? If not, is it so that there
are some obstacles to communication that are inherent in the language itself?
Further, do negated speech acts add expressive power to the language?

8

The answer to the first question is affirmative and it is negative to the second
question within the framework of language LACT

IMP and its semantics. Theorem
25 shows that each non-absurd cognitive-motivational state σ ∈ Σ− Φ may be
generated using a proper subset of language LACT

IMP in which only ”non-negated
speech acts” occur.

Theorem 25 For each 〈ρ, π〉 ∈ Σ − Φ there are ϕ1, ..., ϕn ∈ LIMP such that
〈Changes,Res〉

[
(ϕ1)

Up ; ...; (ϕn)Up
]

= 〈ρ, π〉.

Proof. Proof is given by construction of the required text. Let

mem1 (mem1 (ρ)) = {w1, ..., wn} .

The construction may proceed in three steps. In the first step, the first members
of ρ are cut out of 〈Changes,Res〉 using sentence

· (nf (mem1 (mem1 (ρ))) />)Up

and obtaining 〈mem1 (ρ)×Res,Res〉, Proposition 30. In the second step, a
sequence of sentences s (w1)

Up ; ...; s (wn)Up is applied to 〈mem1 (ρ)×Res,Res〉
(where each sentence s (wi) is either a conditional imperative or a tautology)
yielding:

〈mem1 (ρ)×Res,Res〉
[
s (w1)

Up
]
...

[
s (wn)Up

]
= 〈ρ,Res〉 ,

Proposition 33. In the third step, application of · (>/� nf(mem1(π)))Up gives
the desired result: 〈ρ,Res〉

[
· (>/� nf(mem1(π)))Up

]
= 〈ρ, π〉, Proposition 34.

The text

·(nf((mem1(mem1(ρ)))/>)Up; s(w1)Up; ...; s(wn)Up; · (>/� nf(mem1(π)))Up

is an instance that proves that each non-absurd state may be generated by text
of LACT

IMP .

Corollary 26 Let LACT
→stit ⊂ LACT

IMP be a language comprising only sentences of
the form: · (ϕ/>)Up, (· (ϕ/>) →! (>/ψ))Up, · (>/� ϕ)Up . Language LACT

→stit is
expressively complete with respect to set Σ− Φ of non-absurd states.

Definition 27 (Literals λ) Given l1, ..., ln list of all propositional letters in
D, w1, ..., wm list of all situations in S ⊆ W , ℘D = W , 1 ≤ i ≤ n, 1 ≤ j ≤ m,
literals λi

j are defined by:

λ
wj

li
=

{
li if li ∈ wj,
¬li if li /∈ wj.

9

Definition 28 (Adequate description) Function nf delivers a disjunctive
normal form for the set S with respect to given lists of letters l1, ..., ln and
situations w1, ..., wm:

nf(S) =
((
λw1

l1
∧ ... ∧ λw1

ln

)
∨ ... ∨

(
λwm

l1
∧ ... ∧ λwm

ln

))
= nf (w1) ∨ ... ∨ nf (wm) .

Proposition 29 For S ⊆W , |nf (S)|tW = S × {t}.

Proof. The proof is straightforward and only right to left direction will be
shown. Suppose for some arbitrary v that 〈v, t〉 ∈ S × {t}. Obviously,

h (nf (v) , v) = >.

By Definition 3, h (nf (S) , v) = >. By Definition 16, 〈v, t〉 ∈ |nf (S)|tW .

Proposition 30

〈Changes,Res〉
[
· (nf (mem1 (mem1 (ρ))) />)Up

]
= 〈mem1 (ρ)×Res,Res〉

Proof. By Definition 17,

‖nf (mem1 (mem1 (ρ))) />‖ = |nf (mem1 (mem1 (ρ)))|before
W × |>|after

W .

The fact that |>|after
W = Res together with an application of Proposition 29,

i.e.
|nf (mem1 (mem1 (ρ)))|before

W = mem1 (ρ) ,

give the desired result.

Definition 31 Function ex〈w,before〉
ρ delivers set of resulting situations ”visible”

from situation 〈w, before〉:

ex〈w,before〉
ρ = mem2 (({〈w, before〉} ×Res) ∩ ρ) .

Definition 32 Let ρ ⊆ π. For each situation 〈w, before〉 ∈ mem1 (ρ), function
s delivers a sentence from LIMP :

s(w) =

{
· (>/>) if ex〈w,before〉

ρ = π,(
· (nf (w) />) →!

(
>/nf

(
mem1

(
ex

〈w,before〉
ρ

))))
otherwise.

Proposition 33 Let {w1, ..., wn} = mem1 (ρ). Then

〈Changes,Res〉
[
· (nf (mem1 (mem1 (ρ))) />)Up ; s(w1)Up; ...; s (wn)Up

]
= 〈ρ,Res〉 .

10

Proof. By Proposition 30,

〈Changes,Res〉
[
· (nf (mem1 (mem1 (ρ))) />)Up ; s(w1)Up; ...; s (wn)Up

]
= 〈mem1 (ρ)×Res,Res〉

[
s(w1)Up; ...; s (wn)Up

]
.

There are two cases to examine.
First, for n = 1 let mem1 (ρ) = {〈w, before〉}. Therefore,

ρ = {〈w, before〉} ×mem2 (ρ) .

