
Fundamenta Informaticae XX (2005) 1–21 1

IOS Press

Some Things Algorithms Cannot Do

Dean Rosenzweig
University of Zagreb
FSB, I. Lučića 5
10002 Zagreb, Croatia
dean@math.hr

Davor Runje
University of Zagreb
FSB, I. Lučića 5
10002 Zagreb, Croatia
davor.runje@fsb.hr

Abstract. A new, ‘behavioral’ theory of algorithms, intending to capture algorithms at their in-
tended abstraction level, has been developed in this century in a series of papers by Y. Gurevich, A.
Blass and others, motivated initially by the goal of establishing the ASM thesis. A viable theory of
algorithms must have its limitative results, algorithms, however abstract, cannot do just anything.
We establish some nonclassical limitative results for the behavioral theory:

• algorithms cannot distinguish some distinct states;

• algorithms cannot reach some existing states;

• algorithms cannot access some existing objects.

The algorithms studied are interactive, querying an environment, small–step, operating over different
background classes. Since our primary motivation is abstract analysis of cryptographic algorithms,
our examples come from this field – we believe however that the potential application field is much
broader.

Introduction

Within the framework of the “behavioral theory of algorithms” [10, 2, 3, 4, 5], we look into some limita-
tions of principle:

• no algorithm can distinguish some states;

• no algorithm can access some objects;

• no algorithm can reach some states.

The primary application area we have in mind is abstract cryptography—we feel that the behavioral
framework is the right framework for its study, though we believe that the results are of broader interest.



2 D. Rosenzweig, D. Runje / Some Things Algorithms Cannot Do

States of an algorithm at a fixed abstraction level can be viewed as (first–order) structures of fixed
vocabulary. What is the natural notion of equivalence of such states? One might argue it is isomorphism,
claiming that everything relevant for algorithm execution in a state is expressed in terms of a class of
structures isomorphic to it. After all, this is the intuition behind the postulates.

We show that isomorphism is too fine–grained for some applications, not relating states that are (in
any practical way) behaviorally indistinguishable by algorithms. Following the rich tradition of seeing
the objects indistinguishable by a class of algorithms as equal, we introduce the dynamic notion of indis-
tinguishability by algorithms and show its equivalence with the static notion of similarity of structures.
This equivalence survives generalization to the case of algorithms which interact with the environment
within a step.

In order to make this paper reasonably self-contained, we also list several results which are not new,
and which can be found scattered, sometimes inlined in proofs, sometimes without an explicit statement,
in the behavioral theory literature. We attempt to attribute such results properly.

We thank Andreas Blass, Matko Botinčan and Yuri Gurevich for very helpful comments on an earlier
version of the paper.

1. Non-Interactive Small–Step Algorithms

We take over many notions, notations and conventions on vocabularies, structures and sequential algo-
rithms from [10] without further ado. In particular, we assume the following:

• all structures we consider are purely functional (algebras);

• all vocabularies have distinguished nullary symbols true, false and undef, with the interpreta-
tion of true distinct from interpretations of false and undef in all structures considered;

• all vocabularies have the binary function symbol =, interpreted as equality in all structures, as well
as the usual Boolean connectives under their usual interpretations. If one of the arguments of a
Boolean connective is not Boolean, the connective takes the default value of false.

Symbols true, false, undef, = and the connectives are the logical constants.
Ground terms of vocabulary Υ are defined inductively in the usual way. All terms in this section are

assumed to be ground.

1.1. Coincidence and Similarity

The following definitions are taken from [10].

Definition 1.1. Let Υ be a vocabulary and T a set of Υ-terms. Υ–structures X and Y are said to coincide
over T , denoted with X =T Y , if every term in T has the same value in X and Y .

A structure X induces an equivalence relation EX on T : (t1, t2) ∈ EX if and only if Val(t1, X) =
Val(t2, X).

Definition 1.2. Let Υ be a vocabulary and T a set of Υ-terms. Υ–structures X and Y are T–similar,
written as X ∼T Y , if they induce the same equivalence relation over T .



D. Rosenzweig, D. Runje / Some Things Algorithms Cannot Do 3

Both relations are equivalence relations over Υ–structures for any choice of T . For any fixed set of terms
T , coincidence is contained in similarity: if X =T Y , then X ∼T Y . Isomorphic structures are also
similar: if X ∼= Y , then X ∼T Y .

When T is the set of all Υ–terms, we suppress it, and speak of coincident and similar structures.

1.2. Factorization

The following theorem reveals the connection between the equivalence relations on structures just men-
tioned. It is implicit in the proof of one of the key lemmas of [10]—it is actually proved there, although
not explicitly stated.

Proposition 1.1. (Factorization)
Let X and Y be structures of a vocabulary Υ, T a set of Υ-terms. Then X, Y are T -similar if and only
if there is a structure Z isomorphic to Y which coincides with X over T .

Proof:
One direction is obvious: both coincidence and isomorphism are contained in (transitive) similarity.

To see the other direction, it suffices to consider the special case when base sets of X and Y are
disjoint (if not, replace Y below by an isomorphic copy disjoint from X).

We define a map ξ defined on Y as:

ξ(y) =

{
Val(t, X) if y = Val(t, Y ) for some t ∈ T

y otherwise

By similarity, ξ is well defined and injective on Y .
Since ξ is a total injection respecting the values of all terms, there is a structure Z isomorphic to Y

whose base set is the codomain of ξ. For all Υ–terms t, we have: Val(t, Z) = ξ(Val(t, Y )). Notice
that ξ(Val(t, Y )) = Val(t, X) for all t ∈ T by the definition of ξ. Hence, Val(t, Z) = Val(t, X) for all
t ∈ T , meaning that X and Z coincide over T . ut

A useful way to apply factorization is the following technique: to show that X, Y are T -similar,
tweak an isomorphic copy Z of Y so as to coincide with X over T while preserving isomorphism to Y .
It follows immediately that similarity is the joint transitive closure of isomorphism and coincidence:

Corollary 1.1. Let T be a set of Υ–terms. Similarity ∼T is the smallest transitive (and equivalence)
relation over Υ-structures containing both coincidence =T and isomorphism ∼=.

1.3. Postulates

[10] defines a sequential algorithm as an object A satisfying a few postulates (see [10, 2] for extended
discussion and motivation). For reference, we list the postulates as refactored in [3].

Postulate 1. (State)
Every algorithm A determines

• a nonempty collection S(A), called states of A;



4 D. Rosenzweig, D. Runje / Some Things Algorithms Cannot Do

• a nonempty collection I(A) ⊆ S(A), called initial states; and

• a finite vocabulary Υ such that every X ∈ S(A) is an Υ-structure.

