
General Interactive Small-Step Algorithms

Andreas Blass∗ Yuri Gurevich† Dean Rosenzweig‡

Benjamin Rossman§

Abstract
In earlier work, the Abstract State Machine Thesis — that ar-

bitrary algorithms are behaviorally equivalent to abstract state ma-
chines — was established for several classes of algorithms, including
ordinary, interactive, small-step algorithms. This was accomplished
on the basis of axiomatizations of these classes of algorithms. Here we
extend the axiomatization and the proof to cover interactive small-
step algorithms that are not necessarily ordinary. This means that
the algorithms (1) can complete a step without necessarily waiting for
replies to all queries from that step and (2) can use not only the envi-
ronment’s replies but also the order in which the replies were received.
In order to prove the thesis for algorithms of this generality, we ex-
tend the definition of abstract state machines to incorporate explicit
attention to the relative timing of replies and to the possible absence
of replies.

Contents

1 Introduction 2
∗Partially supported by NSF grant DMS–0070723 and by a grant from Microsoft Re-

search. Address: Mathematics Department, University of Michigan, Ann Arbor, MI
48109–1043, U.S.A., ablass@umich.edu. Much of this paper was written during a visit to
Microsoft Research.

†Microsoft Research, One Microsoft Way, Redmond, WA 98052, U.S.A.
gurevich@microsoft.com

‡Microsoft Research; and University of Zagreb, FSB, I. Lucica 5, 10000 Zagreb, Croatia,
dean@math.hr

§Microsoft Research; current address: Computer Science Dept., M.I.T., Cambridge,
MA 02139, U.S.A., brossman@mit.edu

1

2 Postulates for Algorithms 4
2.1 States and vocabularies . 5
2.2 Histories and interaction . 6
2.3 Completing a step . 18
2.4 Isomorphism . 22
2.5 Small steps . 23

3 Equivalence of Algorithms 26

4 Abstract State Machines — Syntax 30
4.1 Vocabularies and templates 31
4.2 Guards . 34
4.3 Rules . 35
4.4 Syntactic sugar . 36

5 Abstract State Machines — Semantics 38
5.1 Terms . 38
5.2 Guards . 39
5.3 Rules . 42

6 Algorithms are Equivalent to ASMs 51
6.1 Vocabulary, labels, states . 52
6.2 External vocabulary and templates 53
6.3 Critical elements, critical terms, agreement 53
6.4 Descriptions, similarity . 59
6.5 The ASM program . 68
6.6 Equivalence . 69

1 Introduction

The Abstract State Machine (ASM) Thesis, first proposed in [6], asserts
that every algorithm is equivalent, on its natural level of abstraction, to an
abstract state machine. Beginning in [8] and continuing in [1], [2], [3], and
[4], the thesis has been proved for various classes of algorithms. In each
case, the class of algorithms under consideration was defined by postulates
describing, in very general terms, the nature of the algorithms, and in each
case the main theorem was that all algorithms of this class are equivalent, in
a strong sense, to ASMs.

2

The present paper continues this tradition, but with an important dif-
ference. Previously, the standard syntax of ASMs, as presented in [7], was
adequate, with only very minor modifications. Our present work, however,
requires a significant extension of that syntax. The extension allows an ASM
program to refer to the order in which the values of external functions are
received from the environment, and it allows the program to declare a step
complete even if not all external function values have been determined.

The main purpose of this paper is to extend the analysis of interactive,
small-step algorithms, begun in [2, 3, 4], by removing the restriction to “or-
dinary” algorithms. We also extend the syntax and semantics of abstract
state machines (ASMs) so that non-ordinary algorithms become expressible.
The main contributions of this paper are

• postulates and definitions describing a general notion of interactive,
small-step algorithm,

• syntax and semantics for ASMs incorporating interaction that need not
be ordinary,

• verification that ASMs satisfy the postulates, and

• proof that every algorithm satisfying the postulates is equivalent, in a
strong sense, to an ASM.

The algorithms considered in this paper proceed in discrete steps and do
only a bounded amount of work in each step (“small-step”) but can inter-
act with their environments during a step, by issuing queries and receiving
replies.

Such algorithms were analyzed in [2, 3, 4], subject to two additional
restrictions, which we expressed by the word “ordinary.” First, they never
complete a step until they have received replies to all the queries issued
during that step. Second, what the algorithm does at any step is completely
determined by the algorithm, the current state, and the function that maps
the current step’s queries to the environment’s answers. In other words,
this answer function is the only information from the environment that the
algorithm uses. In particular, the order in which the environment’s answers
are received has no bearing on the computation.

In the present paper, we lift these restrictions. We allow an algorithm to
complete a step even while some of its queries remain unanswered. We also

3

allow the algorithm’s actions to depend on the order in which answers were
received from the environment.

It was shown in [4] that ordinary algorithms are equivalent to ASMs of
the traditional sort, essentially as described in [7]. In order to similarly
characterize the more general algorithms of the present paper, we extend the
syntax and semantics of ASMs. In particular, we provide a way to refer to the
timing of the evaluations of external functions and a way to terminate a step
while some queries remain unanswered. See Subsection 2.2 for a discussion of
the intuitive picture of interactive algorithms that leads to these particular
extensions and indicates why they suffice.

2 Postulates for Algorithms

This section is devoted to the description of interactive, small-step algorithms
by means of suitable definitions and postulates. Some parts of this material
are essentially the same as in [8], which dealt with small-step algorithms
that interact with the environment only between steps; some other parts
are as in [2], which dealt with small-step algorithms that interact with the
environment within steps but only in the “ordinary” manner described in the
introduction. We shall present these parts again here, but without repeating
the explanations and motivations from [8] and [2]. For the genuinely new
material, dealing with the non-ordinary aspects of our algorithms’ interaction
with the environment, we shall present not only the definitions and postulates
but also the reasons and intuitions that lie behind them.

Throughout the definitions and postulates that follow, we consider a fixed
algorithm A. We may occasionally refer to it explicitly, for example to say
that something depends only on A, but usually we leave it implicit.

Remark 2.1. The following postulates refer to the algorithm, yet it is
only after the postulates that we define “algorithm” to mean an entity
satisfying the postulates. The apparent circularity here can be avoided
by starting with a definition of the form “An algorithm is a 9-tuple
〈S, I,Υ,Λ,F ,H+,H−,∆+〉 subject to the requirements in the following pos-
tulates.”1 We believe that the traditional mode of presentation, as in [8, 1, 2]

1The notations H± that occur here but nowhere else in the paper denote the sets of
successful and failing, but not necessarily final histories.

4

is preferable, so we adopt it here, but any readers troubled by our using “al-
gorithm” before defining it are welcome to imagine the 9-tuple definition
inserted here.

2.1 States and vocabularies

Our first postulate is exactly as in [2], and most of it is assembled from parts
of postulates in [8]. We refer the reader to [8] for a careful discussion of the
first three parts of the postulate and to [2] for the last part.

States Postulate: The algorithm determines

• a nonempty set S of states,

• a nonempty subset I ⊆ S of initial states,

• a finite vocabulary Υ such that every X ∈ S is an Υ-structure, and

• a finite set Λ of labels.

As in the cited earlier papers, we adopt the following conventions con-
cerning vocabularies and structures.

Convention 2.2.

• A vocabulary Υ consists of function symbols with specified arities.

• Some of the symbols in Υ may be marked as static, and some may be
marked as relational. Symbols not marked as static are called dynamic.

• Among the symbols in Υ are the logic names: nullary symbols true,
false, and undef; unary Boole; binary equality; and the usual propo-
sitional connectives. All of these are static and all but undef are rela-
tional.

• In any Υ-structure, the interpretations of true, false, and undef are
distinct.

• In any Υ-structure, the interpretations of relational symbols are func-
tions whose values lie in {true, false}.

5

• The interpretation of Boole maps true and false to true and every-
thing else to false.

• The interpretation of equality maps pairs of equal elements to true

and all other pairs to false.

• The propositional connectives are interpreted in the usual way when
their arguments are in {true, false}, and they take the value false

whenever any argument is not in {true, false}.

• We may use the same notation X for a structure and its base set.

Definition 2.3. A potential query in state X is a finite tuple of elements of
X t Λ. A potential reply in X is an element of X.

Here X t Λ means the disjoint union of X and Λ. So if they are not
disjoint, then they are to be replaced by disjoint isomorphic copies. We shall
usually not mention these isomorphisms; that is, we write as though X and
Λ were disjoint.

2.2 Histories and interaction

Definition 2.4. An answer function for a state X is a partial map from
potential queries to potential replies. A history for X is a pair ξ = 〈ξ̇,≤ξ〉
consisting of an answer function ξ̇ together with a linear pre-order ≤ξ of
its domain. By the domain of a history ξ, we mean the domain Dom(ξ̇)
of its answer function component, which is also the field of its pre-order
component.

Recall that a pre-order of a set D is a reflexive, transitive, binary relation
on D, and that it is said to be linear if, for all x, y ∈ D, x ≤ y or y ≤ x. The
equivalence relation defined by a pre-order is given by

x ≡ y ⇐⇒ x ≤ y ≤ x.

The equivalence classes are partially ordered by

[x] ≤ [y] ⇐⇒ x ≤ y,

6

and this partial order is linear if and only if the pre-order was.
The length of a linear pre-order is defined to be the order type of the

induced linear ordering of equivalence classes. (We shall use this notion of
length only in the case where the number of equivalence classes is finite, in
which case this number serves as the length.)

We also write x < y to mean x ≤ y and y 6≤ x. (Because a pre-order
need not be antisymmetric, x < y is in general a stronger statement than
the conjunction of x ≤ y and x 6= y.) When, as in the definition above, a
pre-order is written as ≤ξ, we write the corresponding equivalence relation
and strict order as ≡ξ and <ξ. The same applies to other subscripts and
superscripts.

We use histories to express the information received by the algorithm
from its environment during a step. The notion of answer function comes
from [2], where these functions, telling which queries have received which
replies, represented the whole influence of the environment on the algorithm’s
work. When algorithms are not required to be ordinary, then additional
information from the environment, namely the relative order in which replies
were received, becomes relevant to the computation. This information is
represented by the pre-order part of a history. If p, q ∈ Dom(ξ̇) and p <ξ

q, this means that the answer ξ̇(p) to p was received strictly before the
answer ξ̇(q) to q. If p ≡ξ q, this means that the two answers were received
simultaneously.

The rest of this subsection is devoted to explaining in more detail the
intuition behind this formalization of the intuitive notion of the history of
an algorithm’s interaction with its environment during a step. We do not,
however, repeat here Sections 2 and 4 of [2]. The first of these two sections
explains in detail our reasons for using queries and replies as our model of the
interaction between an algorithm and its environment. The second explains
the reasons for our specific definitions of (potential) queries and replies. Here,
we presuppose these explanations and adopt the query-reply paradigm of [2].
Our task now is to explain what is added to the picture from [2] when we
remove the restriction to ordinary algorithms.

Much of the information provided by an environment can and should
be viewed as being part of its replies to queries. This includes not only the
information explicitly requested by the query but also such varied information
as “how hard did the user (who is part of the environment) bang on the
keyboard when typing this input” or “at what time was this input provided”
if such information is relevant to the algorithm’s execution. Thus, we can

7

view such information as being included in the answer function ξ̇, without
referring to the second component of a history, the pre-order.

The purpose of the pre-order, on the other hand, is to represent the order
in which the algorithm becomes aware of the environment’s answers. Even
if the environment provides a time-stamp as part of each reply, this order
cannot be read off from the replies. The algorithm may become aware of the
replies in an order different from that indicated by the time stamps. For a
simple example, consider a broker who has a block of shares to sell. He asks
two clients whether they want to buy the shares; both of them want to buy
the whole block. The broker will sell the shares to the client whose message
reaches him first, even if the message from the other client is sent earlier.

One can even imagine that a reply was provided by the environment
before our algorithm even asked the query, perhaps because some other al-
gorithm, running simultaneously with ours or earlier, issued the same query.
For example, consider the following scenario. Our algorithm asks (query q1)
the environment for a certain piece of information. Instead of directly pro-
viding that information, the environment says “look at the answer that I sent
to so-and-so last week.” As a result, our algorithm looks (query q2) into so-
and-so’s records and finds the desired information. If the environment had
put a time-stamp on that information (and if the time-stamp hasn’t been
altered in the meantime), then our algorithm will find a time-stamp that is
earlier than either of its queries. Of course, the situation would be different
if the time-stamp were updated when the environment says to look at this
previous answer. (This makes some sense, since, by telling us to look there,
the environment is certifying or at least suggesting that the old answer is still
correct.) Then our algorithm would find a time-stamp later than the time
it issued q1 but not later than the time it issued q2. The time stamp could
be later than q2 if it were updated by our looking at the record, but that is
contrary to the purpose of time-stamps.

Remark 2.5. Even though the pre-order ≤ξ is about the replies, the formal
definition says that it pre-orders the domain of the answer function ξ̇, i.e., the
set of queries. The reason is a technical one: Different queries may receive the
same reply, and in that case the single reply could occur at several positions
in the ordering. Each query, on the other hand, occurs just once because,
in accordance with the conventions of [2], we regard repetitions of a query
as distinct queries (since they can receive different replies). Thus, the order
in which replies are received can be conveniently represented by pre-ordering

8

the associated queries. It may be more intuitive to think of pre-ordering the
set of pairs (query, reply), i.e., the graph of the answer function. This view
of the situation would make no essential difference, since these pairs are in
canonical bijection with the queries.

We emphasize that the timing we are concerned with here is logical time,
not physical time. That is, it is measured by the progress of the computation,
not by an external clock. If external, physical, clock time is relevant, as in
real-time algorithms, it would have to be provided separately by the environ-
ment, for it is not part of the program or of the state. The relevant values of
the physical time could be regarded as the replies to repeated queries asking
“what time is it?”

In particular, we regard a query as being issued by the algorithm as
soon as the information causing that query (in the sense of the Interaction
Postulate below) is available. This viewpoint would be incorrect in terms of
physical time, for the algorithm may be slow to issue a query even after it has
the prerequisite information. But we can regard a query as being logically
available as soon as its prerequisites are present.

This is why we include, in histories, only the relative ordering of replies.
The ordering of queries relative to replies or relative to each other is then
determined. The logical time of a query is the same as the logical time of
the last of the replies that were prerequisites for that query.

Our use of pre-orders rather than partial orders, i.e., our allowing two
distinct replies to be received simultaneously, also reflects our concern with
logical rather than physical time. One can argue that no two events are
exactly simultaneous in the physical sense (though they could be so nearly
simultaneous that one should treat them as simultaneous), but logical si-
multaneity is certainly possible. It means merely that the two replies were
available for exactly the same part of the computation.

The linearity of the pre-ordering, i.e., the requirement that every two
replies be received either in one order or in the other or simultaneously,
formalizes the following important part of our view of sequential-time (as
opposed to distributed) algorithms. (It is not a postulate of our formal
development but an informal principle that underlies some of our definitions
and postulates.)

One Executor Principle A small-step algorithm is executed by a single,
sequential entity. Even if there are (boundedly many) subprocesses running
in parallel, they all operate under the control of a single, master executor.

9

The aspect of this principle that is relevant to the linearity of histories
can be summarized in the following informal principle, in which the first
part emphasizes the role of the master executor in the interaction with the
environment, while the second part is a consequence of the sequentiality of
the executor.

Holistic Principle The environment can send replies only to (the execu-
tor of) the algorithm, not directly to parts of it; similarly it receives queries
only from the algorithm, not from parts of it. Any two replies are received
by the algorithm either simultaneously or one after the other.

The pre-orders in our histories are intended to represent the order in which
replies are received by the master executor. If there are subprocesses, then
the master may pass the replies (or information derived from them) to these
subprocesses at different times, but that timing is part of the algorithm’s
internal operation (possibly also influenced by the replies to other queries like
“what time is it?”), not part of the environment interaction that histories
are intended to model. The linearity of our pre-orders reflects the fact that
they represent the ordering as seen by a single, sequential entity; this entity
sees things in a sequence.

In more detail, we picture the execution of one step of an algorithm as
follows. First, the algorithm (or, strictly speaking, its executor) computes
as much as it can with only the information provided by the current state.
This part of the computation, the first phase, will in general include issu-
ing some queries. Then the algorithm pauses until it is “awakened” by the
environment, which has replied to some (not necessarily all) of the queries
from phase 1. The algorithm proceeds, in phase 2, to compute as much as
it can using the state, the new information from the environment, and pos-
sibly some “scratch work” recorded during phase 1. Then it again pauses
until the environment has provided some more replies (possibly to queries
from phase 2 and possibly to previously unanswered queries from phase 1)
and awakens the algorithm. Then phase 3 begins, and this pattern continues
until the algorithm determines, in some phase, that it is ready to complete
the current step, either by executing certain updates (computed during the
various phases) of its state or by failing (in which case the whole computation
fails and there is no next state).

The logical ordering of replies refers to the phases at which replies were
received. That is, if q1 <ξ q2, this means that the reply ξ̇(q1) to q1 was

10

received at an earlier phase than the reply ξ̇(q2) to q2. Similarly, q1 ≡ξ q2
means that these two replies were received at the same phase.

Remark 2.6. We have assumed, in the preceding description of phases, that
the algorithm is awakened to begin a new phase only when some new reply
has been provided. We should, however, discuss the possibility that the
environment awakens the algorithm when no new replies are available. In
such a case, it is natural to assume that the algorithm, having determined
that it has no new information with which to advance the computation,
simply resumes its pause until awakened again. In order for the algorithm
to be a small-step algorithm, such fruitless awakenings must happen only a
bounded number of times per step, with the bound depending only on the
algorithm. The reason is that, even if all the algorithm does when awakened
is to observe that no new replies have arrived, this observing is work, and a
small-step algorithm can do only a bounded amount of it per step.