There are two subcases. If ex〈w,before〉
ρ = Res, then s (w1) = · (>/>) and

obviously
〈mem1 (ρ)×Res,Res〉

[
· (>/>)Up

]
= 〈ρ,Res〉 .

In the second subcase, ex〈w,before〉
ρ ⊂ Res. Then

s (w) =
(
· (nf (w) />) →!

(
>/nf

(
mem1

(
ex〈w,before〉

ρ

))))
.

Since |nf (w)|before
W = {〈w, before〉} = mem1 (ρ), the conditional has the fol-

lowing impact:

σ

[(
· (nf (w) />) →!

(
>/nf

(
mem1

(
ex〈w,before〉

ρ

))))Up
]

=

= σ

[
!
(
>/nf

(
mem1

(
ex〈w,before〉

ρ

)))Up
]

,

where σ = 〈{〈w, before〉} ×Res,Res〉. Since∣∣∣nf (
mem1

(
ex〈w,before〉

ρ

))∣∣∣after

W
= mem2 (ρ) ,

we get the required result.
For the second case, when n > 1 we have to show that semantic impact (if

any) of s (wi) is localized to 〈wi, before〉 generating {〈wi, before〉}×ex〈wi,before〉
ρ

and leaving everything else as it is. In other words, we have to show that for
each wi ∈ mem1 (ρ),

〈mem1 (ρ)×Res,Res〉
[
s(wi)Up

]
=

=

〈 (mem1 (ρ)− {〈wi, before〉})×Res
∪
{〈wi, before〉} × ex

〈wi,before〉
ρ

, Res

〉
.

There are two cases to examine. First, if ex〈wi,before〉
ρ = Res, then s (wi) =

· (>/>) and

〈mem1 (ρ)×Res,Res〉
[
· (>/>)Up

]
= 〈mem1 (ρ)×Res,Res〉 .

11

In the second subcase: ex〈wi,before〉
ρ ⊂ Res. The fact that n > 1 guarantees

〈mem1 (ρ)×Res,Res〉
[
· (nf (wi) />)Up

]
6= 〈mem1 (ρ)×Res,Res〉

since |nf (wi)|before
W 6= mem1 (ρ). Let σ stand for 〈mem1 (ρ)×Res,Res〉. Then

the conditional

s (wi) =
(
· (nf (wi) />) →!

(
>/nf

(
mem1

(
ex〈wi,before〉

ρ

))))
has the following impact:

σ

[(
· (nf (wi) />) →!

(
>/nf

(
mem1

(
ex〈wi,before〉

ρ

))))Up
]

=

=

σ

[
·(¬nf (wi) />)Up

]
d

σ
[
·(nf (wi) />)Up

] [
!
(
>/nf

(
mem1

(
ex

〈wi,before〉
ρ

)))Up
]

=

〈(mem1 (ρ)− {〈wi, before〉})×Res,Res〉
d〈
{〈wi, before〉} × ex

〈wi,before〉
ρ , Res

〉
=

〈 (mem1 (ρ)− {〈wi, before〉})×Res
∪
{〈wi, before〉} × ex

〈wi,before〉
ρ

, Res

〉
.

The sequence s(w1)Up; ...; s (wn)Up of up-functions generates the desired:

〈⋂
i≤n

 ((mem1 (ρ)− {〈wi, before〉})×Res)
∪(
{〈wi, before〉} × ex

〈wi,before〉
ρ

)
 , Res

〉
=

= 〈ρ,Res〉 .

Proposition 34 〈ρ,Res〉
[
· (>/� nf (mem1 (π)))Up

]
= 〈ρ, π〉

Proof. Routine.

References

[1] Belnap, Nuel and Perloff, Michael (1988). Seeing to it that: a canonical
form of agentives. Theoria 54: 175–199

[2] Benthem, Johan van (1993). Exploring Logical Dynamics. CSLI Publica-
tions, Stanford

12

[3] Fox, John (1990) Motivation and demotivation of a four-valued logic. Notre
Dame Journal of Formal Logic 31: 76–80

[4] Kanger, Stig (1972). Law and logic. Theoria 38: 105–129

[5] Lemmon, Edward (1965). Deontic logic and the logic of imperatives.
Logique et Analyse 8: 39-71.

[6] de Rijke, Maarten (1998). A system of dynamic modal logic. Journal of
Philosophical Logic 27: 109–142

[7] Ross, Alf (1941). Imperatives and logic. Theoria 7: 53–71

[8] Segerberg, Krister (1990). Validity and satisfaction in imperative logic.
Notre Dame Journal of Formal Logic 31: 203–221

[9] Stenius, Erik (1967). Mood and language game. Synthese, 19: 27-52.

[10] Tappenden, Jamie (1999). Negation, denial and language change in philo-
sophical logic. In: D. Gabbay and H. Wansing, (eds.) What is Negation?
pp. 261-298, Kluwer

[11] Veltman, Frank (1996). Defaults in update semantics. Journal of Philo-
sophical Logic 25: 221–261

[12] Wright, Georg Henrik von (1963). Norm and Action: A Logical Inquiry.
Routledge and Kegan Paul

[13] Zarnic, Berislav (2003). Imperative negation and dynamic semantics. In:
Meaning: the Dynamic Turn. J. Peregrin (editor). pp. 201–211, Elsevier

13