The base set of a state remains invariant under the operation of the algorithm; this is a technical
choice of convenience. The difference of states X, Y ∈ S(A) with the same carrier can be explicitly
represented as the update set

Y −X = {(f, (a1, . . . , an), a0) | fY (a1, . . . , an) = a0 6= fX(a1, . . . , an), f ∈ Υn}.

The change the algorithm effects on a state X , turning it into successor state X ′, is then explicitly
represented by the update set of A at X:

∆A(X) = X ′ −X.

One–step transformation X ′ = τA(X) and the update set ∆A(X) determine each other: we can write

τA(X) = X + ∆A(X)

with the obvious definition of +, in the sense of ‘unless overruled by’1.

Postulate 2. (Updates)
For any state X the algorithm provides an update set ∆A(X). If the update set is contradictory, the
algorithm fails; otherwise it produces the next state τA(X). If there is a next state X ′, then it

• has the same base set as X ,

• has fX′(~a) = b if 〈f,~a, b〉 ∈ ∆A(X), and

• otherwise interprets function symbols as in X .

States are abstract, in the sense that everything must be preserved by isomorphism: if your algorithm
can distinguish red integers from green integers, then it is not about integers. This requirement can
also be seen as prescriptive: everything relevant to the algorithm must be explicitly represented in the
structure. Isomorphism extends to updates pointwise.

Postulate 3. (Isomorphism)
• Any structure isomorphic to a state is a state.

• Any structure isomorphic to an initial state is an initial state.

• If i : X ∼= Y is an isomorphism of states, then i[∆A(X)] = ∆A(Y ).

The work performed by an algorithm in a step is bounded and defined by some finite text:

Postulate 4. (Bounded Exploration)
There is a finite set of terms T such that ∆A(X) = ∆A(Y ) whenever X and Y coincide over T .

1In the ASM literature [9] it is usual to speak of pairs (f, (a1, . . . , an)), where f ∈ Υn, ai ∈ X , as locations of X , in the
‘structures–as–memories’ metaphor. Then both the structure X and the update set ∆A(X) can be seen as (partial) functions of
locations to values, and the above usage of + literally means overriding one partial function by another.



D. Rosenzweig, D. Runje / Some Things Algorithms Cannot Do 5

Such a set of terms is a bounded exploration witness for A. Notice that a bounded exploration
witness is not uniquely determined, eg. any finite superset of a witness would do. Whenever we refer to
a bounded exploration witness T , we assume that for a given algorithm we have chosen an arbitrary but
fixed set of terms satisfying the postulate. We shall also call terms in T critical or observable.

Since many tend to understand a sequential algorithm as an object satisfying the other postulates, and
something in general weaker then stringent Bounded Exploration, [3] suggest a confusion–preventing
shift in terminology: an object satisfying the above postulates could be aptly called a small–step algo-
rithm. We will adhere to that here.

An element a ∈ X is critical at X if it is the value of a critical term, given an algorithm A and its
fixed bounded exploration witness T . For reference, we list the following lemma, proved in [10]:

Lemma 1.1. If (f, (a1, . . . , an), a0) ∈ ∆A(X), then every ai, i = 0, . . . n, is critical at X .

Proof:
If some ai is not critical, obtain a contradiction by constructing an isomorphic structure Y by replacing
ai by a fresh element: by Bounded Work, the algorithm should affect a non-element of Y , contradicting
Updates. ut

By the above lemma (and Bounded Exploration postulate), the update set of a small–step algorithm
is (uniformly) finite at any state.

1.4. Next Value

The main result of this section is preservation of coincidence and similarity over the set of all terms
by a step of a small–step algorithm, proved as consequences of the Next Value theorem: all elements
representable by terms in the successor state to X were already so representable at X , uniformly with
respect to similarity. We will also show how the Next Value theorem can be used to derive some known
results like Linear Speedup.

Fix an algorithm A and its state X . By Lemma 1.1, every element of an update set in X is critical. For
an arbitrary bounded exploration witness T and a term t, we can generate a larger set of terms by adding
to T all instances of t with some subterms replaced with elements of T—this is a syntactic simulation
of possible updates (not necessarily the most efficient one). The value of t in τA(X) must be a value of
some term from the generated set in X . In general, for different states, different terms picked up from the
generated set will have this property. However, if two states coincide over the larger set of terms, then
the same term works for both states.

Let T be a set of terms and t a term of the same vocabulary. We define a set of terms T t inductively
over the structure of t as

T f(t1,...,tn) = T ∪
{
f(t′1, . . . , t

′
n) | t′i ∈ T ti

}
∪

⋃ {
T ti | i = 1, . . . n

}
.

In the ground case of 0-ary f we have T f = T ∪ {f}. Obviously, if T is finite, T t is finite as well.

Theorem 1.1. (Next Value)
Let A be a small–step algorithm, X its state, and T one of its exploration witnesses. Then for every term
t of its vocabulary there is a term ©A

Xt ∈ T t such that



6 D. Rosenzweig, D. Runje / Some Things Algorithms Cannot Do

• Val(©A
Xt, X) = Val(t, τA(X)), moreover,

• whenever a state Y coincide with X over T t we have Val(t, τA(Y )) = Val(t, τA(X)).

Proof:
We construct the term ©A

Xt and prove the statements by induction on the structure of t. Suppose that
t = f(t1, . . . , tn). By the induction hypothesis we have Val(ti, τA(X)) = ai, there is ©A

Xti ∈ T ti

such that Val(©A
Xti, X) = Val(ti, τA(X)), and whenever Y =T ti X then also Val(ti, τA(Y )) = ai for

every i = 1, . . . , n. Notice that T ti ⊆ T t, allowing us to use the induction hypothesis as follows:

1. Assume (f, (a1, . . . , an), a0) ∈ ∆A(X) for some a0. By Lemma 1.1, a0 is critical in X and there
is a term ©A

Xt ∈ T such that Val(©A
Xt, X) = a0 = Val(t, τA(X)).

Suppose Y =T t X . Then ∆A(Y ) = ∆A(X) and thus (f, (a1, . . . , an), a0) ∈ ∆A(Y ). We have

Val(t, τA(Y )) = fτA(Y )(Val(t1, τA(Y )) . . . ,Val(tn, τA(Y )))
= fτA(Y )(a1, . . . , an) = a0 = fτA(X)(a1, . . . , an)
= Val(t, τA(X))

2. Otherwise, we set ©A
Xt = f(©A

Xt1, . . . ,©A
Xtn) ∈ T t, and we have

Val(t, τA(X)) = fτA(X)(a1, . . . , an) = fX(a1, . . . , an) = V al(©X
A t, X)

Suppose Y =T t X . Then (f, (a1, . . . , an), a0) 6∈ ∆A(Y ) for any a0. Thus

Val(t, τA(Y )) = fτA(Y )(Val(t1, τA(Y )) . . . ,Val(tn, τA(Y )))
= fτA(Y )(a1, . . . , an) = fY (a1, . . . , an)

= fY (Val(©A
Xt1, Y ) . . . ,Val(©A

Xtn, Y ))
= Val(©A

Xt, Y ) = Val(©A
Xt, X)

= Val(t, τA(X))
ut

Remark 1.1. A more general variant of the Next Value theorem in the context of small-step ordinary
interactive algorithms can be found in [5] as Lemma 8.8. In order to keep the paper reasonably self-
contained, we state and prove the special case here. The proof of the special case is also considerably
simpler. See also Theorem 2.1 in the next section for generalization to ordinary interactive small–step
algorithms.