It seems possible, however, for an algorithm to admit a few fruitless awak-
enings per step, and the results of the computation could even depend on
these awakenings. Consider, for example, an algorithm that works as follows.
It begins by issuing a query q and pausing. When awakened, it outputs 1
and halts if there is a reply to q; otherwise, it pauses again. When awakened
a second time, it outputs 2 if there is now a reply to q, and, whether or not
there is a reply, it halts. Notice that, if q receives the reply r, then whether
this is seen at the first or the second awakening doesn’t affect the history,
which consists of the function {〈q, r〉} and the unique pre-order on its domain
{q}. So the history fails to capture all the information from the environment
that is relevant to the computation.

There are two ways to correct this discrepancy. One, which we shall
adopt, is to regard the fruitless awakening as amounting to a reply to an
implicit query, of the form “I’m willing to respond to awakening.” (For
several fruitless awakenings, there would have to be several such queries, dis-
tinguished perhaps by numerical labels.) Now the two scenarios considered
above, where q has received a reply at the first awakening or only at the sec-
ond, are distinguished in the histories, because the reply to the new, implicit
query will be simultaneous with the reply to q in the one scenario and will
strictly precede the reply to q in the other scenario.

An alternative approach would be to avoid introducing such implicit
queries but instead to replace the pre-order constituents of histories by
slightly more complicated objects, “pre-orders with holes.” The idea is that

11

the scenario where an answer to q is available only at the second awakening
would be represented by the answer function {〈q, r〉} as above, but the pre-
order would be replaced with something that says “first there’s a hole and
then q.” Formalizing this is actually quite easy, as long as the pre-order is
linear and the set D to be pre-ordered is finite (as it will be in the situations
of interest to us). A linear pre-order of D with holes is just a function p from
D into the natural numbers. For any n, the elements of p−1({n}) constitute
the nth equivalence class, which may be empty in case of a hole. Ordinary
pre-orders correspond to the special case where the image p(D) is an initial
segment of N.

Although the approach using pre-orders with holes corresponds more di-
rectly to intuition, we prefer the first approach, with implicit queries, for two
reasons. First, it allows us to use the standard terminology of pre-orders
rather than introducing something new. Second, its chief disadvantage, the
need for implicit queries, is mitigated by the fact that we need other sorts of
implicit queries for other purposes. For example, in [2, Section 2], implicit
queries modeled the algorithm’s receptiveness to incoming (unsolicited) mes-
sages and to multiple answers to the same query. Notice that, in all cases,
our implicit queries represent the algorithm’s willingness to pay attention to
something provided by the environment.

Definition 2.7. Let ≤ be a pre-order of a set D. An initial segment of D
with respect to ≤ is a subset S of D such that whenever x ≤ y and y ∈ S
then x ∈ S. An initial segment of ≤ is the restriction of ≤ to an initial
segment of D with respect to ≤. An initial segment of a history 〈ξ̇,≤ξ〉 is a
history 〈ξ̇ �S,≤ξ �S〉, where S is an initial segment of Dom(ξ̇) with respect
to ≤ξ. (We use the standard notation � for the restriction of a function or
a relation to a set.) We write η E ξ to mean that the history η is an initial
segment of the history ξ.

Notice that any initial segment with respect to a pre-order ≤ is closed
under the associated equivalence ≡. Notice also that if 〈η̇,≤η〉E 〈ξ̇,≤ξ〉 then
≤η is an initial segment of ≤ξ. We also point out for future reference that, if
two histories ξ1 and ξ2 are initial segments of the same ξ, then one of ξ1 and
ξ2 is an initial segment of the other.

Intuitively, if 〈ξ̇,≤ξ〉 is the history of an algorithm’s interaction with the
environment up to a certain phase, then a proper initial segment of this
history describes the interaction up to some earlier phase.

12

Definition 2.8. If ≤ pre-orders the set D and if q ∈ D, then we define two
associated initial segments as follows.

(≤ q) = {d ∈ D : d ≤ q}
(< q) = {d ∈ D : d < q}.

The following postulate is almost the same as the postulate of the same
name in [2]. The only difference is that we use histories instead of answer
functions. This reflects the fact that the decision to issue a query can be
influenced by the timing of the replies to previous queries.

Interaction Postulate For each state X, the algorithm determines a
binary relation `X , called the causality relation, between finite histories and
potential queries.

The intended meaning of ξ `X q is that, if the algorithm’s current state is
X and the history of its interaction so far (as seen by the algorithm during the
current step) is ξ, then it will issue the query q unless it has already done so.
YG A remark may be in order. Note that the premise ξ contains explicitly
only positive information (about the queries that have been replied to so far)
but it contains also, albeit implicitly, negative information: no other queries
have been replied to. One can imagine partial-information premises that give
only partial (and finite) positive and partial (and finite) negative informa-
tion. By contrast, the premises that occur in the Interaction Postulate can
be called total-positive-information premises. Partial-information premises
may arise naturally; for example, the program of the algorithm may say that
if query p has been replied with a but query p′ has not been replied then issue
query q. It is easy to see that that every causal relationship with a partial-
information premise can be replaced with a set, possibly infinite, of causal
relationships with total-positive-information premises. It is not true in gen-
eral that every causal relationship with a total-positive-information premise
can be replaced with a set of causal relationships with partial-information
premises. But, in this paper, we are interested primarily, if not exclusively,
in the case when the set of issued queries is finite and known. In that case,
every causal relationship of one kind can be replaced by a finitely many
causal relationships of the other kind. For the the simplicity of exposition,

13

we choose to deal with total-positive-information premises. It is worth re-
membering though that partial-information premises may give more succinct
description of the intended causality relation. AB Most of Yuri’s comment
is addressed in a remark shortly after the next definition. A little bit of the
comment (about implicit negative information) is addressed by the next cou-
ple of sentences. When we say that the history so far is ξ, we mean not only
that the environment has given the replies indicated in ξ̇ in the order given
by ≤ξ, but also that no other queries have been answered. Thus, although
ξ explicitly contains only positive information about the replies received so
far, it also implicitly contains the negative information that there have been
no other replies. Of course, if additional replies are received later, so that
the new history has ξ as a proper initial segment, then q is still among the
issued queries, because it was issued at the earlier time when the history was
only ξ. This observation is formalized as follows.

Definition 2.9. For any state X and history ξ, we define sets of queries

IssuedX(ξ) = {q : (∃η E ξ) η `X q}
PendingX(ξ) = IssuedX(ξ)−Dom(ξ̇).

Thus, IssuedX(ξ) is the set of queries that have been issued by the algo-
rithm, in state X, by the time the history is ξ, and PendingX(ξ) is the subset
of those that have, as yet, no replies.
AB Here comes the remark resulting from Yuri’s comment above.

Remark 2.10. We have described the causality relation in terms of detailed
causes, histories ξ that contain the algorithm’s whole interaction with envi-
ronment up to the time the caused query is issued. A text describing the
algorithm, either informally or in some programming language, would be
more likely to describe causes in terms of partial information about the his-
tory. For example, it might say “if the query p has received the reply a but p′

has no reply yet, then issue q.” This description would correspond to a large
(possibly infinite) set of instances ξ ` q of the causality relation, namely one
instance for every history ξ that fits the description, i.e., such that ξ̇(p) = a
and p′ /∈ Dom(ξ̇). More generally, whenever we are given a description of
the conditions under which various queries are to be issued, we can similarly
convert it into a causality relation; each of the conditions would be replaced
by the set of finite histories that satisfy the condition.

14

The reverse transformation, from detailed causes representing the whole
history to finite descriptions, is not possible in general. The difficulty is that
the finite descriptions might have to specify all of the negative information
implicit in a history, and this might be an infinite amount of information. In
most situations, however, the set of queries that might be issued is finite and
known. Then any finite history ξ can be converted into a finite description,
simply by adding, to the positive information explicit in ξ, the negative
information that there have been no replies to any other queries among the
finitely many that could be issued.

For semantical purposes, as in the present section, it seems natural to
think of causes as being the detailed histories. From the behavior of an
algorithm, one can easily determine whether ξ `X q (at least when ξ is
attainable as in Definition 2.16 below and we ignore causes of q that have
proper initial segments already causing q); just provide the algorithm with
replies according to ξ and see whether it produces q at that moment (and not
earlier). It is not easy to determine, on the basis of the behavior, whether q
is issued whenever a description, like “p has reply a and p′ has no reply” is
satisfied, as this involves the behavior in a large, possibly infinite number of
situations.

For syntactic purposes, on the other hand, descriptions seem more natural
than detailed histories. And indeed, the syntax of our ASMs (in Section 4)
will not involve histories directly but will involve descriptions like “p has
reply a and p′ has no reply” in the guards of contitional rules.

Notice that there is no guarantee that Dom(ξ̇) ⊆ IssuedX(ξ), although
this will be the case for attainable histories (defined below). In general, a
history as defined above may contain answers for queries that it and its initial
segments don’t cause. It may also contain answers for queries that would be
issued but only at a later phase than where the answers appear. In this
sense, histories need not be possible records of actual interactions, between
the algorithm and its environment, under the causality relation that is given
by the algorithm. The following definition describes the histories that are
consistent with the given causality relation. AB Added the next sentence;
I think it helps to explain why we want well-foundedness. (This formulation
of the reason occurred to me while answering Yuri’s comment below about
the first bullet item being the essential one in the definition of coherence.)
Informally, these are the histories where every query in the domain has a

legitimate reason, under the causality relation, for being there.

15

Definition 2.11. A history ξ is coherent, with respect to a state X or its
associated causality relation `X , if

• (∀q ∈ Dom(ξ̇)) q ∈ IssuedX(ξ �(< q)), and

• the linear order of the ≡ξ-equivalence classes induced by ≤ξ is a well-
order.

The first requirement in this definition, which can be equivalently rewrit-
ten as

(∀q ∈ Dom(ξ̇))(∃η E ξ) (η `X q and q /∈ Dom(η̇)),

says that, if a query q receives an answer at some phase, then it must have
been issued on the basis of what happened in strictly earlier phases. In
particular, the queries answered in the first phase, i.e., those in the first
≡ξ-class, must be caused by the empty history.

The second requirement is needed only because we allow infinite histories;
finite linear orders are automatically well-orders. The purpose of the second
requirement is to support the usual understanding of “cause” by prohibiting
an infinite regress of causes.
AB added the preceding paragraph, to address Yuri’s comment at the end
of the following remark. Also switched the order of the next two remarks, to
improve continuity.

Remark 2.12. It will follow from the Bounded Work Postulate below in
conjunction with the Interaction Postulate above, that we can confine atten-
tion to histories whose domains are finite. Then the second bullet item in
the definition of coherence would be automatically satisfied. Nevertheless,
we allow a coherent history ξ to have infinite domain and even to have in-
finitely many equivalence classes, with respect to ≤ξ, provided their ordering
induced by ≤ξ is a well-ordering. There are two reasons for this generality.
First, it will allow us to state the Bounded Work Postulate in a relatively
weak form and then to deduce the stronger fact that the histories we really
need to consider (the attainable ones) are finite. Second, it avoids formally
combining issues that are conceptually separate. Finiteness is, of course, an
essential aspect of computation, especially of small-step computation, and
the Bounded Work Postulate will formalize this aspect. But the notions of
coherent and attainable histories are conceptually independent of finiteness,

16

and so we do not impose finiteness in their definitions. YG I have doubts
about this particular conceptual separation. It comes at a price. If we consid-
ered only finite histories all along, the definition of coherence would only the
essential clause and thus would look more natural. More importantly, some
of our readers may not even know what well-founded order is; the notion does
not come up naturally in real computer science (as opposite of the computer
science of Michael Mislove). However I do not propose to change much
in the current draft. Let’s just mention here that the second clause of
the coherence definition is an artifact of that conceptual separation, that the
first clause is the essence of the definition. AB In the new material preced-
ing this remark, I didn’t say that the first requirement is the essence of the
definition, because I think that the second requirement, well-foundedness, is
also an essential part of coherence. The difference from the first requirement
is rather that we have a reasonable alternative way to achieve the second,
namely to impose finiteness. But it must be achieved, one way or another;
the first requirement alone — without something to imply well-foundedness
— doesn’t capture the essence of coherence, namely that all queries in the
domain have legitimate reasons for being there.

Remark 2.13. As mentioned above, the notion of coherence is intended to
capture the idea of a history that makes sense, given the algorithm’s causality
relation. Here we implicitly use the fact that we are describing an entire
algorithm, not a component that works with other components to constitute
an algorithm. If we were dealing with a component C, working in the presence
of other components, then it would be possible for queries to be answered
without having been asked by C, simply because another component could
have asked the query. See [5] for a study of components.

It follows immediately from the definitions that any initial segment of a
coherent history is coherent.

Definition 2.14. A history ξ for a state X is complete if PendingX(ξ) =
∅.

Thus, completeness means that all queries that have been issued have
also been answered. It can be regarded as a sort of converse to coherence,
since the latter means that all queries that have been answered have also
been issued earlier.

If a complete history has arisen in the course of a computation, then
there will be no further interaction with the environment during this step.

17

No further interaction can originate with the environment, because no queries
remain to be answered. No further interaction can originate with the algo-
rithm, since ξ and its initial segments don’t cause any further queries. So
the algorithm must either proceed to the next step (by updating its state)
or fail.

2.3 Completing a step

At the end of a step the algorithm will, unless it fails, perform some set of
updates. The next postulate will express this property of algorithms formally.
First, we adopt the formalization of the notion of update that was used in
earlier work, starting with [8].

Definition 2.15. A location in a stateX is a pair 〈f, a〉 where f is a dynamic
function symbol from Υ and a is a tuple of elements of X, of the right length
to serve as an argument for the function fX interpreting the symbol f in
the state X. The value of this location in X is fX(a). An update for X
is a pair (l, b) consisting of a location l and an element b of X. An update
(l, b) is trivial (in X) if b is the value of l in X. We often omit parentheses
and brackets, writing locations as 〈f, a1, . . . , an〉 instead of 〈f, 〈a1, . . . , an〉〉
and writing updates as 〈f, a, b〉 or 〈f, a1, . . . , an, b〉 instead of (〈f, a〉, b) or
(〈f, 〈a1, . . . , an〉〉, b).

The intended meaning of an update 〈f, a, b〉 is that the interpretation of
f is to be changed (if necessary, i.e., if the update is not trivial) so that its
value at a is b.

Because our algorithms are not required to be ordinary, they may finish a
step without reaching a complete history. The following postulate says that
they must finish the step when they reach a complete history, if they have
not already done so earlier.

Step Postulate — Part A The algorithm determines, for each state X,
a set FX of final histories. Every complete, coherent history has an initial
segment (possibly the whole history) in FX .

Intuitively, a history is final for X if, whenever it arises in the course of
a computation in X, the algorithm completes its step, either by failing or by
executing its updates and proceeding to the next step.

18

Since incoherent histories cannot arise under the algorithm’s causality
relation, it will not matter which such histories are final. We could have
postulated that only coherent histories can be final, but there is no need
to do so. It does no harm to allow incoherent final histories, though they
are irrelevant to the algorithm’s computation. By allowing them, we may
slightly simplify the description, as algorithms subject to our postulates,
of programs written in some programming language; if the language allows
one to say “finish the step” then this can be directly translated into final
histories, without having to check for coherence. Similar comments apply to
the remaining parts of the Step Postulate below, where we require update
sets or failure for coherent histories but allow them also for incoherent ones.

Definition 2.16. A history for a state X is attainable (in X) if it is coherent
and no proper initial segment of it is final.

Since initial segments of coherent histories are coherent, it follows that
initial segments of attainable histories are attainable.

The attainable histories are those that can occur under the given causality
relation and the given choice of final histories. That is, not only are the
queries answered in an order consistent with `X (coherence), but the history
does not continue beyond where FX says it should stop.

Our earlier statements to the effect that incoherent histories don’t matter
can be strengthened to say that unattainable histories don’t matter. Thus,
for example, although we allow one final history to be a proper initial segment
of another (even when both are coherent), the longer of the two will be
unattainable, so its being final is irrelevant.

Step Postulate — Part B For each state X, the algorithm determines
that certain histories succeed and others fail. Every final, attainable history
either succeeds or fails but not both.

Non-final or unattainable histories may succeed or fail or both, but this
will be irrelevant to the behavior of the algorithm. The intended meaning
of “succeed” and “fail” is that a successful final history is one in which the
algorithm finishes its step and performs a set of updates of its state, while a
failing final history is one in which the algorithm cannot continue — the step
ends, but there is no next state, not even a repetition of the current state.
Such a situation can arise if the algorithm computes inconsistent updates. It
can also arise if the environment gives inappropriate answers to some queries.

19

For more about failures, see the discussion following the Update Postulate
in [2, Section 5]. There is, however, one difference between our present situa-
tion and that in [2]. There, the algorithm depended upon getting answers to
all its queries, so it is reasonable to expect that an inappropriate answer al-
ways results in failure. In our present situation, however, the algorithm may
be willing to finish its step without getting the answer to a certain query. In
this case, an inappropriate answer to that query need not force failure.

Definition 2.17. The set of successful final histories is denoted by F+
X , and

the set of failing final histories is denoted by F−
X .

Thus, FX is the disjoint union of F+
X and F−

X .
When a history in F+

X arises during the computation, the algorithm
should perform its updates and proceed to the next step. We formalize
this in the third and last part of the Step Postulate, keeping in mind that
only attainable histories can arise. The notation ∆+ for the update set is
taken from [2]. The superscript + refers to the fact that trivial updates can
be included in the update set. Although they do not affect the next state,
they can affect whether clashes occur when our algorithm is run in parallel
with another.

Step Postulate — Part C For each attainable history ξ ∈ F+
X for a

state X, the algorithm determines an update set ∆+(X, ξ), whose elements
are updates for X. It also produces a next state τ(X, ξ), which

• has the same base set as X,

• has fτ(X,ξ)(a) = b if 〈f, a, b〉 ∈ ∆+(X, ξ), and

• otherwise interprets function symbols as in X.

The Step Postulate is the analog, for our present situation, of the Update
Postulate of [2]. There are two differences between these postulates, reflecting
the two requirements of ordinariness in [2] that have been lifted in the present
work.

First, since we now consider algorithms that can finish a step without
waiting for all queries to be answered, we include in the notion of algorithm
the information about when to finish a step. This is the notion of final history
introduced in Part A of the Step Postulate. If an algorithm never finishes a

20

step while queries are still pending, then its final histories could be defined as
being the complete histories (or the complete, coherent histories), and there
would be no need to specify F separately in the algorithm. The complete,
coherent histories correspond to the contexts, as defined in [2].

Second, because we allow an algorithm to take into account the order
in which it receives replies to its queries, decisions about failures and up-
dates depend not only on the answer function ξ̇ but on the whole history ξ,
including the ordering information contained in ≤ξ.

The intuition and motivation behind the other aspects of the Step Pos-
tulate are discussed in detail in [8] and [2].

Convention 2.18. In notations like FX , F±
X , ∆+(X, ξ), and τ(X, ξ), we may

omit X if only one X is under discussion. We may also add the algorithm A
as a superscript if several algorithms are under discussion.

Notice that the Step Postulate requires ∆+(X, ξ) and τ(X, ξ) to be de-
fined when ξ is an attainable, final, successful history, but it allows them
to be defined also for other histories. Any values they may have for other
histories, however, will not affect the algorithm’s computation.

Notice also that the next state is completely determined by the current
state and the update set. So when describing an algorithm, we need not
explicitly describe τ if we have described ∆+.

If ∆+(X, ξ) clashes, i.e., if it contains two distinct updates of the same
location, then the description of τ(X, ξ) is contradictory, so the next state
cannot exist. Thus, if such a ξ is attainable and final, it must be failing.
That is, clashes imply failure.

Remark 2.19. Although the primary subject of this paper is intra-step in-
teraction between an algorithm and its environment, it is not our intention
to prohibit inter-step interaction of the sort described in [7]. Inter-step inter-
action is, however, quite easy to describe; the environment is permitted to
make arbitrary changes to the state’s dynamic functions between the steps of
the algorithm. Thus, a run of an algorithm is a (finite or infinite) sequence
of states, starting with an initial state, in which each state but the first is
obtained from its predecessor either by an intervention of the environment or
by a step of the algorithm. In the intervention case, the successor state has
the same base set and static functions as the predecessor, but the dynamic
functions can be arbitrarily altered. In the case of an algorithm step, there is

21

a successful final history ξ, describing the environment’s replies to the algo-
rithm’s queries during the step, and if the state before the step was X then
the state after the step is τ(X, ξ). Since what happens in the intervention
steps is quite arbitrary, our concern in this paper is to analyze what happens
in the algorithmic steps.

2.4 Isomorphism

As in previous work, starting with [8], we require that the information rel-
evant to the algorithm’s computation that is given by the state must be
explicitly given by the structure of the state, not implicitly given by the par-
ticular nature of its elements. Formally, this means that the computation
must be invariant under isomorphisms.

Any isomorphism i : X ∼= Y between states can be extended in an obvi-
ous, canonical way to act on queries, answer functions, histories, locations,
updates, etc. We use the same symbol i for all these extensions.

Isomorphism Postulate Suppose X is a state and i : X ∼= Y is an
isomorphism of Υ-structures. Then:

• Y is a state, initial if X is.

• i preserves causality, that is, if ξ `X q then i(ξ) `Y i(q).

• i preserves finality, success, and failure, that is, i(F±
X) = F±

Y and
i(FX) = FY .

• i preserves updates, that is, i(∆+(X, ξ)) = ∆+(Y, i(ξ)) for all histories
ξ for X.

Convention 2.20. In the last part of this postulate, and throughout this
paper, we adopt the convention that an equation between possibly undefined
expressions is to be understood as implying that if either side is defined then
so is the other.

Remark 2.21. We have required that isomorphisms preserve even the irrel-
evant parts of the algorithm, like update sets for unattainable or non-final
histories. This requirement could be dropped without any damage to our
results. Nevertheless, it seems a natural requirement in a general description

22

of algorithms. The intuition behind it is that, even if an algorithm includes
irrelevant information, the states should still be abstract; not even the irrele-
vant information should be able to “see” the particular nature of the elements
of the state.

2.5 Small steps

The final postulate formalizes the requirement that a small-step algorithm
can do only a bounded amount of work in any one step. The bound depends
only on the algorithm. Work includes assembling queries (from elements of
the state and labels) and issuing them, computing what queries to issue, de-
ciding whether the current history suffices to finish the step, deciding whether
the computation has failed, and computing updates. Our formalization of
this closely follows the corresponding postulate in [2, Section 5]; the use of
a set of terms to represent the bounded part of the state that the algorithm
looks at goes back to [8].

Bounded Work Postulate

• There is a bound, depending only on the algorithm, for the lengths of
the tuples in IssuedX(ξ) , for all states X and final, attainable histories
ξ.

• There is a bound, depending only on the algorithm, for the cardinality
|IssuedX(ξ)|, for all states X and final, attainable histories ξ.

• There is a finite set W of Υ-terms (possibly involving variables), de-
pending only on the algorithm, with the following property. Suppose
X and X ′ are two states and ξ is a history for both of them. Suppose
further that each term in W has the same value in X as in X ′ when
the variables are given the same values in Range(ξ̇). Then:

– If ξ `X q then ξ `X′ q (so in particular q is a query for X ′).

– If ξ is in F+
X or F−

X , then it is also in F+
X′ or F−

X′ , respectively.

– ∆+(X, ξ) = ∆+(X ′, ξ).

This completes our list of postulates, so we are ready to define the class
of algorithms to be treated in this paper.

23

Definition 2.22. An interactive, small-step algorithm is any entity satisfying
the States, Interaction, Step, Isomorphism, and Bounded Work Postulates.

Since these are the only algorithms under consideration in most of this
paper, we often omit “interactive, small-step”; on the other hand, when
we want (as in the title of this paper) to emphasize the difference between
these algorithms and the “ordinary algorithms” treated in [2, 3, 4], we may
refer to the present class of algorithms as “general, interactive, small-step
algorithms”.

The remainder of this section is devoted to some terminology and results
connected with the Bounded Work Postulate.

Definition 2.23. A set W with the property required in the third part
of the Bounded Work Postulate is called a bounded exploration witness for
the algorithm. Two pairs (X, ξ) and (X ′, ξ), consisting of states X and X ′

and a single ξ that is a history for both, are said to agree on W if, as in
the postulate, each term in W has the same value in X as in X ′ when the
variables are given the same values in Range(ξ̇).

The first two parts of the Bounded Work Postulate assert bounds for final,
attainable histories. They imply the corresponding bounds for all attainable
histories, thanks to the following lemma.

Lemma 2.24. Let X be a state.

• Any coherent history for X is an initial segment of a complete, coherent
history for X.

• Any attainable history for X is an initial segment of a final, attainable
history for X.

Proof. Since X is fixed throughout the proof, we omit it from the notation.
To prove the first assertion, let ξ be a coherent history. According to the

definition, its order-type (meaning, strictly speaking, the order-type of the
ordering induced by ≤ξ on the equivalence classes under ≡ξ) is some ordinal
number α. We shall inductively define a sequence of coherent histories ξn,
starting with ξ0 = ξ. Here n will range over either the set N of all natural
numbers or the set of natural numbers up to some finite N to be determined
during the construction. After ξn is defined, if it is complete, then stop the

24

construction, i.e., set N = n. If ξn is incomplete, this means that the set
Dn = Pending(ξn) = Issued(ξn)−Dom(ξ̇n) is nonempty. Extend the answer
function ξ̇n by adjoiningDn to its domain and assigning it arbitrary values (in
X) there. Call the resulting answer function ξ̇n+1, and make it into a history
ξn+1 by pre-ordering its domain as follows. On Dom(ξ̇n), ≤ξn+1 agrees with

≤ξn . All elements of Dom(ξ̇n+1) are ≤ξn+1 all elements of Dn. Elements of Dn

are ≤ξn+1 only each other. In other words, we extend the ordering of Dom(ξ̇n)
by adding Dn at the end, as a single equivalence class. It is straightforward
to check that each ξn (if defined, i.e., if the sequence hasn’t ended before n)
is a coherent history; the order-type of its equivalence classes is α+ n.

If ξn is defined for only finitely many n, then this is because the last ξn
was complete, and so we have the required result. It remains to consider
the case where ξn is defined for all natural numbers n. In this case, let
ζ be the union of all the ξn’s. (More formally, if we regard functions and
orderings as sets of ordered pairs, then ζ̇ is the union of the ξ̇n’s, and the
pre-order ≤ζ is the union of the ≤ξn ’s.) Then ζ is also coherent. Indeed, if
q ∈ Dom(ζ̇) then there is some n such that q ∈ Dom(ξ̇n). As ξn is coherent,
q ∈ Issued(ξn �(< q)). But, since each ξn is an initial segment of the next,
and therefore of ζ, we have ξn �(< q) = ζ �(< q) and so q ∈ Issued(ζ �(< q)).
Furthermore, the order-type of ζ is α + ω (where ω is the order-type of the
natural numbers), so it is well-ordered.

To finish the proof of the first part of the lemma, we need only check
that ζ is complete. Suppose, toward a contradiction, that q ∈ Pending(ζ).
So there is an initial segment η of ζ such that η ` q. By the Interaction
Postulate, η is finite, so it is an initial segment of ξn for some n. Then

q ∈ Issued(ξn) ⊆ Dom(ξ̇n+1) ⊆ Dom(ζ̇).

That contradicts the assumption that q ∈ Pending(ζ), so we have shown that
ζ is complete. Thus, ξ = ξ0 is an initial segment of the complete, coherent
history ζ, and the first assertion of the lemma is proved.

To prove the second assertion, let ξ be an attainable history. In particular,
it is coherent, so, by the first assertion, it is an initial segment of a complete,
coherent history ζ. By Part A of the Step Postulate, ζ has an initial segment η
that is a final history. If ζ has several initial segments that are final histories,
then let η be the shortest of them; thus no proper initial segment of η is
final. Since both ξ and η are initial segments of ζ, one of them is an initial
segment of the other. Since ξ is attainable and η is final, η cannot be a proper

25

initial segment of ξ. Therefore, ξ is an initial segment of η. Furthermore,
η is coherent, because it is an initial segment of the coherent history ζ. It
follows, since no proper initial segment of η is final, that η is attainable, as
desired.

The following corollary extends the first assertion in the Bounded Work
Postulate to histories that need not be final.

Corollary 2.25. There is a bound, depending only on the algorithm, for the
lengths of the tuples in IssuedX(ξ) for all states X and all attainable histories
ξ.

Proof. The bound on lengths of queries issued by final, attainable histories,
given by the Bounded Work Postulate, applies to all attainable histories,
because these are, by the lemma, initial segments of final ones.

The next corollary similarly extends the second assertion of the Bounded
Work Postulate, and adds some related information.

Corollary 2.26. There is a bound, depending only on the algorithm, for
|IssuedX(ξ)|, for all states X and attainable histories ξ. The same number
also bounds |Dom(ξ̇)| for all attainable ξ.

Proof. By the lemma, any attainable history ξ is an initial segment of a final,
attainable history ζ. Then IssuedX(ξ) ⊆ IssuedX(ζ). The bound provided by
the Bounded Work Postulate for |IssuedX(ζ)| thus applies to ξ as well. This
proves the first assertion of the corollary, and the second follows because ξ,
being attainable, is coherent, which implies Dom(ξ̇) ⊆ IssuedX(ξ).

3 Equivalence of Algorithms

One of this paper’s principal aims is to show that every algorithm, in the sense
defined above, is behaviorally equivalent, in a strong sense, to an ASM. Of
course, this goal presupposes a precise definition of the notion of behavioral
equivalence, and we devote the present section to presenting and justifying
that definition. As in earlier work on the ASM thesis, beginning in [8] and
continuing in [1, 2, 3, 4], the definition of equivalence is intended to express
the idea that two algorithms behave the same way in all possible situations.
We must, of course, make precise what is meant by “behave the same way”

26

and by “possible situations.” Much of what needs to be said here was already
said in [2, Section 6] in the more restricted context of ordinary interaction,
and we shall not repeat all the details here.

Part of the definition of equivalence of algorithms is straightforward. As
in previous work, we require equivalent algorithms to have the same states,
the same initial states, the same vocabulary, and the same labels. The re-
quirement that they agree as to states and initial states is clearly necessary
for any comparison at all between their behaviors, specifically the aspect of
behavior given by the progression of states in a run. The requirement that
they agree as to vocabulary is actually a consequence of agreement as to
states (and the requirement, in the definition of algorithm, that there be
at least one state), because any structure determines its vocabulary. The
requirement that they agree as to labels ensures that the algorithms have,
in any state, the same potential queries; this is needed for any comparison
between their behaviors, since issuing queries is observable behavior.

The requirements just discussed say that equivalent algorithms agree as
to all the items introduced in the States Postulate. It is tempting to go
through the remaining postulates, look for statements of the form “the algo-
rithm determines” such-and-such, and require equivalent algorithms to have
the same such-and-such. Unfortunately, this approach, which in [8] would
produce the correct notion of equivalence, is too restrictive when applied to
interactive algorithms in [2] and the present paper.

The difficulties were already pointed out in [2, Section 6] in connection
with the causality relation. The examples given there exhibit the following
two sorts of problems. First, a causality relation could have instances ξ `X q
whose ξ could never actually occur in the execution of the algorithm, for
example because Dom(ξ̇) contains queries that the algorithm would never
issue. Second, as in [3, Example 6.4], the ξ in an instance ξ `X q of causality
could contain redundant elements, such as a query-reply pair that would have
to be present in order for another query in Dom(ξ̇) to be issued. Algorithms
whose causality relations differ only in such irrelevant ways should count as
equivalent. That is, we should care only about what queries the algorithm
issues in response to histories that can actually occur when this algorithm
runs.

Similar comments apply to the remaining ingredients of an algorithm, in
which histories are used. The notions of final, successful, and failing histories
and the update sets should not be required to agree completely when two
algorithms are equivalent; it suffices that they agree on those histories that

27

can actually occur.

Remark 3.1. We emphasize again that we are dealing here with a situation
where only the algorithm and its environment are involved. In other situa-
tions, for example when several algorithms interact (and we do not choose
to consider each as a part of the environment for the others), the situation
would be more complex. Consider, for example, two algorithms that function
as components in a larger computation. The first of these components might
issue a query whose reply is used by the second. In that case, instances
ξ `X q of the second component’s causality relation can be relevant even
if that component would never issue the queries in Dom(ξ̇). Some aspects
of this situation will arise when we discuss the “do in parallel” construct of
ASMs; a thorough discussion will be provided in [5].

To formalize the preceding discussion, we must still say something about
the notion of a history that can actually appear. We have already intro-
duced a precise version of this notion, namely the notion of an attainable
history. This notion, however, depends on the causality relation and the
notion of finality given with the algorithm. When we define equivalence of
two algorithms, which one’s attainability should we use? There are two nat-
ural choices: Require the algorithms to agree (as to queries issued, finality,
success, failure, and updates) on those histories that are attainable for both
algorithms, or require agreement on all histories that are attainable under
at least one of the algorithms. (There are also some less natural choices, for
example to require agreement on the histories attainable under the first of
the two algorithms; this threatens to make equivalence unsymmetric.) For-
tunately, these options lead, as we shall prove below, to the same notion of
equivalence of algorithms. Having advertised our notion of equivalence as a
strong one, we take the apparently stronger of the natural definitions as the
official one and then prove its equivalence with the apparently weaker one.

Definition 3.2. Two algorithms are behaviorally equivalent if

• they have the same states (therefore the same vocabulary), the same
initial states, and the same labels,

• in each state, they have the same attainable histories,

• for each state X and each attainable history ξ, they have the same set
IssuedX(ξ),

28

• for each state, the two algorithms have the same attainable histories in
F+
X and F−

X (and therefore also in FX).

• for each state and each attainable, final, successful history, they have
the same update sets.

The following lemma shows that the notion of equivalence is unchanged if
we delete the second item in the definition and weaken the subsequent ones
to apply only to histories that are attainable for both algorithms.

Lemma 3.3. Suppose two algorithms have the following properties.

• They have the same states (therefore the same vocabulary), the same
initial states, and the same labels,

• for each state X and each history ξ that is attainable for both algo-
rithms, they have the same set IssuedX(ξ),

• for each state, any history that is attainable in both algorithms and is in
F+
X or F−

X for one of the algorithms is also in F+
X or F−

X , respectively,
for the other.

• for each state and each history that is attainable for both and final and
successful (for one and therefore both), they have the same update sets.

Then these two algorithms are equivalent.

Proof. Comparing the hypotheses of the lemma with the definition of equiv-
alence, we see that it suffices to prove that, under the hypotheses of the
lemma, any history that is attainable in a state X for either algorithm must
also be attainable in X for the other. Indeed, this would directly establish
the second clause of the definition, and it would make the subsequent clauses
in the definition equivalent to the corresponding hypotheses in the lemma.

Let A1 and A2 be two algorithms satisfying the hypotheses of the lemma.
Fix a state X for the rest of the proof; we shall suppress explicit mention
of X in our notations. To prove that A1 and A2 have the same attainable
histories, we first recall that any attainable history (for either algorithm)
has finite domain by Corollary 2.26 and therefore has finite length. We can
therefore proceed by induction on the length of histories. Since the empty

29

history vacuously satisfies the definitions of “coherent” and “attainable”, we
need only verify the induction step.