Corollary 1.2. (Preserving Coincidence)
Let A be a small–step algorithm and X and Y coincident states. Then τA(X) and τA(Y ) coincide.

Theorem 1.2. Let A be a small-step algorithm and T its bounded exploration witness. If states X and
Y are T t–similar, then Val(©A

Xt, Y ) = Val(t, τA(Y )).

Proof:
Use Factorization (Proposition 1.1), Abstract State postulate and Next State (Theorem 1.1). ut



D. Rosenzweig, D. Runje / Some Things Algorithms Cannot Do 7

Corollary 1.3. (Preserving Similarity)
Let A be a small–step algorithm and X and Y similar states. Then τA(X) and τA(Y ) are similar.

The following statement, quoted in [10] and proved for interactive algorithms in [5] (also proved
by syntactic means in different places for different kinds of textual programs), states that whatever a
small–step algorithm can do in two steps, could be done in one step by another small–step algorithm. By
induction the same holds for any finite number of steps — the small steps can be enlarged by any fixed
factor. We obtain it as a simple consequence of Next Value.

Proposition 1.2. (Linear Speedup)
Let A be a small–step algorithm, with associated S(A), I(A) and τA. Then there is a small–step algo-
rithm B, such that S(B) = S(A), I(B) = I(A), and τB(X) = τA(τA(X)) for all X ∈ S(B).

Proof:
It suffices to demonstrate a bounded exploration witness for B. Let T be a bounded exploration witness
for A, and X and Y be its states. We have

∆B(X) = τA(τA(X))−X = ∆A(τA(X)) ∪ (∆A(X) \ ∆A(τA(X))).

If X and Y coincide over T , we have ∆A(X) = ∆A(Y ). If they also coincide over a finite set T T =⋃
{T t | t ∈ T} extending T , then, by Next Value theorem, τA(X) coincides with τA(Y ) over T . Hence,

∆A(τA(X)) = ∆A(τA(Y )) and ∆B(X) = ∆B(Y ). Thus T T is a bounded exploration witness for
B. ut

The similarity relation over a finite set of terms T partitions Υ–structures to finitely many equivalence
classes — there is a finite set of structures {X1, . . . , Xn} such that every structure is T–similar to some
Xi. For each Xi there is a Boolean term ϕXi such that ϕXi holds in Y if and only if Y is T–similar to
Xi.

This was the crucial observation behind the proof of the sequential thesis [10] – it allowed uni-
formization of local update sets into a finite program. It also allows us to uniformize the ©A

Xt construc-
tion into a finite set of possible terms for all states, given an additional construct on terms.

Let conditional terms be terms closed under the ternary if-then-else construct, with the usual
interpretation.

Corollary 1.4. Let A be a small–step algorithm and t a term of its vocabulary. Then there is a conditional
term ©At such that Val(©At, X) = Val(t, τA(X)) for every state X .

Remark 1.2. Using conditional terms is not a serious extension—it is easy (though somewhat tedious,
in view of the number of cases) to prove that any ASM program written with conditional terms can be
also equivalently rewritten without them, by pushing conditionals to rules.

Different versions of the next-value construction, restricted to Boolean terms (logical formulæ, for
which the if-then-else construct is definable), and proved over textual programs, have been around
in the literature in the form of a ‘next-state’ modality [7, 6, 12].



8 D. Rosenzweig, D. Runje / Some Things Algorithms Cannot Do

1.5. Indistinguishability, Accessibility and Reachability

This section introduces the main contribution of this paper — the notions of indistinguishability, acces-
sibility and reachability and their properties—in the context of non–interactive small–step algorithms.
However simple, these notions have not been studied in the literature (though related to the notions of
active objects of [6] and exposed objects of [1], they are not the same). In subsequent sections we will
extend these notions and prove the corresponding results for algorithms with intrastep interaction in
general, and algorithms creating fresh objects over background structures in particular.

The notion of indistinguishability by a class of algorithms is a well known tool for analyzing behav-
ioral equivalence of objects. The notion of indistinguishability by small–step algorithms, given here, is
unashamedly influenced by similar notions widely used in process calculi and probabilistic complexity
theory.

The intuition is that an algorithm can distinguish state X from state Y if it can determine in which
of them it has executed a step. What does to determine mean here? Taking a behavioral view, we can
require an algorithm to take different actions depending on whether it is in X or in Y , say by writing
trueX into a specific location if it is in X and falseY if it is in Y .

Definition 1.3. (Indistinguishability)
Let A be a small–step algorithm of the vocabulary Υ, whose states include X and Y . We say that A
distinguishes X from Y if there is a Υ–term t taking the value trueX in τA(X), and not taking the
value trueY in τA(Y ). Structures X and Y of the same vocabulary are indistinguishable by small-step
algorithms if no such algorithm can distinguish them.

This is at first glance weaker than requiring of t to take the value of falseY in τA(Y ), but only at
first glance: if t satisfies our requirement, then the term t = true will satisfy the seemingly stronger
requirement. The wording of Indistinguishability definition has been chosen so as to work smoothly also
in an interactive situation, where terms can have no value. In spite of the asymmetric wording, it is easy
to verify the following

Corollary 1.5. Indistinguishability is an equivalence relation on structures of the same vocabulary.

The dynamic notion of indistinguishability coincides with the static notion of similarity:

Theorem 1.3. Structures X and Y of the same vocabulary Υ are indistinguishable by small–step algo-
rithms if and only if they are similar.

Proof:
Suppose that X and Y are not similar. Then there are Υ-terms t1 and t2 having the same value in X and
different values in Y . But then a do-nothing algorithm distinguishes them by term t1 = t2.

Now suppose that X and Y are similar and distinguishable by a term t taking the value trueX in
τA(X) and not trueY in τA(Y ). Then τA(X) and τA(Y ) are not similar, which is a contradiction by
Corollary 1.3. ut

By Corollary 1.3, similarity is equivalent to indistinguishability in any number of steps. An element
of a structure can be, in the small-step case, accessible to an algorithm only if it is the value of some
term.



D. Rosenzweig, D. Runje / Some Things Algorithms Cannot Do 9

Definition 1.4. (Accessibility)
An element a is accessible in a structure X of a vocabulary Υ if there is a Υ–term t such that Val(t, X) =
a.