Consider, therefore, a nonempty history ξ that is attainable for A1. Let
the last equivalence class in Dom(ξ̇) be L and let η be the initial segment of ξ
obtained by deleting L from the domain. Then η is attainable for A1 (because
ξ is) and therefore also for A2 (by induction hypothesis). Furthermore, the
linear order of the equivalence classes of ξ, being finite, is certainly a well-
ordering. So to complete the proof that ξ is attainable for A2, it suffices to
verify that it satisfies, with respect to A2, the first clause in the definition of
coherence (that every q ∈ Dom(ξ̇) is caused by an initial segment that ends
before q) and that no proper initial segment of it is final.

For the first of these goals, observe that the induction hypothesis gives
what we need if q ∈ Dom(η̇), so we need only deal with the case that q ∈ L.
In this case, we know that q ∈ IssuedA1(η) because ξ is coherent for A1. But
since η is attainable for both algorithms, the second hypothesis of the lemma
applies, and we infer that q ∈ IssuedA2(η), as required.

For the second goal, we already know that η is attainable for A2 and
so none of its proper initial segments can be final. The only proper initial
segment of ξ not covered by this observation is η, so it remains only to show
that η is not final for A2. Since η is not final for A1 (because ξ is attainable
for A1) and since η is attainable for both algorithms, the third hypothesis of
the lemma immediately gives the required conclusion.

4 Abstract State Machines — Syntax

In this section, we describe the syntactic side of ASMs. The most important
part of this is the syntax of ASM programs, but it also includes the template
assignments, whose role is to mediate between the notation used in programs
and the queries issued when the ASM runs. The ASMs to be described here
are an extension of those in [3]; the extension incorporates capabilities for
taking into account the order of the environment’s replies and for ending a
step before all queries have been answered. We recapitulate here, for the
sake of completeness, the essential definitions from [3], but we do not repeat
the detailed discussion and motivation for these definitions. Of course we do
provide detailed discussion and motivation for those aspects of the present
material that go beyond what was in [3].

30

4.1 Vocabularies and templates

An ASM has, like any algorithm, a finite vocabulary Υ complying with Con-
vention 2.2. In addition, it has an external vocabulary E, consisting of finitely
many external function symbols2. These symbols are used syntactically ex-
actly like the symbols from Υ, but their semantics is quite different. If f is
an n-ary external function symbol and a is an n-tuple of arguments from a
state X, then the value of f at a is not stored in the state but is obtained
from the environment as the reply to a query.

Remark 4.1. The ASM syntax of [3] included commands of the form
Outputl(t) where t is a term and l is a so-called output label. These com-
mands produced an outgoing message, regarded as a query with an automatic
reply “OK.” In the present paper, we shall include commands for issuing the
queries associated with external function calls even when the reply might
not be used in the evaluation of a term. These issue commands subsume
the older Output commands, so we do not include the latter in our present
syntax. This is why the preceding paragraph introduces only the external vo-
cabulary and not an additional set of output labels. Note in this connection
that the simulation of ordinary interactive small-step algorithms by ASMs in
[4] did not use Output rules.

AB added the following convention and remark, to get rid of non-Boolean
values for Boolean queries.

Convention 4.2. Recall from Convention 2.2 that function symbols in Υ
admit two sorts of markings. They can be either static or dynamic and
they can be relational or not. No such markings are applied to the external
function symbols. All symbols in E are considered static and not relational.

Remark 4.3. In this convention, “static” does not mean that the values
of external functions cannot change; it means that the algorithm cannot
change them, although the environment can. External functions cannot be
the subject of updates in an ASM program, and in this respect they have
the same syntax as static function symbols from Υ.

2The symbol E for the external vocabulary is the Greek capital epsilon, in analogy with
the Greek capital upsilon Υ for the algorithm’s vocabulary.

31

We do not declare any external function symbols to be relational because
such a declaration would, depending on its semantical interpretation, lead to
one of two difficulties.

One possibility would be to demand that the queries resulting from re-
lational external functions get replies that are appropriate values for such
functions, namely only true and false. This imposes a burden on the en-
vironment, and a fairly complicated one, since it may not be evident, by
inspection of a query, what external function symbol produced it (see the
discussion of templates below). We prefer in this paper to keep the environ-
ment unconstrained.

A second possibility for handling relational external functions is to al-
low the environment to give arbitrary, not necessarily Boolean, replies to
the queries resulting from these symbols. Then we could have non-Boolean
values for Boolean terms, and we would have to decide how to handle this
pathological situation, for example when it occurs in the guard of a condi-
tional rule. In [3, Section 5], this approach was used, with the convention
that this sort of pathology would cause the conditional rule to fail. In our
present situation, that convention no longer looks so natural, because the
pathological value might be one that the algorithm didn’t really need. (Re-
call that in [2, 3, 4] algorithms needed replies to all of their queries.) One can
probably find a reasonable convention for dealing with this pathology even
for general interactive algorithms, but the convention would appear some-
what arbitrary, and it seems simpler to prohibit external function symbols
from being relational.

It might appear that this prohibition could cause a problem in program-
ming. Suppose, for example, that we know somehow that the environment
will provide a Boolean value for a certain nullary external function symbol p.
Then we might want to use p as the guard in a conditional statement. But
we can’t; since p isn’t a relational symbol, it is not a Boolean term, and so
(according to the definitions in the following subsections) it is ineligible to
serve as a guard. Fortunately, this problem disappears when we observe that
p = true is a perfectly good guard (since equality is relational) and it has the
same value as p (since we allegedly know that p gets a Boolean value). If, on
the other hand, we’re not sure that the environment will provide a Boolean
value, then a particular decision about how to handle a non-Boolean value
can be built into the program. For example, the convention from [3] would
be given by

32

do in parallel

if p = true then R1 endif

if p = false then R2 endif

if p 6= true and p 6= false then fail endif

enddo.

Definition 4.4. The set of terms is the smallest set containing f(t1, . . . , tn)
whenever it contains t1, . . . , tn and f is an n-ary function symbol from Υ∪E.
(The basis of this recusive definition is, of course, given by the 0-ary function
symbols.)

This definition formalizes the assertion above that the external function
symbols in E are treated syntactically like those of the state vocabulary Υ.

Notice that the terms of ASMs do not involve variables. In this respect
they differ from those of [3], those of first-order logic, and those used in the
bounded exploration witnesses of Section 2. It may be surprising that we
can get by without variables while describing algorithms more general than
those of [3] where we used variables. Recall, however, that the variables
in the ASM programs of [3] are bound by the let construct, and that this
construct is eliminable according to [4, Section 7]. In the present paper, we
use let only as syntactic sugar (see Subsection 4.4 below), and so we do not
need variables in our basic formalism.

Definition 4.5. A Boolean term is a term of the form f(t) where f is a
relational symbol.

The correspondence between external function calls on the one hand and
queries on the other hand is mediated by a template assignment, defined as
follows.

Definition 4.6. For a fixed label set Λ, a template for n-ary function symbols
is any tuple in which certain positions are filled with labels from Λ while the
rest are filled with the placeholders #1, . . . ,#n, occurring once each. We
assume that these placeholders are distinct from all the other symbols under
discussion (Υ ∪ E ∪ Λ). If Q is a template for n-ary functions, then we
write Q[a1, . . . , an] for the result of replacing each placeholder #i in Q by
the corresponding ai.

Thus if the ai are elements of a state X then Q[a1, . . . , an] is a potential
query in X.

33

Definition 4.7. For a fixed label set and external vocabulary, a template
assignment is a function assigning to each n-ary external function symbol f
a template f̂ for n-ary functions,

The intention, which will be formalized in the semantic definitions of
the next section, is that when an ASM evaluates a term f(t1, . . . , tn) where
f ∈ E, it first computes the values ai of the terms ti, then issues the
query f̂ [a1, . . . , an], and finally uses the answer to this query as the value
of f(t1, . . . , tn).

4.2 Guards

In [3], the guards ϕ in conditional rules if ϕ then R0 else R1 endif were
simply Boolean terms. We shall need guards of a new sort to enable our
ASMs to take into account the temporal order of the environment’s replies
and to complete a step even when some queries have not yet been answered.

We introduce timing explicitly into the formalism with the notation (s �
t), which is intended to mean that the replies needed to evaluate the term
s arrived no later than those needed to evaluate t. It may seem that we
are thereby just introducing a new form of Boolean term, but in fact the
situation is more complicated.

In the presence of a history ξ containing all the replies needed for both s
and t, there will be a truth value, determined by ξ, for (s � t). At the other
extreme, if neither s nor t can be fully evaluated under ξ, then (s � t) must,
like s and t themselves, have no value. So far, (s � t) behaves like a term.

Between the two extremes, however, there is the situation where the his-
tory ξ suffices for the evaluation of one but not both of s and t. If it suffices
for s but not for t, then (s � t) is true; if it suffices for t but not for s, then
(s � t) is false. Here, (s � t) behaves quite differently from a term, in that
it has a value even when one of its subterms does not.

This behavior of (s � t) also enables an ASM to complete its step while
some of its queries remain unanswered. The execution of a conditional rule
with (s � t) as its guard can proceed to the appropriate branch as soon as
it has received enough replies from the environment to evaluate at least one
of s and t, without waiting for the replies needed to evaluate the other.

We shall need similar behavior for more complicated guards, and for this
purpose we shall use the propositional connectives of Kleene’s strong three-
valued logic, which perfectly fits this sort of situation. We use the notations

34

f and g for the conjunction and disjunction of this logic. They differ from
the classical connectives ∧ and ∨ in that ϕ f ψ has the value false as soon
as either of ϕ and ψ does, even if the other has no value, and ϕg ψ has the
value true as soon as either of ϕ and ψ does, even if the other has no value.
In other words, if the truth value of one of the constituents ϕ and ψ suffices
to determine the truth value of the compound formula, regardless of what
truth value the other constituent gets, then this determination takes effect
without waiting for the other constituent to get any truth value at all. (It is
customary, in discussions of these modified connectives, to treat “unknown”
as a third truth value, but it will be convenient for us to regard it as the
absence of a truth value. Such absences occur anyway, even for ordinary
terms, when histories lack the replies needed for a complete evaluation, and
it seems superfluous to introduce another entity, “unknown,” to serve as a
marker of this situation.)

Definition 4.8. The set of guards is defined by the following recursion.

• Every Boolean term is a guard.

• If s and t are terms, then (s � t) is a guard.

• If ϕ and ψ are guards, then so are (ϕf ψ), (ϕg ψ), and ¬ϕ.

Notice that the first clause of this definition allows, in particular, terms
built by means of the ordinary, 2-valued connectives from other Boolean
terms.

4.3 Rules

Most of the definition of ASM rules is as in [3]. The differences are in the
use of issue rules in place of the less general Output rules of [3] and in the
more general notion of guard introduced above.

Definition 4.9. The set of ASM rules is defined by the following recursion.

• If f ∈ Υ is a dynamic n-ary function symbol, if t1, . . . , tn are terms,
and if t0 is a term that is Boolean if f is relational, then

f(t1, . . . , tn) := t0

is a rule, called an update rule.

35

• If f ∈ Υ is an external n-ary function symbol and if t1, . . . , tn are terms,
then

issuef(t1, . . . , tn)

is a rule, called an issue rule.

• fail is a rule.

• If ϕ is a guard and if R0 and R1 are rules, then

if ϕ then R0 else R1 endif

is a rule, called a conditional rule. R0 and R1 are its true and false
branches, respectively.

• If k is a natural number (possibly zero) and if R1, . . . , Rk are rules then

do in parallel R1, . . . , Rk enddo

is a rule, called a parallel combination or block with the subrules Ri as
its components.

We may omit the end-markers endif and enddo when they are not
needed, for example in very short rules or in programs formatted so that
indentation makes the grouping clear.

4.4 Syntactic sugar

The preceding subsections complete the definition of the syntax of ASMs.
It will, however, be convenient notationally and suggestive conceptually to
introduce abbreviations, syntactic sugar, for certain expressions. Specifically,
we adopt the following conventions and notations.

Convention 4.10. The parallel combination with no components, officially
written do in parallel enddo, is abbreviated skip.

Convention 4.11. The parallel combination with k ≥ 2 components
R1, . . . , Rk can be written as R1 par . . . par Rk.

36

Semantically, par is commutative and associative, that is, rules that differ
only by the order and parenthesization of parallel compositions will have the
same semantic behavior. Thus, in contexts where only the semantics matters,
parentheses can be omitted in iterated pars.

Convention 4.12. We abbreviate if ϕ then R else skip endif as if ϕ
then R endif.

Convention 4.13. For any term t, the Boolean term t = t is denoted by t!,
read as “t bang.”

These bang terms may seem trivial, but they can be used to control timing
in the execution of an ASM. If the term t involves external function symbols,
then the rule if t! then R endif differs from R in that it issues the queries
needed for the evaluation of t and waits for the replies before proceeding to
execute R.

Convention 4.14. We use the following abbreviations:

(s ≺ t) for ¬(t � s),

(s ≈ t) for (s � t) f (t � s),

(s � t) for (t � s), and

(s � t) for (t ≺ s)

Parentheses may be omitted when no confusion results.

The final two items of syntactic sugar involve two ways of binding vari-
ables to terms by let operators. Our syntax so far does not include variables,
but it is easy to add them.

Definition 4.15. Fix an infinite set of variables. ASM rules with variables
are defined exactly like ASM rules, with variables playing the role of addi-
tional, nullary, static symbols.

Convention 4.16. If R(v1, . . . , vk) is a rule with distinct variables vi, and
if t1, . . . , tk are terms then the let-by-name notation

n-let v1 = t1, . . . , vk = tk in R(v1, . . . , vk)

means R(t1, . . . , tk).

37

Convention 4.17. If R(v1, . . . , vk) is a rule with distinct variables vi, and
if t1, . . . , tk are terms then the let-by-value notation

v-let v1 = t1, . . . , vk = tk in R(v1, . . . , vk)

abbreviates
if t1! ∧ · · · ∧ tk! then R(t1, . . . , tk).

For both n-let and v-let rules, the vi are called the variables of the
rule, the ti its bindings, and R(v1, . . . , vk) its body. Each of the variables vi
is bound by this rule at its initial occurrence in the context vi = ti and at
any free occurrences in R(v1, . . . , vk). (Occurrences of the variables vi in the
terms tj are not bound by this n-let or v-let construction, regardless of
whether i = j or not.)

The let-by-name notation simply uses variables vi as placeholders for the
terms ti. The let-by-value notation, in contrast, first evaluates all the ti and
only afterward proceeds to execute the rule R. In this sense, the two forms
of let correspond to call-by-name and call-by-value in other situations.

5 Abstract State Machines — Semantics

Throughout this section, we refer to a fixed structure X. We define the
semantics of terms, guards, and rules in the structure X, relative to histories
ξ. (Unlike X, the history ξ will not remain fixed, because the meaning of
a guard under history ξ can depend on the meanings of its subterms under
initial segments of ξ.) In each case, the semantics will specify a causality
relation. In addition, for terms and guards the semantics may provide a
value (Boolean in the case of guards); for rules, the semantics may declare
the history final, successful, or failing, and may provide updates.

5.1 Terms

The semantics of terms is the same as in [3], except that we do not use
variables here. In particular, the history ξ is involved only via the answer
function ξ̇; the pre-order is irrelevant. The semantics of terms specifes, by
induction on terms t, the queries that are caused by ξ under the associated
causality relation `tX and sometimes also a value Val(t,X, ξ).

38

Definition 5.1. Let t be the term f(t1, . . . , tn).

• If Val(ti, X, ξ) is undefined for at least one i, then Val(t,X, ξ) is also
undefined, and ξ `tX q if and only if ξ `tiX q for at least one i.

• If, for each i, Val(ti, X, ξ) = ai and if f ∈ Υ, then Val(t,X, ξ) =
fX(a1, . . . , an), and no query q is caused by ξ.

• If, for each i, Val(ti, X, ξ) = ai, if f ∈ E, and if f̂ [a1, . . . , an] ∈ Dom(ξ̇),
then Val(t,X, ξ) = ξ̇(f̂ [a1, . . . , an]), and no query is caused by ξ.

• If, for each i, Val(ti, X, ξ) = ai, if f ∈ E, and if f̂ [a1, . . . , an] /∈ Dom(ξ̇),
then Val(t,X, ξ) is undefined, and ξ `tX q for exactly one query, namely

q = f̂ [a1, . . . , an].

We record for future reference three immediate consequences of this def-
inition; the proofs are routine inductions on terms.

Lemma 5.2. Val(t,X, ξ) is defined if and only if there is no query q such
that ξ `tX q.

Lemma 5.3. If ξ `tX q then q /∈ Dom(ξ̇).

Lemma 5.4. If ηE ξ (or even if merely η̇ ⊆ ξ̇) and if Val(t,X, η) is defined,
then Val(t,X, ξ) is also defined and these values are equal.

5.2 Guards

The semantics of guards, unlike that of terms, depends not only on the answer
function but also on the preorder in the history. Another difference from the
term case is that the values of guards, when defined, are always Boolean
values. Guards share with terms the property that they produce queries if
and only if their values are undefined.

Definition 5.5. Let ϕ be a guard and ξ a history in state X.

• If ϕ is a Boolean term, then its value (if any) and causality relation are
already given by Definition 5.1.

39

• If ϕ is (s � t) and if both s and t have values with respect to ξ,
then Val(ϕ,X, ξ) = true if, for every initial segment η E ξ such
that Val(t,X, η) is defined, Val(s,X, η) is also defined. Otherwise,
Val(ϕ,X, ξ) = false. Also declare that ξ `ϕX q for no q.

• If ϕ is (s � t) and if s has a value with respect to ξ but t does not,
then define Val(ϕ,X, ξ) to be true; again declare that ξ `ϕX q for no q.

• If ϕ is (s � t) and if t has a value with respect to ξ but s does not,
then define Val(ϕ,X, ξ) to be false; again declare that ξ `ϕX q for no
q.

• If ϕ is (s � t) and if neither s nor t has a value with respect to ξ, then
Val(ϕ,X, ξ) is undefined, and ξ `ϕX q if and only if ξ `sX q or ξ `tX q.

• If ϕ is ψ0 f ψ1 and both ψi have value true, then Val(ϕ,X, ξ) = true

and no query is produced.

• If ϕ is ψ0 fψ1 and at least one ψi has value false, then Val(ϕ,X, ξ) =
false and no query is produced.

• If ϕ is ψ0 fψ1 and one ψi has value true while the other, ψ1−i, has no
value, then Val(ϕ,X, ξ) is undefined, and ξ `ϕX q if and only if ξ `ψ1−i

X q.

• If ϕ is ψ0fψ1 and neither ψi has a value, then Val(ϕ,X, ξ) is undefined,
and ξ `ϕX q if and only if ξ `ψi

X q for some i.

• The preceding four clauses apply with g in place of f and true and
false interchanged. AB deleted the clause about non-Boolean guards,
since they’re now prohibited. Also deleted my long comments about
this matter.

• If ϕ is ¬ψ and ψ has a value, then Val(ϕ,X, ξ) = ¬Val(ψ,X, ξ) and no
query is produced.

• If ϕ is ¬ψ and ψ has no value then Val(ϕ,X, ξ) is undefined and ξ `ϕX q
if and only if ξ `ψX q.

40

Remark 5.6. An alternative, and perhaps more intuitive, formulation of
the definition of Val((s � t), X, ξ) in the case where both s and t have
values is to let ξ′ (resp. ξ′′) be the shortest initial segment of ξ with respect
to which s (resp. t) has a value, and to define Val(ϕ,X, ξ) to be true if
ξ′Eξ′′ and false otherwise. This is equivalent, in the light of Lemma 5.4, to
the definition given above, but it requires knowing that the shortest initial
segments mentioned here, ξ′ and ξ′′, exist. That is clearly the case if the
partial order associated to the preorder in ξ is a well-ordering, in particular if
it is finite. Once we establish that ASMs satisfy the Bounded Work Postulate,
it will follow that we can confine our attention to finite histories and so use
the alternative explanation of Val((s � t), X, ξ). The formulation adopted in
the definition has the advantage of not presupposing that only finite histories
matter.

Example 5.7. The truth value of a timing guard (s � t) is defined in terms
of the syntactic objects s and t, not in terms of their values. As a result, this
truth value may not be preserved if s and t are replaced by other terms with
the same values (in the given history ξ), not even if the replacement terms
ultimately issue the same queries as the original ones. Here is an example of
what can happen. Suppose p, q, and r are external function symbols, p being
unary and the other two nullary. Suppose further that 0 is a nullary constant
symbol. Consider a history ξ with three queries in its domain, pre-ordered
as p̂(0X) <ξ q̂ <ξ r̂, and with ξ̇(r̂) = 0X . Then the term p(0) has a value
already for the initial segment of ξ of length 1; q gets a value later, namely
for the initial segment of length 2; and p(r) gets a value only for the whole
history ξ, of length 3. Thus, the guards (p(0) ≺ q) and (q ≺ p(r)) are true,
even though p(0) and p(r) have the same value and have, as the ultimate
step in their evaluation, the answer to the query p̂(0X).

Just as for terms, the following lemmas follow immediately, by induction
on guards, from the definition plus the corresponding lemmas for terms.

Lemma 5.8. Val(ϕ,X, ξ) is defined if and only if there is no query q such
that ξ `ϕX q.

Lemma 5.9. If ξ `ϕX q then q /∈ Dom(ξ̇).

Lemma 5.10. If ηE ξ and if Val(ϕ,X, η)is defined, then Val(ϕ,X, ξ) is also
defined and these values are equal.

41

5.3 Rules

The semantics of a rule, for a state X and a history ξ, consists of a causality
relation, declarations of whether ξ is final and whether it succeeds or fails,
and a set of updates.

Definition 5.11. Let R be a rule and ξ a history for the state X. In the
following clauses, whenever we say that a history succeeds or that it fails,
we implicitly also declare it to be final; contrapositively, when we say that a
history is not final, we implicitly also assert that it neither succeeds nor fails.

• If R is an update rule f(t1, . . . , tn) := t0 and if all the ti have values
Val(ti, X, ξ) = ai, then ξ succeeds for R, and it produces the update
set {〈f, 〈a1, . . . , an〉, a0〉} and no queries.

• If R is an update rule f(t1, . . . , tn) := t0 and if some ti has no value,
then ξ is not final for R, it produces the empty update set, and ξ `RX q
if and only if ξ `tiX q for some i.

• If R is issue f(t1, . . . , tn) and if all the ti have values Val(ti, X, ξ) = ai,
then ξ succeeds for R, it produces the empty update set, and ξ `RX q for

the single query q = f̂ [a1, . . . , an] provided q /∈ Dom(ξ̇); if q ∈ Dom(ξ̇)
then no query is produced.

• If R is issue f(t1, . . . , tn) and if some ti has no value, then ξ is not
final for R, it produces the empty update set, and ξ `RX q if and only
if ξ `tiX q for some i.

• If R is fail, then ξ fails for R; it produces the empty update set and
no queries.

• If R is a conditional rule if ϕ then R0 else R1 endif and if ϕ has no
value, then ξ is not final for R, and it produces the empty update set.
ξ `RX q if and only if ξ `ϕX q.

• If R is a conditional rule if ϕ then R0 else R1 endif and if ϕ has
value true (resp. false), then finality, success, failure, updates, and
queries are the same for R as for R0 (resp. R1).

• If R is a parallel combination do in parallel R1, . . . , Rk enddo then:

– ξ `RX q if and only if ξ `Ri
X q for some i.

42

– The update set for R is the union of the update sets for all the
components Ri. If this set contains two distinct updates at the
same location, then we say that a clash occurs (for R, X, and ξ).

– ξ is final for R if and only if it is final for all the Ri.

– ξ succeeds for R if and only if it succeeds for all the Ri and no
clash occurs.

– ξ fails for R if and only if it is final for R and either it fails for
some Ri or a clash occurs.

There is no analog for rules of Lemmas 5.2 and 5.8. A rule may issue
queries even though it is final (in the case of an issue rule) or produces
updates (in the case of parallel compositions) or both. There are, however,
analogs for the other two lemmas that we established for terms and guards;
again the proofs are routine inductions.

Lemma 5.12. If ξ `RX q then q /∈ Dom(ξ̇).

Lemma 5.13. Let η E ξ.

• If η is final for R, then so is ξ.

• If η succeeds for R, then so does ξ.

• If η fails for R, then so does ξ.

• The update set for R under ξ includes that under η.

Remark 5.14. It is tempting to view the definition of the semantics of par-
allel composition as actually defining an operation of parallel composition
of algorithms. This temptation should be resisted. On an intuitive level,
the reason is that, in composing algorithms in this way, we would not re-
ally be dealing with them as algorithms but rather as components. (See
Remarks 2.13 and 3.1.) Formally, the problem is that this operation of com-
position does not respect equivalence of algorithms. For example, consider
two algorithms which differ only in that, in some states, one algorithm has
(q, r) ` q′ as the only instance of causality, while the other has an empty
causality relation. These algorithms are equivalent because the first algo-
rithm will never get to use (q, r) ` q′ since it has no way to issue q. That is,

43

no coherent history for either algorithm has q in its domain. Consider what
happens when each of these two algorithms is composed in parallel with an
algorithm whose causality relation includes ∅ ` q. The first of the com-
posite algorithms can issue q′ (if the environment gives q the reply r), but
the second cannot, so they are inequivalent. Returning to the intuitive level,
we can say that the inequivalence of the composite algorithms indicates that
the original two algorithms, though equivalent as stand-alone algorithms, are
inequivalent as components. See [5] for details about components and their
equivalence.

Now that the semantic definitions for ASM rules are available, we can
give the complete definition of ASMs.

Definition 5.15. An interactive, small-step, ASM consists of

• a finite vocabulary Υ,

• a finite set Λ of labels,

• a finite external vocabulary E,

• an ASM rule Π, using the vocabularies Υ and E, called the program of
the ASM,

• a template assignment (with respect to E and Λ),

• a set S of Υ-structures called states of the ASM, and

• a set I ⊆ S of initial states,

subject to the requirements that S and I are closed under isomorphism and
that S is closed under transitions in the following sense. If X ∈ S, if ξ
is a successful, final history for Π in X, and if ∆+(X, ξ) is the update set
produced by Π, X, and ξ, then the next state τ(X, ξ), as described in the
Step Postulate (Part C), is also in S.

The rest of this section is devoted to checking that ASMs, as just defined,
are algorithms, as defined in Section 2. Much of this checking is trivial: Ev-
erything required by the States Postulate is in our definition of ASMs. The
causality relation required by the Interaction Postulate is included in our
semantics for ASMs. (Strictly speaking, the causality relation defined for

44

ASMs should be restricted to finite histories, to comply with the statement
of the Interaction Postulate.) The Isomorphism Postulate is also obvious,
because everything involved in our ASM semantics is invariant under iso-
morphisms. So the only postulates requiring any real checking are the Step
and Bounded Work Postulates.

The ASM semantics provides notions of finality, success, failure, and up-
dates. In addition to these, the Step Postulate requires (in Part C) a notion
of next state and (in Part A) assurance that every complete, coherent history
has a final initial segment.

As far as the next state is concerned, the Step Postulate tells us how it is to
be defined in terms of the update sets, but we must check that the definition
is consistent, i.e., that the updates produced by an attainable history ξ ∈ F+

X

do not clash. (Note the importance of the assumption ξ ∈ F+
X ; clashes are

possible, but not in successful, final histories.) The required checking is a
routine induction on ASM rules, showing that a final history must fail if its
update set clashes. This is explicitly built into the semantic definition for
parallel composition, and all the remaining cases of the induction are trivial.

To show that every complete, coherent history has a final initial segment,
we actually show more, namely that every complete history is final. The
main ingredient here is the following lemma.

Lemma 5.16. If a history ξ is not final for a rule R in a state X, then
ξ `RX q for some query q.

Proof. We proceed by induction on the rule R, according to the clauses in
the definition of the semantics for rules. Since we are given that ξ is not
final, we can ignore those clauses that say ξ is final, and there remain the
following cases.

If R is either an update rule f(t1, . . . , tn) := t0 or an issue rule
issue f(t1, . . . , tn) and some ti has no value, then by Lemma 5.2 there is
a query q such that ξ `tiX q, and therefore ξ `RX q.

If R is a conditional rule whose guard has no value, then the same argu-
ment applies except that we invoke Lemma 5.8 in place of Lemma 5.2.

If R is a conditional rule whose guard has a truth value, then the lemma
for R follows immediately from the lemma for the appropriate branch of R.

Finally, suppose R is a parallel composition. Since ξ is not final for R in
X, there is a component Ri for which ξ is not final. By induction hypothesis,
ξ `Ri

X q for some q, and then we also have ξ `RX q.

45

To complete the verification of the Step Postulate, we observe that, in the
situation of the lemma, q ∈ IssuedRX(ξ) and, by Lemma 5.12, q /∈ Dom(ξ̇).
Thus, q ∈ PendingRX(ξ), and so ξ is not complete for R and X.
AB added the following remark, suggested by Yuri.

Remark 5.17. Because we have promised to prove that every algorithm is
equivalent to an ASM, one might think that every algorithm enjoys the prop-
erty established for ASMs in the preceding proof, namely that all complete
histories are final. This is, however, not the case, because this property is
not preserved by equivalence of algorithms. For a simple example, consider
an algorithm where, for every state, the empty history is the only final his-
tory, and it causes one query, while all other histories cause no queries. Since
the empty history is an initial segment of every history, Part A of the Step
Postulate is satisfied, even though the complete histories, those in which the
one query is answered, are not final.

Notice, however, that converting an arbitrary algorithm to an equivalent
one in which all complete histories are final is much easier than converting
it to an equivalent ASM. Simply adjoin all non-final, complete histories for
any state to the set of final, failing histories for that state. None of the
histories newly adjoined here can be attainable, so the modified algorithm is
equivalent to the original.

We turn now to the Bounded Work Postulate. Its first assertion, about
the lengths of queries, is easy to check. Since the postulate refers only to
coherent histories (actually to attainable, final histories, but coherence suf-
fices for the present purpose), any query in the domain of such a history is
caused by some history. By inspection of the definition of ASM semantics, all
queries that are ever caused are of the form f̂ [a1, . . . , an] and thus have the
same length as the template f̂ assigned to some external function symbol.
As there are only finitely many external function symbols, the lengths of the
queries are bounded.

The next assertion of the Bounded Work Postulate, bounding the number
of queries issued by the algorithm, will be a consequence of the following
lemma.

Lemma 5.18. For any term t, guard ϕ, or rule R, there is a natural number
B(t), B(ϕ), or B(R) that bounds the number of queries caused in a state X
by initial segments of a history ξ. The bound depends only on t, ϕ, or R, not
on X or ξ.

46

Proof. Go to the definition of the semantics of ASMs and inspect the clauses
that say queries are caused. The result is that, first, we can define the desired
B(t) for terms by

B(f(t1, . . . , tn)) = 1 +
n∑
i=1

B(ti).

The sum here comes from the first clause in the definition of semantics of
terms, and the additional 1 comes from the last clause. It is important
here that, according to Lemma 5.4, all the initial segments of any ξ that
produce values for a ti produce the same value ai. Thus, the last clause of
the definition produces at most one query f̂ [a1, . . . , an].

Similarly, we obtain for guards ϕ (other than the Boolean terms already
treated above) the estimates

B((s � t)) = B(s) +B(t)

B(ψ0 f ψ1) = B(ψ0 g ψ1) = B(ψ0) +B(ψ1)

B(¬ψ) = B(ψ).

For rules, we obtain

B(f(t1, . . . , tn) := t0) =
n∑
i=0

B(ti)

B(issuef(t1, . . . , tn)) = 1 +
n∑
i=1

B(ti)

B(fail) = 0

B(if ϕ then R0 else R1) = B(ϕ) +B(R0) +B(R1)

B(do in parallel R1, . . . Rk) =
k∑
i=1

B(Ri).

(In the bound for conditional rules, we could reduce B(R0) + B(R1) to
max{B(R0), B(R1)} by using the fact that all the initial segments of any
ξ that produce values for ϕ produce the same value.)

Since IssuedRX(ξ) is the set of queries caused in state X, under rule R, by
initial segments of ξ, the lemma tells us that |IssuedRX(ξ)| ≤ B(R), indepen-
dently of X and ξ. This verifies the second assertion of the Bounded Work

47

Postulate. (It actually verifies more, since the proof applies to all histories
ξ, not merely to attainable ones.)

To complete the verification of the bounded work Postulate, it remains
only to produce bounded exploration witnesses for all ASMs. We shall do
this by an induction on rules, preceded by proofs of the analogous results for
terms and for guards.

Before treating the first case, terms, we must adopt careful terminology,
since we shall need to use, in the same context, two different sorts of terms.

Convention 5.19. By an Υ-term we mean a term built using the function
symbols from the ASM’s vocabulary Υ and variables. These are the terms
that can occur in a bounded exploration witness. By an ASM-term we mean
a term built from the function symbols in Υ ∪ E. These are the terms that
are used in the syntax of ASMs. In contrast to Υ-terms, ASM-terms can
contain external function symbols but cannot contain variables.

Lemma 5.20. For every ASM-term t there exists a finite set W (t) of Υ-
terms such that, whenever (X, ξ) and (X ′, ξ) agree on W (t), then:

• If ξ `tX q then ξ `tX′ q.

• Val(t,X, ξ) = Val(t,X ′, ξ).

Recall that “agree on W (t)” means that each term in W (t) has the
same value in X and in X ′ when the variables are given the same values
in Range(ξ̇). Recall also that an equation between possibly undefined ex-
pressions like Val(t,X, ξ) means that if either side is defined then so is the
other and they are equal.

Proof. By a shadow of an ASM-term t, we mean a term t̃ obtained from t by
putting distinct variables in place of the outermost3 occurrences of subterms
that begin with external function symbols. Thus, t̃ is an Υ-term, and t can
be recovered from t̃ by a suitable substitution of ASM-terms (that start with
external function symbols) for all the variables. AB Yuri pointed out that
“outermost” makes sense only for occurrences of subterms, so the preceding
text now talks about occurrences. A side effect is that different occurrences

3“Outermost” means “maximal” in the sense that the occurrence in question is not
properly contained in another such occurrence. In terms of the parse tree of t, it means
that, on the path from the root of the whole tree to the root of the subtree given by the
occurrence in question, there is no other occurrence of an external function symbol.

48

of the same subterm get replaced with different variables. This causes no
problems.

Notice that t̃ fails to be uniquely determined by t only because we have
not specified which variables are to replace the subterms.

We define, by recursion on ASM-terms t, the set W (t) of Υ-terms as
follows. If t is f(t1, . . . , tn) then

W (t) = {t̃} ∪
n⋃
i=1

W (ti),

where t̃ is some shadow of t. To verify that this W (t) satisfies the conclusion
of the lemma, we proceed by induction on t, following the clauses in the
definition of the semantics of terms.

Assume that (X, ξ) and (X ′, ξ) agree on W (t). Notice that they also
agree on each W (ti), because W (ti) ⊆ W (t).

Suppose first that Val(ti, X, ξ) is undefined for some i. By induction
hypothesis, Val(ti, X

′, ξ) is also undefined, so the same clause of the semantics
of terms applies in X and X ′. That clause says that t has no value in either
state and it issues those queries that are issued by any of the ti. Those are
the same queries in X as in X ′ by the induction hypothesis.