Remark 1.3. The reader familiar with logic should have in mind that we are speaking about indis-
tinguishability by algorithms, and not about indistinguishability by logic: similar (indistinguishable)
structures need not be elementarily equivalent. In all our examples of indistinguishable structures below
it will be easy to find simple quantified sentences which distinguish them. But small-step algorithms
are typically not capable of evaluating quantifiers over their states, unless such a capability is explicitly
built in—if an algorithm explored states of unbounded size, the capability to evaluate quantifiers would
contradict Bounded Work.

A straightforward consequence of Next Value is

Corollary 1.6. Let A be a small–step algorithm and a an element of its state X . If a is accessible in
τA(X), then it is accessible in X .

Thus in a sense algorithms cannot learn anything by execution: they cannot learn how to make
finer distinctions, and they cannot learn how to access more elements (but they can lose both kinds
of knowledge). The only possibility of learning open to algorithms seems to be interaction with the
environment, but this is the subject of subsequent sections. What states can algorithms reach?

Definition 1.5. (Reachability)
A structure Y is reachable from a structure X of the same vocabulary and same base set by small–step
algorithms if there is a small–step algorithm A such that X, Y ∈ S(A) and Y = τA(X).

By Linear Speedup, reachability in ≤ n steps is the same as reachability in one step, for any n. The
notion of accessibility suffices to analyze reachability:

Theorem 1.4. Let X, Y be structures of a vocabulary Υ with the same base set. Then Y is reachable
from X by small–step algorithms if and only if

• Y −X is finite,

• all function symbols occurring in Y −X are dynamic in Υ, and

• all objects in the common base set, occurring in Y −X , are accessible in X .

Proof:
If Y is reachable from X by A, it follows from Lemma 1.1 that ∆A(X) is finite, and that all objects
occurring there are critical at X , hence also accessible.

To see that the other direction holds, let, by the assumption,

Y −X = {(fj , (a
j
1, . . . , a

j
nj

), aj
0) | j = 1, . . . k}

and, by assumption of accessibility, let tji be Υ–terms such that Val(tji , X) = aj
i , for j = 1, . . . , k, i =

0, . . . , nj . Fix I(A) so as to satisfy the postulates and to include X , and S(A) so as to satisfy the
postulates and to be closed under τA as defined below. Set, for any Z ∈ S(A),

∆A(Z) = {(fj , (Val(tj1, Z), . . . ,Val(tjnj
, Z)),Val(tj0, Z)) | j = 1, . . . , k}.



10 D. Rosenzweig, D. Runje / Some Things Algorithms Cannot Do

Then the set {tji | j = 1, . . . , k, i = 0, . . . , nj} is a bounded exploration witness for A, and A is a
small–step algorithm reaching Y from X .

ut

Example 1.1. (Indistinguishable Structures)
Let X, Y be two structures of the same nonlogical vocabulary {decrypt , fst , snd , op, c, k} over the same
carrier

{Pri,Pub,C,P,N,T,F,U}

with the interpretation of nonlogical function symbols as given in the table

Υ X Y

decrypt Pri,C → P Pri,C → N
fst P → T P → T
snd P → F P → F
op Pri → Pub Pri → Pub
c C C
k Pub Pub

understanding that non-nullary functions take the value U on all arguments not shown in the table. Logi-
cal constants true, false, undef are interpreted as T,F,U in both X and Y , respectively. States X and
Y are far from being isomorphic, yet they are similar (even coincident) for all terms of the vocabulary,
and hence indistinguishable by small-step algorithms.

If element Pri became accessible, say through interaction with environment, by the same term tPri

in both states, they would be easily be distinguished by say term fst(decrypt(tPri, c)).
The function symbols snd , op, k and their interpretations play no role here, and they could easily

be dropped without spoiling the example. We include them to make the transition to further examples
below smoother.

Notice that the first-order sentence ∃x. fst(decrypt(x, c)) = true would distinguish X from Y .

2. Ordinary Interactive Small–Step Algorithms

In [3, 4, 5] the theory was extended to algorithms interacting with the environment, also within a step.
Algorithms might toss coins, consult oracles or databases, send/receive messages. . . also within a step.
We refer the reader to [3] for full explication and motivation—it will have to suffice here to say that the
essential goal of behavioral theory, that of capturing algorithms at arbitrary levels of abstraction, cannot
be smoothly achieved if interaction with the environment is confined to happen only between the steps of
the algorithm. The “step” is in the eye of beholder: what is say from socket abstraction seen as a single
act of sending a byte-array may on a lower layer of TCP/IP look as a sequence of steps of sending and
resending individual packets until an acknowledgment for each individual packet has arrived. In order
to sail smoothly between levels of abstraction, we need the freedom to view several lower-level steps as
compressed into one higher-level step when this is natural, even if the lower-level steps are punctured
with external interaction. The Bounded Work postulate serves as a guard ensuring that this freedom is
not misused.



D. Rosenzweig, D. Runje / Some Things Algorithms Cannot Do 11

The syntax of interaction can be, without loss in generality, given by a finite number of query-
templates f̂ #1 . . .#n, each coming with a fixed arity. If b1, . . . , bn are elements of a state X , a potential
query f̂ [b1, . . . , bn] is obtained by instantiating the template positions #i by bi

2. The environment be-
havior can be, for the class of “ordinary” interactive algorithms, represented by an answer function over
X: a partial function mapping potential queries to elements of X , see [3, 4, 5] for extensive discussion
and motivation.

All algorithms in the rest of this paper are small-step ordinary interactive algorithms in this sense—
in the sequel, we shall skip all these adjectives except possibly for “interactive”, to stress the difference
with respect to algorithms of the previous section.

The interactive behavior of an algorithm is abstractly represented by a causality relation, between
finite answer functions and potential queries. We have the following additional postulate:

Postulate 5. (Interaction)
The algorithm determines, for each state X , a causality relation `X between finite answer functions and
potential queries.

The intuition of α `X q is: if the environment, in state X , behaves according to α, then the algorithm
will issue q. A context for an algorithm is a minimal answer function that saturates the algorithm, in
the sense that it would issue no more queries: α is a context if it is a minimal answer function with the
following property: if β `X q for some β ⊆ α, then q ∈ Dom(α).

The Updates Postulate is modified by

• associating either failure or an update set ∆+
A to pairs X, α, where α is a context over X;

• the update set ∆+
A(X, α) may also include trivial updates — in an interactive multi–algorithm

situation trivial updates may express conflict with another component.

The Isomorphism Postulate is extended to preservation of causality, failure and updates, where i : X ∼=
Y is extended to “extended states” X, α as i : X, α ∼= Y, i ◦ α ◦ i−1.