From now on, suppose that Val(ti, X, ξ) = ai for each i. By induction
hypothesis, the same holds for X ′, with the same ai’s.

So if f ∈ Υ then t gets the value fX(a1, . . . , an) in X and the value
fX′(a1, . . . , an) in X ′, and we must check that these values are the same.
Recall that t is obtained from its shadow t̃ by replacing each variable v in t̃
with a certain ASM-term σ(v). Thus, the value fX(a1, . . . , an) of t inX is also
the value of t̃ in X when each variable v is assigned the value Val(σ(v), X, ξ)
and similarly with X ′ in place of X. By induction hypothesis, these values
assigned to the variables are the same in X and X ′. (We use here that σ(v)
is a proper subterm of t, which is correct because t begins with a function
symbol from Υ.) Furthermore, since σ(v) begins with an external function
symbol, its value is in Range(ξ̇). Thus, the assumption that (X, ξ) and (X ′, ξ)
agree on W (t), which contains t̃, ensures that t̃ has the same value in both
X and X ′. Therefore fX(a1, . . . , an) = fX′(a1, . . . , an) as required. Since no
queries are issued in this situation, we have completed the proof in the case
that f ∈ Υ.

There remains the case that f ∈ E and, as before, the subterms ti have
(the same) values ai in X and X ′. If f̂ [a1, . . . , an] ∈ Dom(ξ̇) then t gets the

49

same value ξ̇(f̂ [a1, . . . , an]) in both X and X ′, no queries are issued in either
state, and the lemma is established in this case.

So assume that the query f̂ [a1, . . . , an] is not in Dom(ξ̇). Then this query
is the unique query produced by t in either state, and t has no value in either
state, so again the conclusion of the lemma holds.

The preceding lemma easily implies the corresponding result for guards.

Lemma 5.21. For every guard ϕ there exists a finite set W (ϕ) of Υ-terms
such that, whenever (X, ξ) and (X ′, ξ) agree on W (ϕ), then:

• If ξ `ϕX q then ξ `ϕX′ q.

• Val(ϕ,X, ξ) = Val(ϕ,X ′, ξ).

Proof. We define W (ϕ) by induction on ϕ. If ϕ is a Boolean term, then the
preceding lemma provides the required W (ϕ).

If ϕ is (s � t) then we define

W (s � t) = W (s) ∪W (t) ∪ {true, false}.

To check that the conclusion of the lemma is satisfied, we apply the previous
lemma to see that, not only for the history ξ in question but also for any
ηE ξ, if either of Val(s,X, η) and Val(s,X ′, η) is defined then so is the other,
and similarly for t. With this information and with the knowledge that true
and false denote the same element in X and X ′ (because of agreement
on W (ϕ), which contains true and false), one finds by inspection of the
relevant clauses in the semantics of guards that the conclusion of the lemma
holds.

If ϕ is ψ0 f ψ1 or ψ0 g ψ1, then we set

W (ϕ) = W (ψ0) ∪W (ψ1) ∪ {true, false}.

Finally, we set
W (¬ψ) = W (ψ) ∪ {true, false}.

Again, inspection of the relevant clauses in the semantics of guards shows
that the conclusion of the lemma holds.

Finally, we prove the corresponding result for rules.

50

Lemma 5.22. For every rule R, there is a bounded exploration witness
W (R).

Proof. We define W (R) by recursion on R as follows.
If R is an update rule f(t1, . . . , tn) := t0, then

W (R) =
n⋃
i=0

W (ti).

If R is issuef(t1, . . . , tn), then

W (R) =
n⋃
i=1

W (ti).

If R is fail then W (R) is empty.
If R is a conditional rule if ϕ then R0 else R1, then

W (R) = W (ϕ) ∪W (R0) ∪W (R1) ∪ {true, false}.

If R is a parallel combination do in parallel R1, . . . , Rk then

W (R) =
k⋃
i=1

W (Ri).

That W (R) serves as a bounded exploration witness for R is proved by
induction on R. Every case of the inductive proof is trivial in view of the
previous lemmas and the definition of the semantics of rules.

6 Algorithms are Equivalent to ASMs

In this section, we shall prove the Abstract State Machine Thesis for inter-
active, small-step algorithms. That is, we shall prove that every algorithm
(as in Definition 2.22) is equivalent (as in Definition 3.2) to an ASM (as in
Definition 5.15).

Throughout this section, we assume that we are given an interactive,
small-step algorithm A. By definition, it has a set S of states, a set I of
initial states, a finite vocabulary Υ, a finite set Λ of labels, causality relations
`X , sets FX of final histories, subsets F+

X and F−
X of successful and failing

51

final histories, and update sets ∆+(X, ξ). Here and throughout this section,
X ranges over states and ξ over histories for X. Furthermore, A has, by
the Bounded Work Postulate and its Corollaries 2.25 and 2.26, a bound B
for the number and lengths of the queries issued in any state under any
attainable history, and it has a bounded exploration witness W . Since W
retains the property of being a bounded exploration witness if more Υ-terms
are added to it, we may assume that W is closed under subterms and contains
true, false, and some variable.

To define an ASM equivalent to A, we must specify, according to Defini-
tion 5.15,

• its vocabulary,

• its set of labels,

• its external vocabulary,

• its program,

• its template assignment,

• its set of states, and its set of initial states.

6.1 Vocabulary, labels, states

Some of these specifications are obvious, because the definition of equivalence
requires that the vocabulary, the labels, the states, and the initial states be
the same for our ASM as they are for the given algorithm A. It remains to
define the external vocabulary, the template assignment, and the program.

Before proceeding, we note that Definition 5.15 requires S and I to be
closed under isomorphisms and requires S to be closed under the transitions
of the ASM. The first of these requirements is satisfied by our choice of
S and I because A satisfies the Isomorphism Postulate. That the second
requirement is also satisfied will be clear once we verify that the update sets
and therefore the transition functions of A and of our ASM agree (at least
on successful final histories), for the Step Postulate ensures that S is closed
under the transitions of A.

52

6.2 External vocabulary and templates

To define the external vocabulary E and the template assignment for our
ASM, we consider all templates, of length at most B, for the given set Λ of
labels, in which the placeholders #i occur in order. (Recall that B is an upper
bound on the lengths of queries issued by algorithm A in arbitrary states
for arbitrary attainable histories.) These templates, which we call standard
templates, can be equivalently described as the tuples obtained by taking any
initial segment of the list #1,#2, . . . of placeholders and inserting elements
of Λ into such a tuple, while keeping the total length of the tuple ≤ B. We
note that any potential query of length ≤ B (over any state) is obtained
from a unique standard template by substituting elements of the state for
the placeholders. We define the external vocabulary E and the template
assignment simultaneously by putting into E one function symbol f for each
standard template and writing f̂ for the standard template associated to f .
Define an external function symbol f to be n-ary if f̂ is a template for n-ary
functions.

Remark 6.1. For many algorithms, the external vocabulary defined here is
larger than necessary; many symbols in E won’t occur in the program Π.
One can, of course, discard such superfluous symbols once Π is defined. We
chose the present definition of E in order to make it independent of the more
complicated considerations involved in defining Π. (We could also regard
the present definition as an overestimation to be trimmed down after Π is
defined.)

Remark 6.2. We have not specified — nor is there any need to specify
— exactly what entities should serve as the external function symbols f
associated to templates f̂ . The simplest choice mathematically would be to
take the function symbols to be the standard templates themselves, but even
with this choice, which would make f̂ = f , it would seem worthwhile to
maintain the notational distinction between f , to be thought of as a function
symbol, and f̂ , to be thought of as a template.

6.3 Critical elements, critical terms, agreement

The preceding discussion completes the easy part of the definition of our
ASM; the hard part that remains is to define the program Π. Looking at
the characterization in Lemma 3.3 of equivalence of algorithms, we find that

53

we have (trivially) satisfied the first requirement for the equivalence of our
ASM and the given A (agreement as to states, initial states, vocabulary, and
labels), and that we must construct Π so as to satisfy the remaining three
requirements (agreement as to queries issued, finality, success, failure, and
updates). Notice that these three requirements refer only to histories that
are attainable for both algorithms. This means that, in constructing Π, we
can safely ignore what A does with unattainable histories.

As in the proofs of the ASM thesis for other classes of algorithms in
[8, 1, 4], we use the bounded exploration witness to gain enough control over
the behavior of the algorithm A to match it with an ASM. The first step in
this process is the following lemma, whose basic idea goes back to [8].

Definition 6.3. Let X be a state and ξ a history for it. An element a ∈ X is
critical for X and ξ if there is a term t ∈ W and there are values in Range(ξ̇)
for the variables in t such that the resulting value for t is a.

Lemma 6.4 (Critical Elements). Let X be a state, ξ a coherent history for
it, and a an element of X. Assume that one of the following holds.

• There is a query q such that ξ `X q and a is one of the components of
the tuple q.

• There is an update 〈f, 〈b1, . . . , bn〉, c〉 ∈ ∆+(X, ξ) such that a is one of
the bi’s or c.

Then a is critical for X and ξ.

Proof. The proof is very similar to the one in [2, Propositions 5.23 and 5.24],
so we shall be rather brief here. We may assume, as an induction hypothesis,
that the lemma holds when ξ is replaced with any proper initial segment
of ξ. (This is legitimate because initial segments inherit coherence from ξ.)
Because ξ is coherent, every query in its domain is caused by some proper
initial segment. So all components in X of such a query are critical for that
initial segment and therefore also critical for ξ.

Assume that a is not critical for X and ξ; we shall show that neither of
the two hypotheses about a can hold.

Form a new state X ′, isomorphic to X, by replacing a by a new element
a′. Since a is not critical, it is neither a component of a query in Dom(ξ̇)
nor an element of Range(ξ̇). Thus ξ is a history for X ′ as well as for X.
Using again the assumption that a is not critical, one finds that (X, ξ) and

54

(X ′, ξ) agree on W . As W is a bounded exploration witness for A, and as
a is obviously neither a component of a query caused by ξ over X ′ nor a
component in an update in ∆+(X ′, ξ) (because a /∈ X ′), it follows that a is
neither a component of a query caused by ξ over X nor a component in an
update in ∆+(X, ξ).

The construction of our ASM will be similar to that in [4, Section 5],
but some additional work will be needed to take into account the timing
information in histories and the possibility of incomplete but final histories.

The role played by element tags (or e-tags) and query tags (or q-tags)
in [4] will now be played by ASM-terms, i.e., variable-free terms over the
vocabulary Υ ∪ E. Some of these terms, those with outermost function-
symbol in E, will obtain two kinds of possible values: the ordinary value (as
in Definition 5.1) which is an element of the state, and also a query-value,
which is a potential query.

Definition 6.5 (Critical Terms). Recall that an ASM-term is a closed term
of the vocabulary Υ ∪ E. If its outermost function symbol is external, we
shall sometimes refer to it as a query-term or q-term.

• A critical term of level 0 is a closed term in the bounded exploration
witness W .

• If t1, . . . , tk are critical terms with maximal level n and f is a k-ary
function symbol in E, then f(t1, . . . , tk) is a critical q-term of level
n+ 1.

• If t ∈ W contains exactly the variables x1, . . . , xk and if t1, . . . , tk are
critical q-terms with maximal level n, then the result of substituting ti
for xi in t, i = 1, . . . , k, is a critical term of level n.

• By a critical term we mean a critical term of some level.

Because we arranged for W to contain a variable, the third clause of the
definition implies that every critical q-term is a critical term (of the same
level), so our terminology is consistent.

Since W and the external vocabulary E are finite, there are only finitely
many critical terms of any one level.

55

Notice that, although they are obtained from the Υ-terms in W , our
critical terms are ASM-terms. That is, they contain no variables, but they
can contain external function symbols.

The values of ASM-terms, including in particular critical terms, for a
given state X and history ξ, were defined in Definition 5.1. For q-terms, we
need the additional notion of their query-value, defined as follows.

Definition 6.6. Let X be a state and ξ a history for it, let t = f(t1, . . . , tk)
be a q-term, and let f̂ be the template associated with its initial function
symbol f . The query-value of t is

q-Val(t,X, ξ) = f̂ [Val(t1, X, ξ), . . . ,Val(tk, X, ξ)].

Recall from Definition 5.1 that the value of a term is not always defined;
it depends on whether the necessary replies to queries are present in the
history ξ. As a result, it is also possible also for q-terms to lack query-values.
When values and query-values exist, however, they are always elements of
(the base set of) the state X and queries over X respectively. The value of
a q-term is obtained from its query-value by applying the answer function ξ̇.

Recall also that, according to Lemma 5.4, any term that has a value in
state X with respect to an initial segment of ξ will have the same value with
respect to ξ itself. This monotonicity property immediately implies that
query-values are monotone in the same sense. The next lemma records this
fact and some related ones for future reference. Recall that two pairs (X, ξ)
of a state and history are said to agree on W if the two histories are the same
and every term in W gets the same values (if any) in both states when the
variables are given values in the range of the history.

Lemma 6.7 (Invariance of Values).

• If ξ is an initial segment of η and z is a term such that Val(z,X, ξ)
exists, then Val(z,X, η) = Val(z,X, ξ). Similarly, if z is a q-term such
that q-Val(z,X, ξ) exists, then q-Val(z,X, η) = q-Val(z,X, ξ).

• If i : X ∼= Y is an isomorphism, ξ is a history for X, and z is any
ASM-term, then i(Val(z,X, ξ)) = Val(z, Y, i(ξ)). If z is a q-term, then
also i(q-Val(z,X, ξ)) = q-Val(z, Y, i(ξ)).

56

• If (X, ξ) and (Y, ξ) agree on W , then Val(z,X, ξ) = Val(z, Y, ξ) for
all critical terms z, and q-Val(z,X, ξ) = q-Val(z, Y, ξ) for all critical
q-terms z.

Proof. The first assertion was proved above, and the other two are proved
by routine inductions.

Remark 6.8. An approximation to the intuition behind critical terms is
that critical terms of level n represent (for a state X and history ξ) the ele-
ments of X and the queries that can play a role in the computation of our
algorithm A during the first n rounds or phases of its interaction with the
environment. This is based on the intuition that the bounded exploration
witness W represents all the things the algorithm can do, with the envi-
ronment’s replies, to focus its attention on elements of X. At first, before
receiving any information from the environment (indeed, before even issuing
any queries), the algorithm can focus only on the values of closed terms from
W , i.e., the values of critical terms of level 0. Using these, it can formulate
and issue queries; these will be query-values of q-terms of level 1. Once some
replies are received to those queries, the algorithm can focus on the values
of non-closed terms from W with the replies as values for the variables. The
replies are the values for the q-terms of level 1 that denote the issued queries,
and so the elements to which the algorithm now pays attention are the values
of critical terms of level ≤ 1. Using them, it assembles and issues queries,
query-values of q-terms of level ≤ 2. The replies, used as values of the vari-
ables in terms from W , give the new elements to which the algorithm can pay
attention, and these are the values of critical terms of level ≤ 2. The process
continues similarly for later rounds of the interaction with the environment
and correspondingly higher level terms.

One should, however, be careful not to assume too much about the con-
nection between levels of critical terms and rounds of interaction. It is pos-
sible for a critical term t of level 1 to acquire a value only after many rounds
of interaction, if, for example, the history happens to answer many other
queries, one after the other, before finally getting to one that is needed for
evaluating t. It is also possible for a critical term of high level to acquire a
value earlier than its level would suggest. Consider, for example, a critical
term of the form f(f(f(0))), where f is an external function symbol and 0
is a constant symbol from Υ. If the history ξ contains just one reply, giving
the query f̂ [0X] the value 0X , then this suffices to give f(f(f(0))) the value
0X .

57

The following lemma formalizes the part of this intuitive explanation that
we shall need later.

Lemma 6.9 (Critical Terms Suffice). Let X be a state, ξ an attainable his-
tory for it, and n the length of ξ.

• Every query in Dom(ξ̇) is the query-value (for X and ξ) of some critical
q-term of level ≤ n.

• Every element of Range(ξ̇) is the value (for X and ξ) of some critical
q-term of level ≤ n.

• Every critical element for X and ξ is the value (for X and ξ) of a
critical term of level ≤ n.

• Every query in IssuedX(ξ) is the query-value (for X and ξ) of some
critical q-term of level ≤ n+ 1.

Proof. We proceed by induction on the length n of the history ξ. As ξ is
coherent, any query in its domain is issued by a proper initial segment ηC ξ.
So, by induction hypothesis (applied to the last clause), such a query is the
query-value of a q-term of level ≤ length(η) + 1 ≤ n. This proves the first
assertion of the lemma.

The second follows, because, if a query in Dom(ξ̇) is the query-value of a
q-term of level ≤ n, then the reply given by ξ is the value of the same term.

For the third assertion, consider any critical element, say the value of a
term t ∈ W when the variables of t are given certain values in Range(ξ̇). By
the second assertion already proved, these values of the variables are also the
values of certain critical q-terms of level ≤ n. Substituting these terms for
the variables in t, we obtain a critical term of level ≤ n whose value is the
given critical element.

For the final assertion, consider any query issued by ξ. It has length at
most B (by our choice of B), so it is obtained by substituting elements of
X for the placeholders in some standard template. That is, it has the form
f̂ [a1, . . . , ak] for some external function symbol f and some elements ai ∈ X.
By Lemma 6.4, each ai is critical with respect to X and ξ. By the third
assertion already proved, each ai is the value of some critical term ti of level
≤ n. Then our query f̂ [a1, . . . , ak] is the query-value of the critical q-term
f(t1, . . . , tk) of level ≤ n+ 1.

58

As indicated earlier, we can confine our attention to attainable histories.
The lengths of these are bounded by B, and so we may, by the lemma
just proved, confine our attention to critical terms of level at most B. In
particular, only a finite set of critical terms will be under consideration.

We have the following partial converse to the last statement of Invariance
of Values Lemma 6.7. We abbreviate the phrase “pair consisting of a state
and an attainable history for it” as “attainable pair.”

Lemma 6.10 (Agreement). Let (X, ξ), (Y, ξ) be attainable pairs with ξ of
length n. If they agree as to the values of all critical terms of level ≤ n, then
they agree on W .

Proof. Note that in the assumption we didn’t mention agreement as to query-
values. But (X, ξ) and (Y, ξ) will agree as to query-values of critical q-terms
of level n as soon as they agree as to the values of critical terms of levels < n.

Let t ∈ W . We need to prove that it takes the same value in (X, ξ) and
(Y, ξ) when all variables in t are given values in Range(ξ̇). But values in
Range(ξ̇) are, by the Critical Terms Suffice Lemma 6.9, the values of some
critical q-terms of level ≤ n. Substituting these terms for the variables in
t gives us, by definition, a critical term of level ≤ n, where by assumption
(X, ξ) and (Y, ξ) agree.

6.4 Descriptions, similarity

The following definitions are intended to capture all the information about
a state and history that can be relevant to the execution of our algorithm
A. That they succeed will be the content of the subsequent discussion and
lemmas.

Definition 6.11. Let (X, ξ) be an attainable pair. Let n be the length of ξ.
(Recall that n is finite and in fact ≤ B.) Define the truncation ξ− of ξ to be
the initial segment of ξ of length n− 1 (undefined if n = 0). The description
δ(X, ξ) of X and ξ is the Kleene conjunction of the following guards:

• all equations s = t and negated equations ¬(s = t) that have value
true in (X, ξ), where s and t are critical terms of level ≤ n, and

• all timing inequalities (u ≺ v) and (u � v) that have value true in
(X, ξ), where u and v are critical q-terms of level ≤ n, and where
q-Val(v,X, ξ) exists and is in IssuedX(ξ−).

59

Some comments may help to clarify the last clause here, about timing
inequalities. First, recall that the strict inequality (u ≺ v) is merely an
abbreviation of ¬(v � u).

Second, although we explicitly require only v to have a query-value in
IssuedX(ξ−), AB changed ξ to ξ−, to match what is actually required.
the same requirement for u is included in the requirement that (u � v) or
(u ≺ v) is true. Indeed, inspection of the definition of the semantics of timing
guards (in Definition 5.5) shows that the q-term u must have a value, and
this is possible only if u has a query-value in Dom(ξ̇). Since ξ is coherent, it
follows that q-Val(u,X, ξ) must be in IssuedX(ξ−).

Third, if n = 0 then ξ− is undefined, and as a result δ(X, ξ) contains no
timing inequalities.

Our definition of the description of X and ξ is not complete on the syntac-
tic level, for it does not specify the order or parenthesization of the conjuncts
in the Kleene conjunction. That is, it is complete only up to associativity and
commutativity of f. The reader is invited to supply any desired syntactic
precision; it will never be used. The choice of order and parenthesization of
conjuncts makes no semantic difference; the Kleene conjunction and disjunc-
tion are commutative and associative up to logical equivalence. AB added a
sentence about commutativity and associativity in the semantic sense (where
“semantic” is essential).

We shall sometimes refer to descriptions of attainable pairs as attain-
able descriptions, even though “attainable” is redundant here because the
descriptions have been defined only for attainable pairs.

The following lemma and its corollary provide useful information about
the q-terms occurring in a description.

Lemma 6.12. Let (X, ξ) be an attainable pair, n ≥ 1 the length of ξ, and v
a q-term. The following are equivalent.

1. v occurs in δ(X, ξ).

2. v occurs as one side of a timing inequality in δ(X, ξ).

3. v is a critical q-term of level ≤ n and it has a query-value
q-Val(v,X, ξ−) that is in IssuedX(ξ−).

60

Proof. Since the implication from (2) to (1) is trivial, we prove that (3)
implies (2) and that (1) implies (3).

Suppose first that (3) holds. Let q be any query in the last equivalence
class of the preorder in ξ. As ξ is attainable, q ∈ IssuedX(ξ−). Also, by
Lemma 6.9, q = q-Val(u,X, ξ) for some critical q-term u of level ≤ n. Be-
cause q is in the last equivalence class with respect to ξ, Val(u,X, ξ) exists but
Val(u,X, ξ−) does not. Now if q-Val(v,X, ξ−), which is also q-Val(v,X, ξ),
is in Dom(ξ̇), then Val(v,X, ξ) exists and so δ(X, ξ) contains the conjunct
(v � u). Otherwise, Val(v,X, ξ) does not exist, and so δ(X, ξ) contains the
conjunct (u ≺ v). In either case, (2) holds.

Finally, we assume (1) and deduce (3). Inspection of the definition of
descriptions reveals that any q-term v that occurs in δ(X, ξ) must be a sub-
q-term either of some critical term of level ≤ n that has a value with respect
to (X, ξ) or of some critical q-term of level ≤ n that either has a value with
respect to (X, ξ) or at least has a query-value that is issued with respect to
(X, ξ−). In any case it follows, thanks to the attainability (and in particular
the coherence) of ξ, that (3) holds.

Corollary 6.13. The q-terms that occur in the description of an attainable
pair (X, ξ) depend only on X and ξ−, not on the last equivalence class in the
preorder of Dom(ξ̇).

Proof. Immediate from the third of the equivalent statements in the lemma.

Clearly, δ(X, ξ) is a guard, and Val(δ(X, ξ), X, ξ) = true. The next
lemma shows that descriptions are invariant under two important equivalence
relations on attainable pairs (X, ξ).

Lemma 6.14 (Invariance of Descriptions). Let (X, ξ) be an attainable pair.

• If (Y, ξ) is an attainable pair (with the same ξ) agreeing with (X, ξ) on
W , then they have the same descriptions.

• If (Y, η) is an attainable pair isomorphic to (X, ξ), then they have the
same descriptions.

Proof. To see that the first statement is true, use the third clause of Invari-
ance of Values Lemma 6.7 to establish that the same critical terms occur in
δ(X, ξ) and δ(Y, ξ) in the same roles. To see that the second statement is
true, use the second clause of the same lemma.

61

Thus, each of agreement and isomorphism is a sufficient condition for
similarity in the sense of the following definition. We shall see later, in
Corollary 6.17, that the composition of agreement and isomorphism is not
only sufficient but also necessary for similarity.

Definition 6.15. Two attainable pairs are similar if they have the same
descriptions.

The next lemma describes the other states and histories in which δ(X, ξ)
is true, and thus leads to a characterization of similar attainable pairs.

Lemma 6.16. Let (X, ξ) and (Y, η) be attainable pairs. Suppose δ(X, ξ) has
value true in (Y, η). Then

• the length of η is at least the length of ξ;

• there is an attainable pair (Z, η′) isomorphic to (X, ξ), such that η′ is
an initial segment of η and (Z, η′) agrees with (Y, η′) on W .

In other words, any (Y, η) that satisfies the description of (X, ξ) can be
obtained from (X, ξ) by the following three-step process. First, replace (X, ξ)
by an isomorphic copy (Z, η′). Second, leaving the history η′ unchanged, re-
place Z by a new state Y but maintain agreement on the bounded exploration
witness W . Third, extend the history η′ by adding new items strictly after
the ones in η′, so that η′ is an initial segment of the resulting η.

Notice that, by virtue of the isomorphism of (X, ξ) and (Z, η′), we can
describe η′ more specifically as the initial segment of η of the same length as
ξ.

Proof. We proceed by induction on the length n of the history ξ.

Length: η is not shorter than ξ. Choose one query from each of the n
equivalence classes in Dom(ξ̇), say qj from the jth equivalence class. Letting
ξ � j denote the initial segment of ξ of length j, and applying Lemma 6.9, we
express each qj as the query-value, with respect to (X, ξ � j), of some critical
q-term uj of level ≤ j. Thus, uj has a value ξ̇(qj) with respect to ξ � j but not
with respect to ξ �(j − 1). Thus, δ(X, ξ) includes the conjuncts (uj ≺ uj+1)
for j = 1, 2, . . . , n − 1 and also the conjunct un = un. So these conjuncts
must also be true in (Y, η), which means that η has length at least n.

Construction of (Z, η′). Our next step will be to define a certain isomor-
phic copy (Z, η′) of (X, ξ). Afterward, we shall verify that η′ has the other
properties required.

62

We may assume, by replacing (X, ξ) with an isomorphic copy if necessary,
that X is disjoint from Y . Next, obtain an isomorphic copy Z of X as follows.
For each critical term t of level ≤ n, if Val(t,X, ξ) exists, then remove this
element from X and put in its place the element Val(t, Y, η) of Y . To see
that this makes sense, we must observe two things. First, the equation t = t
is one of the conjuncts in δ(X, ξ) and is therefore true for Y and η. Thus,
the replacement element Val(t, Y, η) exists. Second, if the same element of
X is also Val(t′, X, ξ) for another critical term t′ of level ≤ n, then the
equation t′ = t is a conjunct in δ(X, ξ) and is therefore true for Y and η.
Thus, Val(t′, Y, η)=Val(t, Y, η), which means that the replacement element is
uniquely defined.

Let i be the obvious isomorphism from X to Z, sending each of the
replaced elements Val(t,X, ξ) to its replacement Val(t, Y, η) and sending all
the other elements of X to themselves. Let η′ = i(ξ); this is the history for
Z obtained by applying i to all components from X in the queries in Dom(ξ̇)
and to all the replies in Range(ξ̇). Because of the isomorphism, it is clear
that (Z, η′) is, like (X, ξ), an attainable pair and that η′ has the same length
n as ξ.

Values: η̇′ is a subfunction of η̇. Consider any query q = f̂ [a1, . . . , ak] ∈
Dom(ξ̇) and its reply b = ξ̇(q). Thus, i(q) ∈ Dom(i(ξ̇)), and i(ξ̇)(i(q)) =
i(b). Furthermore, every element of Dom(i(ξ̇)) is i(q) for some such q. By
Lemma 6.9, all the aj are values in (X, ξ) of certain critical terms tj of level
< n, and so b is the value of the critical term f(t1, . . . , tk) of level ≤ n.
In forming Z, we replaced the elements aj by the values i(aj) of the tj’s in
(Y, η), and we replaced b by i(b), the value in (Y, η) of f(t1, . . . , tk). But
this last value is, by definition, the result of applying η̇ to the query that is
the query-value of f(t1, . . . , tk), namely the query f̂ [i(a1), . . . , i(ak)] = i(q).
That is, i(b) = η̇(i(q)). This shows that, whenever i(ξ̇) maps a query i(q) to
a reply i(b), then so does η̇; in other words, η̇′ is a subfunction of η̇.

Order: ≤η′ is a sub-preorder of ≤η. We next show that the preordering
of η′ agrees with that of η. Consider an arbitrary q ∈ Dom(ξ̇), and suppose it
is in the jth equivalence class with respect to the preorder given by ξ. So, as
ξ is coherent, q ∈ IssuedX(ξ �(j− 1)), and so, by the last part of Lemma 6.9,
we have a critical q-term u of level ≤ j such that q = q-Val(u,X, ξ �(j − 1)).
Note that Val(u,X, ξ �(j − 1)) does not exist, because q /∈ Dom(ξ̇ �(j − 1)).

We wish to apply the induction hypothesis to (X, ξ �(j − 1)). To do
so, we observe that δ(X, ξ �(j − 1)) is a subconjunction of δ(X, ξ) and is

63

therefore true in (Y, η). So we can apply the induction hypothesis and
find that (X, ξ �(j − 1)) is isomorphic to an attainable pair that agrees
with (Y, η �(j − 1)). By Lemma 6.7, u has a query-value but no value in
(Y, η �(j−1)). Inspection of the definitions shows that its query-value is i(q).

If j < n, i.e., if q ∈ Dom(ξ−), then we can also apply the induction
hypothesis to (X, ξ � j), in which u has a value. We conclude that u has a
value in (Y, η � j). Since it had a query-value but no value in (Y, η �(j − 1)),
we conclude that its query-value, i(q) must be in exactly the jth equivalence
class with respect to η.

If, on the other hand, j = n, i.e., if q is in the last equivalence class with
respect to ξ, then this last application of the induction hypothesis is not
available. Nevertheless, since q ∈ Dom(ξ̇), we know that u has a value in
(X, ξ), so δ(X, ξ) contains the conjunct u = u, so this conjunct is true also in
(Y, η), and so u has a value in (Y, η). This means that i(q), the query-value
of u, is in Dom(η̇). We saw earlier that it is not in Dom(η̇ �(j − 1)), where
now j = n. So i(q) is in the nth equivalence class or later with respect to η.

What we have proved so far suffices to establish that if q <ξ q
′ then

i(q) <η i(q
′) and that the same holds for non-strict inequalities except in the

case that both q and q′ are in the last equivalence class with respect to ξ. In
this exceptional case, we know that i(q) is the query-value, already existing
in (Y, η �(n− 1)), of u (as above), yet u has no value in (Y, η �(n− 1)). This
means that the smallest m for which Val(u, Y, η �m) exists is the m such
that i(q) is in the mth equivalence class with respect to η. Repeating the
argument with an analogously defined q-term u′ for q′, and using the fact
that δ(X, ξ) contains the conjuncts (u � u′) and (u′ � u), which means that
these conjuncts are also true in (Y, η), we find that i(q) and i(q′) are in the
same equivalence class with respect to η.

This completes the proof that η′ — including both the answer function
and the pre-order — is the restriction of η to some subset of its domain. In
fact, we have shown more, namely that, for j < n, i maps the jth equivalence
class with respect to ξ into the jth equivalence class with respect to η, and
that it maps the last (nth) equivalence class with respect to ξ into a single
equivalence class — possibly the nth and possibly later — with repect to η.

The next step is to show that η′ = i(ξ) is an initial segment of η. This
will imply that, in the preceding summary of what was already proved, both
occurrences of “into” can be improved to “onto” and “possibly the nth and
possibly later” can be improved to “the nth”.

64

Initial segment: η′ is an initial segment of η. Suppose, toward a
contradiction, that Dom(η̇′) is not an initial segment of Dom(η̇) (with respect
to ≤η). So there exist some q ∈ Dom(η̇) − Dom(η̇′) and some q′ ∈ Dom(ξ̇)
(and thus i(q′) ∈ Dom(η̇′)) such that q ≤η i(q

′). Among all such pairs q, q′,
fix one for which q occurs as early as possible in the preorder ≤η. Since q′ ∈
Dom(ξ̇), we can fix a critical q-term u′ of level ≤ n with q-Val(u′, X, ξ) = q′

and thus, by definition of i, q-Val(u′, Y, η) = i(q′). We record for future
reference that, since q-Val(u′, X, ξ) ∈ Dom(ξ̇), u′ has a value with respect to
ξ.

Consider the initial segment of η up to but not including q. By what we
have already proved (and our choice of q as the earliest possible), it is i(ζ)
for some proper initial segment ζ of ξ — proper because it doesn’t contain
q′. In particular, ζ has length at most n− 1, and so we know, by induction
hypothesis, that the lemma is true with ζ in place of ξ. (As before, the
lemma can be applied because δ(X, ζ) is a subconjunction of δ(X, ξ), which
is true in (Y, η).) So we conclude that (X, ζ) is isomorphic to an attainable
pair that agrees on W with (Y, i(ζ)).

Since i(ζ) is the initial segment of η ending just before q, and since η is
a coherent history, we know that q ∈ IssuedY (i(ζ)). By the Critical Terms
Suffice Lemma 6.9, q is the query-value in (Y, i(ζ)), and therefore also in
(Y, η), of some critical q-term u of level ≤ n. Thanks to the isomorphism
between (X, ζ) and an attainable pair agreeing with (Y, i(ζ)), we have that
u also has a query-value, say q′′, in (X, ζ) and this value is in IssuedX(ζ)
and, a fortiori, in IssuedX(ξ). By definition of i, i(q′′) = q. As q was chosen
outside Dom(i(ξ̇)) = i(Dom(ξ̇)), it follows that q′′ /∈ Dom(ξ̇). From this and
q′ ∈ Dom(ξ̇), we conclude that (u′ ≺ u) is one of the conjuncts in δ(X, ξ) and
is therefore true in (Y, η). Since u has a value in the initial segment of η up
to and including q (one equivalence class beyond i(ζ)), we infer that u′ must
have a value in (Y, i(ζ)). That means that the query-value of u′, namely i(q′)
must be in the domain of i(ζ), i.e., i(q′) <η q. This contradicts the original
choice of q and q′, and this contradiction completes the proof that η′ is an
initial segment of η.

Agreement: (Z, η′) and (Y, η′) agree on W . It remains to prove that the
attainable pairs (Z, η′) and (Y, η′) agree on W . We prove this in three steps.

First, we show that, if z is any critical term of level ≤ n, then

i(Val(z,X, ξ)) = Val(z, Y, η′).

65

This is almost the definition of i, which says that i(Val(z,X, ξ)) =
Val(z, Y, η). Our task is to replace η on the right side of this equation
with η′. That is, we must show that, if Val(z,X, ξ) exists (and there-
fore Val(z, Y, η) exists), then Val(z, Y, η′) exists, because then we shall have
Val(z, Y, η′) = Val(z, Y, η) by the monotonicity of values. We proceed by in-
duction on the level of z. The only non-trivial case, i.e., the only case where
changing η to η′ could matter, is the case that z is a q-term. The possibility
that we must exclude is that q-Val(z, Y, η) (which is also q-Val(z, Y, η′) as
the induction hypothesis applies to the arguments of z) is in the domain of
η but not in the domain of η′. But q-Val(z,X, ξ) exists and is in the domain
of ξ (because Val(z,X, ξ) exists), and its image under i is, by definition of i,
q-Val(z, Y, η). So this image is in the domain of i(ξ) = η′, as desired.