We can access elements of “extended states” X, α by “extended terms”, allowing also query-templates
in the formation rules (the extended terms correspond to “e-tags” of [5]). Given vocabularies Υ of func-
tion symbols, and E of query-templates disjoint from Υ, we can (partially) evaluate extended terms
as

Val(f(t1, . . . , tn), X, α) = fX(Val(t1, X, α), . . . ,Val(tn, X, α)) if f ∈ Υ

Val(f̂(t1, . . . , tn), X, α) = α(f̂ [Val(t1, X, α), . . . ,Val(tn, X, α)]) if f ∈ E

under the condition that Val(ti, X, α) are all defined, and also f̂ [Val(t1, X, α), . . . ,Val(tn, X, α)] ∈
Dom(α) in the latter case.

Thus the value of an extended term containing query templates can be undefined at X, α, which is
different than being defined with the value undefX . We shall in the sequel use equality of partially
defined expressions in the usual Kleene-sense: either both sides are undefined, or they are both defined
and equal.

2The sole purpose of the f̂ [b1, . . . , bn] notation is to be optically distinct from notation for function value f(b1, . . . , bn) when
f ∈ Υ.



12 D. Rosenzweig, D. Runje / Some Things Algorithms Cannot Do

Remark 2.1. (Kleene Equality)
This means that we lose something of the tight correspondence that the meta-statement Val(t1, X) =
Val(t2, X) and the Boolean term t1 = t2 had in the noninteractive case: the former was true if and only
if the latter had the (same) value (as) True. Now if say Val(t1, X, α) is undefined, then also Val(t1 =
t2, X, α) will be undefined, and the meta-statement Val(t1, X, α) = Val(t2, X, α) will be either true or
false, depending on whether Val(t2, X, α) is also undefined. The reader should be aware of this when
parsing the meta-statements about coincidence and similarity below.

The Bounded Work Postulate can be (equivalently to the formulation of [3, 4, 5] formulated as before,
applying to extended terms, see [5] for extended discussion of “e-tags”.

The definition of critical elements must take into account answer functions attached to the state [3,
Definition 3.5]: if α is an answer function for a state X , an element of X is critical for α if it is the value
of some term in a bounded exploration witness T .

All elements in the update set for a given context are critical [3, Proposition 5.24]:

Lemma 2.1. Let X be a state and α a context for X . For any update 〈f,~a, b〉 ∈ ∆+
A(X, α), all the

components of ~a as well as b are critical for α.

2.1. Coincidence and Similarity

In this subsection, we will extend the notions of coincidence and similarity of extended terms to structures
equipped with answer functions.

Definition 2.1. (Coincidence and Similarity)
Let X, Y be Υ-structures, α, β answer functions for X, Y , respectively, and T a set of extended terms.
We say that

• X, α and Y, β coincide over T , and write X, α =T Y, β, if Val(t, X, α) = Val(t, Y, β) for every
t ∈ T ;

• X, α and Y, β are T -similar, written as X, α ∼T Y, β, if they induce the same equivalence relation
on T : Val(t1, X, α) = Val(t2, X, α) if and only if Val(t1, Y, β) = Val(t2, Y, β) for all t1, t2 ∈ T .

In illustration of Kleene Equality remark 2.1 above, note that if X, Y are coincident/similar for the set
T of all Υ-terms, then X, ∅ and Y, ∅ are coincident/similar for the set of all extended terms (since the
extended terms proper will be undefined under the empty answer function ∅).

Proposition 2.1. (Factorization for Specific Interactions)
Let X, Y be Υ-structures, α, β answer functions for X, Y , respectively, and T a set of extended terms.
Then X, α ∼T Y, β if and only if there is a structure Z and answer function γ for it such that X, α =T

Z, γ ∼= Y, β.

Proof:
Define the map ξ as:

ξ(y) =

{
Val(t, X, α) if y = Val(t, Y, β) for some t ∈ T

y otherwise

and proceed as in the proof of the proposition 1.1. ut



D. Rosenzweig, D. Runje / Some Things Algorithms Cannot Do 13

An intrastep interaction variant of the Next Value Theorem is proven in [5, Lemma 8.8]. We shall
use a variant adapted to our purpose of relating notions of similarity and indistinguishability:

Theorem 2.1. (Next Value)
Let X be a state, T its bounded exploration witness and α a context for X . For every ground term t there
is a (possibly extended) term ©X

A t ∈ T t such that V al(t, τA(X, α)) = V al(©X
A t, X). Moreover, if β is

a context for a state Y and Y, β coincide with X, α over T t, then V al(t, τA(Y, β)) = V al(t, τA(X, α)).

As in the non-interactive case, in consequence to Next Value and Factorization we have preservation
of coincidence and similarity:

Corollary 2.1. (Preserving Coincidence and Similarity)
Let X, Y be states and α, β contexts for X, Y , respectively.

• If X, α and Y, β are coincident (over all extended terms), then τA(X, α) and τA(Y, β) are coinci-
dent (over all ground terms).

• If X, α and Y, β are similar (over all extended terms), then τA(X, α) and τA(Y, β) are similar
(over all ground terms).

Reasoning about what an algorithm can do in a state, we will have to take into account all possible
behaviors of the environment. Typically we will assume some contract with the environment, there will
be assumptions on possible environment behaviors. Thus we define what it means for two structures to
be similar for given sets of possible answer functions.

Definition 2.2. (Similarity under a Contract)
Let X, Y be Υ-structures, A,B sets of answer functions for X, Y respectively, and T a set of extended
terms. We say that X,A and Y,B are T -similar, writing X,A ∼T Y,B, if

• for every α ∈ A there is a β ∈ B such that X, α ∼T Y, β, and

• for every β ∈ B there is α ∈ A such that X, α ∼T Y, β.

The idea is again that, by testing terms for equality, an algorithm cannot determine whether it is operating
with X, α for some α ∈ A or with Y, β for some β ∈ B. If A resp. B are seen as representing the degree
of freedom that the environment has in fulfillment of its contract, similarity to the notion of bisimulation
of transition systems need not be surprising.

Corollary 2.2. (Factorization under a Contract)
Let X, Y be Υ-structures, A,B sets of answer functions for X, Y respectively, and T a set of extended
terms. Then X,A ∼T Y,B if and only if

• for every α ∈ A there is β ∈ B, Υ-structure Z and answer function γ over Z such that X, α =T

Z, γ ∼= Y, β, and

• for every β ∈ B there is α ∈ A, Υ-structure Z and answer function γ over Z such that Y, β =T

Z, γ ∼= A,α.



14 D. Rosenzweig, D. Runje / Some Things Algorithms Cannot Do

Proof:
Use definitions and Proposition 2.1. ut

Remark 2.2. (Contracts)
We use a notion of contract heuristically here, we did not define contracts. A proper definition should
certainly require that contracts are abstract: it should associate a set of answer functions AX to any state
X in an isomorphism-invariant way. But our results would certainly carry over to such a definition. We
are not going to pursue a theory of contracts in this paper.