Second, we observe that, since i is an isomorphism from X to Z and
sends ξ to η′, we have i(Val(z,X, ξ)) = Val(z, Z, η′). Combining this with
the result established in the preceding paragraph, we have

Val(z, Z, η′) = Val(z, Y, η′)

for all critical terms z of level ≤ n.
Finally, an application of the Agreement Lemma 6.10 completes the proof

that (Z, η′) and (Y, η′) agree on W .

Corollary 6.17 (Factorization). Let (X, ξ) and (Y, η) be similar attainable
pairs. Then there is a state Z such that η is an attainable history for Z,
(Z, η) agrees with (Y, η) on W , and (Z, η) is isomorphic to (X, ξ).

Proof. We can apply Lemma 6.16 to (X, ξ) and (Y, η) in either order, since
each satisfies the other’s description. Thus ξ and η have the same length,
and the η′ of the lemma is simply η. The rest of the corollary is contained
in the lemma.

Corollary 6.18 (Similarity Suffices). Let (X, ξ) and (Y, η) be similar attain-
able pairs. Let n be the length of ξ (and of η, by Corollary 6.17). Then

• If u is a q-term of level ≤ n + 1 and ξ `X q-Val(u,X, ξ) then η `Y
q-Val(u, Y, η).

• If ξ is in F+
X or F−

X , then η is in F+
Y or F−

Y , respectively.

• If ∆+(X, ξ) contains an update 〈f, 〈a1, . . . , ak〉, a0〉 where each ai is
Val(ti, X, ξ) for a critical term ti of level ≤ n, then ∆+(Y, η) contains
the update 〈f, 〈a′1, . . . , a′k〉, a′0〉 where each a′i is Val(ti, Y, η).

66

Proof. Apply the preceding corollary to get Z such that (Z, η) agrees with
(Y, η) on W and is isomorphic to (X, ξ). Because of the agreement on the
bounded exploration witness W , we have all the desired conclusions with
(Z, η) in place of (X, ξ). To complete the proof, we can replace (Z, η) with
(X, ξ), thanks to the Isomorphism Postulate and the fact that isomorphisms
respect evaluation of terms.

We shall also need the notion of a successor of an attainable description.
This corresponds to adjoining one new equivalence class at the end of a
history, while leaving the state unchanged. That is, δ(X, ξ) is a successor of
δ(X, ξ−), and δ(X, ξ−) is the predecessor of δ(X, ξ).
AB added the following paragraph, which I hope clarifies things sufficiently.
At least it warns readers against making the same mistake I made in a pre-
vious version.

To avoid possible confusion, we emphasize that a successor of δ(X, η)
need not be of the form δ(X, ξ) with ξ− = η. It could instead be of the
form δ(Y, ξ) for some other pair (Y, ξ) such that (Y, ξ−) is similar to (X, η),
and there might be no way to extend η so as to obtain similarity with (Y, ξ).
For a simple example, suppose the bounded exploration witness W contains
only true, false, undef, and a variable. Let X be a structure containing
only the three elements that are the values of true, false, and undef, and
let Y be like X but with one additional element a. Suppose further that the
algorithm is such that a single query q, say 〈true〉, is caused by the empty
history ∅ in every state. Then (X,∅) and (Y,∅) agree on W , and Y admits
an attainable history ξ with Dom(ξ̇) = {q} and with ξ̇(q) = a. Then, since
ξ− = ∅, we have that δ(Y, ξ) is a successor of δ(Y,∅) = δ(X,∅). But there
is no history ζ for X such that δ(Y, ξ) = δ(X, ζ); such a ζ would have to
map q to a value distinct from true, false, and undef, and X has no such
element.

The use of the definite article in “the predecessor” is justified by the
following observation, showing that δ(X, ξ−) is completely determined by
δ(X, ξ).

Corollary 6.19. Let (X, ξ) and (Y, η) be similar attainable pairs, and assume
the (common) length of ξ and η is not zero. Then δ(X, ξ−) = δ(Y, η−).

Proof. By Corollary 6.17, we have an isomorphism i : (X, ξ) ∼= (Z, η) such
that (Z, η) agrees with (Y, η) on W . Since the isomorphism i must, in partic-
ular, respect the pre-orderings, it follows immediately that i is also an isomor-

67

phism from (X, ξ−) to (Z, η−). From the definition of agreement, it follows
immediately that (Z, η−) and (Y, η−) agree on W . Thus, by Lemma 6.14,
(X, ξ−) and (Y, η−) are similar.

The following information about successors will be useful when we verify
that the ASM that we produce is equivalent to the given algorithm A.

Lemma 6.20. Suppose (X, ξ) is an attainable pair and δ′ is an attainable de-
scription that is a successor of δ(X, ξ). Then δ′ = δ(Y, η) for some attainable
pair (Y, η) such that

• ξ = η−,

• (X, ξ) and (Y, ξ) agree on W .

Proof. By definition of successor, we have an attainable pair (Z, θ) such that
δ′ = δ(Z, θ) and δ(X, ξ) = δ(Z, θ−). This last equality implies, by Corol-
lary 6.17, that (X, ξ) and (Y, ξ) agree on W for some attainable pair (Y, ξ)
isomorphic to (Z, θ−). Use the isomorphism to transport θ to an attainable
history η for Y . Then δ′ = δ(Z, θ) = δ(Y, η) because of the isomorphism,
and η− is the image, under the isomorphism, of θ−, i.e., η− = ξ.

6.5 The ASM program

We are now ready to describe the ASM program that will simulate our given
algorithm A. Its structure will be a nested alternation of conditionals and
parallel compositions, with updates, issue rules, and fail as the innermost
constituents. The guards of the conditional subrules will be attainable de-
scriptions. Recall that the critical terms involved in attainable descriptions
all have levels ≤ B, and there are only finitely many such terms and therefore
only finitely many attainable descriptions. An attainable description δ(X, ξ)
will be said to have depth equal to the length of ξ. Lemma 6.16 ensures that
this depth depends only on the description δ(X, ξ), not on the particular
attainable pair (X, ξ) from which it is obtained. Notice that the definition
of descriptions immediately implies that any critical term occurring in a de-
scription has level ≤ the depth of the description.

We construct the program Π for an ASM equivalent to the given algorithm
A as follows. Π is a parallel combination, with one component for each
attainable description δ of depth zero. We describe the component associated
to δ under the assumption that δ is not final, by which we mean that, in the

68

attainable pairs (X, ξ) with description δ, the history ξ is not final; we shall
return later to the final case. (Recall that, by Corollary 6.18, whether ξ is
final in X depends only on the description δ(X, ξ), so our case distinction
here is unambiguous.)

The component associated to a non-final δ is a conditional rule of the
form if δ then Rδ, i.e., a conditional whose guard is δ itself. The body Rδ

is a parallel combination, with one component for each successor δ′ of δ.
When δ′ is not final, the associated component is a conditional rule

if δ′ then Rδ′ . The body Rδ′ here is a parallel combination, with one com-
ponent for each successor δ′′ of δ′.

Continue in this manner until a final description ε is reached. Since the
depth increases by one when we pass from a description to a successor, and
since all attainable histories have length (i.e., the depth of their descriptions)
at most B, we will have reached final descriptions after at most B iterations
of the procedure. The component associated to a final description ε = δ(X, ξ)
is if ε then Rε endif, where Rε is the parallel combination of the following:

• fail if ξ ∈ F−
X ,

• issue u if u is a q-term of level at most one more than the length of ξ
(that is, the depth of ε) and ξ `X q-Val(u,X, ξ), and

• f(t1, . . . , tk) := t0 if the ti are critical terms of level at most the length of
ξ and they have values ai = Val(ti, X, ξ) such that 〈f, 〈a1, . . . , ak〉, a0〉 ∈
∆+(X, ξ).

It is important to note that, although the attainable pair (X, ξ) was used
in the specification of these components, they actually depend only on the
description ε, by Corollary 6.18. This completes the definition of the program
Π.

Remark 6.21. As in previous work on the ASM thesis, this program Π is
designed specifically for the proof of the thesis. That is, it works in complete
generality and it admits a fairly simple, uniform construction. For practical
programming of specific algorithms, there will normally be ASM programs
far simpler than the one produced by our general method.

6.6 Equivalence

It remains to show that the ASM defined by Π is equivalent to the given
algorithm A. For brevity, we sometimes refer to this ASM as simply Π.

69

Theorem 6.22. The ASM defined by Π together with S, I, Υ, Λ, E, and
the template assignment of subsection 6.2 is equivalent to algorithm A.

Proof. Referring to Lemma 3.3, we see that it suffices to show the following,
for every pair (X, ξ) that is attainable for both the algorithm A and our
ASM.

1. IssuedX(ξ) is the same for our ASM as for A.

2. If ξ is in F+
X or F−

X with respect to one of A and our ASM, then the
same is true with respect to the other.

3. If ξ ∈ F+
X , then ∆+(X, ξ) is the same with respect to our ASM and

with respect to A.

Consider, therefore, an attainable pair (X, ξ) (with respect to A) and the
behavior of our ASM in this pair.

Let n be the length of ξ, and for each m ≤ n let ξ �m be the initial
segment of ξ of length m. According to Lemma 6.16, the only attainable
descriptions satisfied by (X, ξ) are those of the form δ(X, ξ �m), one of each
depth m ≤ n.

Issuing Queries.
We begin by analyzing the queries issued by our ASM in state X with

history ξ. (Parts of this analysis will be useful again later, when we analyze
finality, success, failure, and updates.) For readability, our analysis will be
phrased in terms of the ASM performing various actions, such as issuing
queries or passing control to a branch of a conditional rule. Of course, this
could be rewritten more formally in terms of the detailed semantics of ASMs,
but the formalization seems to entail more costs, both for the reader and for
the authors, than benefits.

The ASM acting in state X with history ξ begins, since Π is a parallel
combination, by executing all the components associated with attainable
descriptions of depth 0. Recall that these components are conditional rules
whose guards are the descriptions themselves. These descriptions contain
only critical terms of depth 0, so there are no external function symbols
here. Therefore, no queries result from the evaluation of the guards. By
Lemma 6.16 the ASM finds exactly one of the guards to be true, namely
δ(X, ξ � 0), and it proceeds to execute the body Rδ(X,ξ � 0) of this conditional
rule.

70

Let us suppose, temporarily, that n > 0, so, as ξ is attainable, ξ � 0 is
not final. (We shall return to the other case later.) So Rδ(X,ξ � 0) is a parallel
combination, and our ASM proceeds to execute its components. These are
conditionals, whose guards δ′ are the successors of δ(X, ξ � 0). So these guards
are δ(Y, η) for attainable pairs (Y, η) as in Lemma 6.20. In particular, η has
length 1 and η− = ξ � 0. (This last equation is redundant as both sides are
histories of length 0, but we include it to match what will occur in later
parts of our analysis.) Inspection of the definition of descriptions shows
that every query issued during the evaluation of such a guard is also issued
by the algorithm A operating in the attainable pair (Y, η−) = (Y, ξ � 0).
Since (Y, ξ � 0) agrees with (X, ξ � 0) on W , these are queries issued by A in
(X, ξ � 0).

The converse also holds. If a query q is issued by A in (X, ξ � 0), then
there is an attainable history η for X in which q is in the first and only
equivalence class of Dom(η̇); simply define η to give q an arbitrary reply and
to do nothing more. By Lemma 6.9, q is the query-value of some q-term
u of level 1, and therefore δ(X, η) contains the conjunct u = u. Thus, in
evaluating the guard δ(X, η), our ASM will issue q.

Having evaluated the guards of depth 1, our ASM finds, according to
Lemma 6.16, that exactly one of them is true, namely δ(X, ξ � 1), so it pro-
ceeds to evaluate the corresponding body Rδ(X,ξ � 1). Let us suppose, tem-
porarily, that n > 1, so, as ξ is attainable, ξ � 1 is not final. So Rδ(X,ξ � 1) is
a parallel combination, and our ASM proceeds to execute its components.
These are conditionals, whose guards δ′ are the successors of δ(X, ξ � 1). So
these guards are δ(Y, η) for attainable pairs (Y, η) as in Lemma 6.20. In
particular, η has length 2 and η− = ξ � 1. Inspection of the definition of
descriptions shows that every query issued during the evaluation of such
a guard is also issued by the algorithm A operating in the attainable pair
(Y, η−) = (Y, ξ � 1). Since (Y, ξ � 1) agrees with (X, ξ � 1) on W , these are
queries issued by A in (X, ξ � 1).

The converse also holds. If a query q is issued by A in (X, ξ � 1), but
not already in (X, ξ � 0), then there is an attainable history η for X, which
has ξ � 1 as an initial segment, and in which q is in the second and last
equivalence class of Dom(η̇); simply define η by extending ξ � 1 to give q an
arbitrary reply, in a new, second equivalence class, and to do nothing more.
By Lemma 6.9, q is the query-value of some critical term u of level 2, and
therefore δ(X, η) contains the conjunct u = u. Thus, in evaluating the guard
δ(X, η), our ASM will issue q.

71

The reader should, at this point, experience déjà vu, since the argument
we have just given concerning the behavior of our ASM while executing
Rδ(X,ξ � 1) is exactly parallel to the previous argument concerning Rδ(X,ξ � 0).
The same pattern continues as long as the depths of the guards are < n so
that we have not arrived at a final history.

Consider now what happens when the ASM evaluates Rδ(X,ξ �n) = Rδ(X,ξ).
If the history ξ is not final, then the same argument as before shows that the
ASM will issue, while evaluating the guards of the components of Rδ(X,ξ), the
same queries as the original algorithm A. Furthermore, the ASM will find
none of the guards here to be true, for these guards are descriptions of depth
n + 1 and can, by Lemma 6.16, be satisfied only with histories of length at
least n + 1. So the execution of the ASM produces no additional queries
beyond those that we have already shown to agree with those produced by
A.

There remains the situation that ξ is final for A and X. In this case, the
components of Rδ(X,ξ) are no longer conditional rules, the evaluation of whose
guards causes the appropriate queries to be issued by the ASM. Rather, the
components are issue rules, updates, or fail. Only the issue rules here will
result in new queries; the queries involved in the terms in update rules and
in the issue rules have already been issued during the evaluation of guards.
And the issue rules are chosen precisely to issue the queries that A would
issue in (X, ξ).

This completes the proof that our ASM and A agree as to issuing queries.
They therefore agree as to which histories are coherent.

Finality, Success, and Failure. We next consider which histories are
declared final by our ASM. Suppose first that ξ is final for A in X. Then,
as the preceding analysis of the ASM’s behavior shows, the ASM will, after
evaluating a lot of guards, find itself executing Rδ(X,ξ), which is a parallel
combination of issue rules, update rules, or fail. The subterms of any
update rules here will already have been evaluated during the evaluation of
the guards, so ξ is final for these update rules. The same goes for the issue
rules; their subterms have already been evaluated, and so ξ is final. Any
history is final for fail. Thus ξ is final for all the components of Rδ(X,ξ) and
is therefore final for Rδ(X,ξ) itself. From the definition of the semantics of
parallel compositions and conditional rules, it follows that ξ is also final for
Π, as required.

Now suppose that ξ is (attainable but) not final for A in state X. There

72

will be some queries that have been issued by A but not answered, i.e.,
that are in IssuedX(ξ) − Dom(ξ̇) = PendingX(ξ), for otherwise ξ would be
complete and attainable and therefore, by the Step Postulate, final. So our
ASM will issue some queries whose answers are needed for the evaluation of
the guards of some components of Rδ(X,ξ), but whose answers are not in ξ.
Therefore, ξ is not a final history for the ASM in state X. This completes
the proof that our ASM agrees with A as to finality of histories.

We check next that a final history ξ succeeds or fails for our ASM ac-
cording to whether it succeeds or fails for A. It fails for our ASM if and only
if, after evaluating all the guards and while executing Rδ(X,ξ), it encounters
either fail or clashing updates (see the definition of failure for parallel com-
binations). By definition of our ASM, it encounters fail if and only if A fails
in (X, ξ). Furthermore, it will not encounter clashing updates unless A fails,
because, as we shall see below, it encounters exactly the updates produced
by A, and these cannot, by the Step Postulate, clash unless A fails.

Updates. To complete the proof, we have to check what updates our ASM
encounters. Our construction of Π is such that update rules are encountered
only in the subrules Rδ(X,ξ) for final histories ξ. Furthermore, these update
subrules are chosen to match the updates performed by A. So our ASM and
A produce the same updates in any final history.

This completes the verification that our ASM is equivalent to the given
algorithm A.

AB commented out those bibliography entries that are not cited in the text.

References

[1] Andreas Blass and Yuri Gurevich, “Abstract state machines capture
parallel algorithms,” ACM Trans. Computational Logic, 4 (2003) 578–
651.

[2] Andreas Blass and Yuri Gurevich, “Ordinary Interactive Small-Step Al-
gorithms, I,” ACM Trans. Computational Logic, to appear.

[3] Andreas Blass and Yuri Gurevich, “Ordinary Interactive Small-Step Al-
gorithms, II,” ACM Trans. Computational Logic, to appear.

73

[4] Andreas Blass and Yuri Gurevich, “Ordinary Interactive Small-Step Al-
gorithms, III,” ACM Trans. Computational Logic, to appear.

[5] Andreas Blass, Yuri Gurevich, Dean Rosenzweig, and Benjamin Ross-
man, “Composite interactive algorithms” (tentative title), in prepara-
tion.

[6] Yuri Gurevich, “A new thesis,” Abstract 85T-68-203, Amer. Math. Soc.
Abstracts 6 (August, 1985) p.317.

[7] Yuri Gurevich, “Evolving algebra 1993: Lipari guide,” in Specification
and Validation Methods, E. Börger, ed., Oxford Univ. Press (1995) 9–36.

[8] Yuri Gurevich, “Sequential abstract state machines capture sequential
algorithms,” ACM Trans. Computational Logic 1 (2000) 77–111.

74