2.2. Indistinguishability

The notion of indistinguishable states splits here to two notions: states indistinguishable under specific
environment behaviors, and states indistinguishable under classes of environment behaviors. We need
the former notion in order to formulate the latter.

Definition 2.3. (Indistinguishability under Specific Interactions)
Let X, Y be Υ structures, and α, β answer functions over X, Y respectively, given query templates from
E. We say that

• an interactive algorithm A distinguishes X, α from Y, β if there is a ground Υ-term t such that one
of the following holds (but not both):

– either α is a context for A over X and Val(t, τA(X, α)) = trueX , or if this is not true,

– β is a context for A over Y and Val(t, τA(Y, β)) = trueY .

• X, α and Y, β are indistinguishable if there is no algorithm distinguishing them.

This definition requires an algorithm, if it is to distinguish X, α from Y, β, to complete its step with
at least one of them. Weaker requirements might be argued for, but the intuition that we wish to maintain
here is that, in order to distinguish two candidate situations, an algorithm should be able to determine
that it is running in one of them and not in the other—but in order to determine anything an algorithm
must complete its step.

The distinguishing term t is required to be ground. The result of the distinguishing algorithm must
be contained in the resulting state, and the value of t in it must not depend on any future interaction.
Otherwise, even identical states provided with identical answer functions could be distinguishable.

We also assume that vocabulary of each algorithm contains at least one dynamic function symbol.
Algorithms with no such symbols are clearly not very useful, but nevertheless allowed by the postulates.

Anyway, the choice of this definition is confirmed by the connection to similarity established below.
The following corollary is as simple as it was in the previous section:

Corollary 2.3. Indistinguishability is an equivalence relation on Υ-structures equipped with E-answer
functions.

Theorem 2.2. X, α and Y, β are indistinguishable by interactive algorithms if and only if they are simi-
lar.



D. Rosenzweig, D. Runje / Some Things Algorithms Cannot Do 15

Proof:
Suppose that X, α and Y, β are not similar. Without loss of generality, then there are terms t1, t2 such
that Val(t1, Y, β) 6= Val(t2, Y, β), whereas Val(t1, X, α) = Val(t2, X, α), and Val(t1, Y, β) is defined.
If Val(t2, Y, β) is also defined, then an algorithm A computing t1, t2, and then completing the step with
the update set ∆A(Y, β) = {(f, true, . . . , true, V al(t1 6= t2, Y, β)} distinguishes X, α from Y, β by
term f(true, . . . , true). If Val(t2, Y, β) is not defined, we have two distinct cases:

1. Both Val(t1, X, α) and Val(t2, X, α) are undefined. In that case, an algorithm evaluating the term
t1 and then concluding the step distinguishes X, α from Y, β by term true.

2. Both Val(t1, X, α) and Val(t2, X, α) are defined and equal. Then an algorithm evaluating terms
t1, t2 and then concluding the step distinguishes X, α from Y, β by term true.

For the other direction, suppose that X, α and Y, β are similar. By Corollary 2.1, τA(X, α) and
τA(Y, β) must be similar as well. ut

Indistinguishability of states for concrete answer functions is thus equivalent to their similarity under
the same answer functions. But what we are really interested in is indistinguishability of states for all
possible reactions of the environment. The following definition reflects this consideration.

Definition 2.4. (Indistinguishability under a Contract)
Let X and Y be Υ-structures and let A and B be sets of answer functions for X and Y , respectively.

• An algorithm A distinguishes X,A from Y,B if either

– there is α ∈ A such that A distinguishes X, α from Y, β for all β ∈ B, or

– there is β ∈ B such that A distinguishes Y, β from X, α for all α ∈ A.

• X,A and Y,B are indistinguishable if there is no algorithm distinguishing them.

The intuition here is again that, for an algorithm to distinguish X,A from Y,B it must be possible to
detect that it is operating in one of them and not in the other. Indistinguishability means here that this is
not at all possible, an algorithm can never tell for sure in which of the two worlds it is. It is easy to see
that indistinguishability is an equivalence relation on pairs X,A, where X is an Υ-structure and A a set
of E-answer functions over X .

Corollary 2.4. Let X,A and Y,B be structures of the same vocabulary, equipped with sets of possi-
ble answer functions over the same vocabulary of query-templates. Then they are indistinguishable by
interactive ordinary small–step algorithms if and only if they are similar.

Proof:
Use the definitions and theorem 2.2. ut



16 D. Rosenzweig, D. Runje / Some Things Algorithms Cannot Do

2.3. Accessibility and Reachability
Definition 2.5. (Accessibility and Reachability under Interaction)
Let x be an element of a state X , Y another state of the same vocabulary with the same carrier, A a set
of answer functions for X and α ∈ A. We say that

• x is accessible for X, α if there is an extended term t denoting it at X, α;

• x is accessible for X,A if there is α ∈ A such that x is accessible for X, α;

• Y is reachable from X, α if there is an algorithm A such that τA(X, α) = Y ;

• Y is reachable from X,A if there is α ∈ A such that Y is reachable from X, α.

Corollary 2.5. (Accessibility)
If X is a structure and A a set of answer functions over it, any element of X in the range of an α ∈ A is
accessible for X,A.

Theorem 2.3. Let X, Y be structures of a vocabulary Υ with the same base sets and A be a set of
possible answer functions for X . Then Y is reachable from X,A by ordinary interactive small–step
algorithms if and only if

• Y −X is finite,

• all function symbols occurring in Y −X are dynamic in Υ, and

• there is an α ∈ A such that all objects in the common base set occurring in Y − X are also
accessible for X, α.

Proof:
Proceed as in the proof of Theorem 1.4. ut

2.4. Algorithms with Import

The idea of modeling creation of new objects, often needed for algorithms, by importing fresh objects
from a reserve of naked, amorphous objects devoid of nontrivial properties, has been present in the ASM
literature since [8].

An answer function α is importing for a state if it has only reserve elements in its codomain. We
specialize notions of accessibility, reachability and indistinguishability under a contract to importing
small-step algorithm, meaning that answer functions allowed by a contract are importing.

We need the notions and results of the previous sections in particular for algorithms which import
new elements, over a background structure [1]. This case is special, since nondeterminism introduced
by a choice of reserve element to be imported is inessential up to isomorphism; see [9] for import from
a naked set and [1] for import over a background structure.

The reserve of a state was originally defined to be a naked set. In applications, it is usually conve-
nient, and sometimes even necessary, to have some structure like tuples, sets, lists etc. predefined on
all elements of a state, including the ones in the reserve. The notion of background structure [1] makes



D. Rosenzweig, D. Runje / Some Things Algorithms Cannot Do 17

precise what sort of structure can exist above a set of atoms without imposing any properties on the atoms
themselves, except for their identity.

In this section, we assume that each vocabulary contains a unary predicate Atomic. This predicate
and the logical constants are called obligatory and all other symbols are called non-obligatory. The set
of atoms of a state X , denoted with Atoms(X), are elements of X for which Atomic holds.

Definition 2.6. A class K of structures over a fixed vocabulary is called a background class if the fol-
lowing requirements are satisfied:
BC0 K is closed under isomorphisms.
BC1 For every set U , there is a X ∈ K with Atoms(X) = U .
BC2 For all X, Y ∈ K and every embedding (of sets) ζ : Atoms(X) → Atoms(Y ), there is a unique
embedding (of structures) η of X into Y that extends ζ.
BC3 For all X ∈ K and every x ∈ Base(X), there is a smallest K–substructure Y of X that contains
x.

Suppose that K is a background class. Let S be a subset of a base set of structure X ∈ K. If there
is a smallest K–substructure of X containing S, then it is called the envelope EX(S) of S in X and the
set of its atoms is called the support SupX(S) of S in X . In every X ∈ K, every S ⊆ Base(X) has an
envelope [1].

A structure X is explicitly atom-generated if the smallest substructure of X that includes all atoms is
X itself, and a background class BC is explicitly atom-generated if all of its structures are. A background
class is finitary if the support of every singleton is finite.

Lemma 2.2. Every explicitly atom-generated background class is finitary.

Definition 2.7. (Backgrounds of Algorithms)
We say that a background class K with vocabulary Υ0 is the background of an algorithm A over Υ if

• vocabulary Υ0 is included in Υ and every symbol in Υ0 is static in Υ;

• for every X ∈ S(A), the Υ0–reduct of X is in K.

The vocabulary Υ0 is the background vocabulary of A, and the vocabulary Υ − Υ0 is the foreground
vocabulary of A. We say that an element of a state is exposed, if it is in a range of a foreground function,
or if it occurs in a tuple in the domain of a foreground function. The active part of a state is the envelope
of the set of its exposed elements and the reserve of a state is the set of non-active atoms.

If the algorithm is not fixed, we say that a state X is over a background class BC of vocabulary Υ0,
if Υ0–reduct of X is in BC.

The freedom the environment has in choice of reserve elements to import induces inessential nonde-
terminism, resulting in isomorphic states [1]:

Proposition 2.2. Every permutation of the reserve of a state can be uniquely extended to an automor-
phism that is the identity on the active part of the state.

Intuitively, this means that whatever an algorithm could learn by importing new elements from the
reserve does not depend on the particular choice of elements imported. Similarly, one might conjecture
that an algorithm cannot learn by importing at all, but this is in general not the case:



18 D. Rosenzweig, D. Runje / Some Things Algorithms Cannot Do

Example 2.1. Up to isomorphism, the non-logical part of a background structure X consists of heredi-
tarily finite sets over its atoms. The only non-obligatory functions are the containment relation ∈ and a
binary relation P : P (x, y) holds in X if rankX(x) = rankX(y) + 1, where rankX is defined as:

rankX(x) =

{
0 if x ∈ Atoms(X)
max{rank(y) | y ∈ x}+ 1 if x is a set

.

The foreground vocabulary contains only one nullary function symbol f , denoting {a} in X and {{a}}
in Y for some atom a (for simplicity, we assume that X and Y have the same reduct over the back-
ground vocabulary). Structures X and Y are similar, but for all answer functions α, β evaluating the
query ĝ to a reserve element, X, α and Y, β are not similar, since V al(P (f, g), X, α) = true and
V al(P (f, g), Y, β) = false.

By theorem 1.3 and corollary 2.4, structures X and Y are indistinguishable by non-interactive small-
step algorithms, but distinguishable by small-step algorithm importing from the reserve. Somewhat
surprisingly, it follows that import of a reserve element can increase the “knowledge” of an algorithm.

In many common background classes, such as sets, sequences and lists, algorithms cannot learn
by creation. It is important to have in mind that this property is not guaranteed by the postulates of
background classes, and that it must be proved for a concrete background class.

2.4.1. Reachability from Empty States

Given a state over a background class, could the state be a result of calculation of some algorithm A,
starting from a state with no exposed elements? The issue matters in applications such as [11]. Initial
states of an algorithm must be constructed somehow, and it is sometimes important in applications to
know can they be constructed by other algorithms starting from scratch. With few additional assump-
tions imposed on states, it turns out that every state can be constructed by some importing small–step
algorithm. Notice that does not mean that a single algorithm, starting from empty states, could be used
to construct all states of an algorithm.

Let X be a state over a background BC. We will denote with 0X the unique state obtained from X
by “resetting memory” in X: 0X is the unique state with no exposed elements, of the same vocabulary
and over the same background reduct as X . 0X is an empty state, in the sense that the “memory” of any
algorithm is empty in it.

We assume that all foreground functions in all states are marked as dynamic. This assumption is
purely technical, made only to simplify the wording and proofs of the results bellow. The results can
easily be generalized to cases where this assumption does not hold, but we found no need for that in our
applications. Foreground functions are viewed as the modifiable memory of an algorithm.

We also assume that the set of exposed elements in every state is finite. Again, this is a consequence
of our intuition of foreground functions as a representation of the finite memory of an algorithm.

Lemma 2.3. Let X be a state over an explicitly atom–generated background BC. Then every element
x ∈ 0X is accessible by an importing small-step algorithm in 0X .



D. Rosenzweig, D. Runje / Some Things Algorithms Cannot Do 19

Proof:
By Lemma 2.2, 0X is finitary. Hence atomic support Sup0X ({x}) is finite. Since 0X is explicitly atom–
generated, x is accessible by a term from 0X , α for every α containing the finite Sup0X ({x}) in its
codomain. Every atom in 0X is in reserve, thus there is such an importing α. ut

Theorem 2.4. Let X be a state over an explicitly atom–generated background BC. Then X is reachable
from 0X by importing small–step algorithms.

Proof:
∆ = X − 0X is finite, since it contains exposed elements only and the vocabulary is finite. Use Lemma
2.3 and Theorem 2.3 to conclude the proof. ut

Intuitively, this means that every state can be seen as a result of computation of some algorithm from
an empty initial state.

The above theorem was put into practical use in relating abstract and computational model in cryp-
tography in [11].

Example 2.2. We define a background class which can serve as an abstract model of public key cryp-
tography. We do not argue here for naturality of this model, or its appropriateness for any purpose. An
interested reader should consult [11] for details. The only role this model has here is as a source of
examples for things that even abstract algorithms cannot do.

Take CoinsX as synonymous with Atoms(X). The non-logical part of the background vocabulary
contains

• constructors binary 〈 , 〉, unary nonce , privateKey and publicKey , and ternary encrypt ,

• unary predicates Nonce, PrivateKey , PublicKey , Encryption and Pair ,

• selectors unary fst , snd and binary decrypt .

All structures of the background class further satisfy the following constraints:

• the constructors are injective (in all arguments) with pairwise disjoint codomains;

• the predicates Pair ,Nonce,PrivateKey ,PublicKey ,Encryption hold exactly on the codomains
of 〈 , 〉,nonce, privateKey , publicKey , encrypt respectively;

• domains of the functions are restricted as follows (in the sense that they take value undef else-
where):

nonce : Coins −→ Nonce
privateKey : Coins −→ PrivateKey
publicKey : PrivateKey −→ PublicKey

encrypt : PublicKey ×Msg × Coins −→ Encryption

where Msg is used as shorthand for Nonce ∪PrivateKey ∪PublicKey ∪Encryption ∪ (Msg ×
Msg) ∪ Boole, but it is not explicitly represented in the structure;



20 D. Rosenzweig, D. Runje / Some Things Algorithms Cannot Do

• the selectors are the least partial functions satisfying the constraints

– 〈fst(z), snd(z)〉 = z for each pair z;

– decrypt(e, k) = m if and only if e = encrypt(publicKey(privateKey(r1)),m, r2) for some
message m and coins r1 and r2.

By definition, the predicates and the selectors are determined given the base set, the atoms and the
constructors; thus by BC2 the base set of the structure is freely generated from Coins by the above
constructors: it is the minimal set containing Coins and closed under the functions.

This background class will be denoted with BCPUB in the following examples. We will consider
algorithms working with answer functions which, over a state X , return only reserve atoms, “fresh
coins” of X . Let us, for state X , denote the set of such answer functions with CX .

Example 2.3. (Inaccessible Objects and Unreachable States)
We will reconsider the situation from Example 1.1 once again, embedding it in BCPUB. To recall, we have
states X and Y over BCPUB with the same base set. For simplicity, we will also assume X and Y have
the same background reduct. Only elements C,Pub are accessible by nullary foreground functions c, k
respectively. Function op of example 1.1 is just a respective alias for the background function publicKey
of BCPUB.

According to the table of Example 1.1, the element P must be the value of the (background) term
〈true, false〉 in both states, while Pub = publicKey(Pri) must be a PublicKey , whereas Pri must be
a PrivateKey , which means that it must be the value of privateKey(rPri) for some coin rPri. We can
easily assume rPri to be the same in both states. Since decrypt(Pri,C) should have a value distinct from
undef in both states, C must be an Encryption:

• in state X we have C = encryptX(Pri,P, rC) for some coin rC;

• in state Y we have encryptX(Pri,N, rC), where we can assume that rC is the same in both states.

We further assume the element N to be a Nonce in both states, which means N = nonce(rN) for some
coin rN, where again we can assume rN to be the same in both states.

The status of element N in the two states is different. Consider the support of exposed object C in
the two states:

SupX({C}) = {rPri, rC}, SupY ({C}) = {rPri, rN, rC}

which means that N, rN are active in Y , but not in X .
Like in Example 1.1, N is not exposed in either state, which also means not accessible by any fore-

ground term. But in state X an answer function from CX is free to respond to a query with the reserve
atom rN, which means that N is accessible—since it is inactive, we say that N can be created in X . In Y
on the other hand rN is not reserve, and an answer function form CY is not free to return rN. This means
that N is not accessible in Y at all. For the same reason no fresh (different from C) encryption with N as
subject can be created (accessed) in Y .

This is something algorithms just cannot do.

But are background structures needed here at all? Why would the functions encrypt , decrypt be
needed in the background, could we not just consider them as dynamic functions in the ASM tradition,
to be updated as needed, i.e. as encryptions get created? This way we might, in Example 1.1, obtain



D. Rosenzweig, D. Runje / Some Things Algorithms Cannot Do 21

isomorphism of X, Y , instead of just similarity. Of course, requirement of isomorphism would exclude
a background containing encrypt , decrypt .

Such an approach, suggested by some studies in (statics of) abstract cryptography, involves a problem
arising only in the dynamics: assume that in such a model an algorithm learns the private key Pri, say by
environment interaction, as a value of a term tPri. Then X and Y must become distinguishable by term
decrypt(tPri, c), which means we would have to create the distinction by updating decrypt . A technical
problem arises with public key encryption: the act of encrypting involves updating both encrypt and
decrypt , but in order to update decrypt we would need to access the private key, which is definitely not
allowed by the usual assumptions on public key cryptography.

With background structures learning new information does not change anything, we might just un-
cover differences which were there all the time. The natural interpretation of indistinguishability (simi-
larity) of two states is then: information available to algorithms is not sufficient to distinguish them.

References
[1] Blass, A., Gurevich, Y.: Background, Reserve, and Gandy Machines, Proceedings of CSL ’00, 1862, 2000.

[2] Blass, A., Gurevich, Y.: Algorithms: A Quest for Absolute Definitions, Bulletin of the European Association
for Theoretical Computer Science, (81), October 2003, 195–225.

[3] Blass, A., Gurevich, Y.: Ordinary Interactive Small–Step Algorithms I, ACM Transactions on Computaional
Logic, to appear.

[4] Blass, A., Gurevich, Y.: Ordinary Interactive Small–Step Algorithms II, ACM Transactions on Computaional
Logic, to appear.

[5] Blass, A., Gurevich, Y.: Ordinary Interactive Small–Step Algorithms III, ACM Transactions on Com-
putaional Logic, to appear.

[6] Blass, A., Gurevich, Y., Shelah, S.: Choiceless Polynomial Time, Annals of Pure and Applied Logic, 100(1-
3), 1999.

[7] Glavan, P., Rosenzweig, D.: Communicating Evolving Algebras, in: Computer Science Logic, vol. 702 of
LNCS, 1993, 182–215.

[8] Gurevich, Y.: Evolving Algebras. A Tutorial Introduction, Bulletin of the European Association for Theoret-
ical Computer Science, 43, 1991, 264–284.

[9] Gurevich, Y.: Evolving Algebras 1993: Lipari Guide, in: Specification and Validation Methods, Oxford
University Press, 1995, 9–36.

[10] Gurevich, Y.: Sequential Abstract State Machines Capture Sequential Algorithms, ACM Transactions on
Computational Logic, 1(1), 2000, 77–111.

[11] Rosenzweig, D., Runje, D., Schulte, W.: Model-Based Testing of Cryptographic Protocols, in: TGC 2005,
vol. 3705 of LNCS, 2005, 33–60.

[12] Staerk, R., Nanchen, S.: A Logic for Abstract State Machines, Universal Journal of Computer Science,
11(7), 2001, 981–1006.


