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ABSTRACT 

A computational model for determination of service life of 
gears in regard to bending fatigue in a gear tooth root is 
presented. The fatigue process leading to tooth breakage is 
divided into crack initiation and crack propagation period. The 
Coffin-Manson relationship is used to determine the number of 
stress cycles Ni required for the fatigue crack initiation, where it 
is assumed that the initial crack is located at the point of the 
largest stresses in a gear tooth root. The simply Paris equation 
is then used for the further simulation of the fatigue crack 
growth, where required material parameters have been 
determined previously by the appropriate test specimens. The 
functional relationship between the stress intensity factor and 
crack length K=f(a), which is needed for determination of the 
required number of loading cycles Np for a crack propagation 
from the initial to the critical length, is obtained numerically in 
the framework of the Finite Element Method. The total number 
of stress cycles N for the final failure to occur is then a sum N 
= Ni +Np. Although some influences (non-homogeneous 
material, travelling of dislocations, etc.) were not taken into 
account in the computational simulations, the presented model 
seems to be very suitable for determination of service life of 
gears because numerical procedures used here are much faster 
and cheaper if compared with the experimental testing. 

 
INTRODUCTION 

Two kinds of teeth damage can occur on gears under 
repeated loading due to fatigue; namely the pitting of gear teeth 
flanks and tooth breakage in the tooth root (ISO 6336, 1993). In 
this paper only the tooth breakage is addressed and the 
developed computational model is used for calculation of tooth 
bending strength., i.e. the service life of gear tooth root. 

 
Several classical standardised procedures (DIN, AGMA, 

ISO, etc.) can be used for the approximate determination of 
load capacity of gear tooth root. They are commonly based on 
the comparison of the maximum tooth-root stress with the 
permissible bending stress (ISO 6336, 1993). Their 
determination depends on a number of different coefficients 
that allow for proper consideration of real working conditions 
(additional internal and external dynamic forces, contact area of 
engaging gears, gear’s material, surface roughness, etc.). The 
classical procedures are exclusively based on the experimental 

testing of the reference gears and they consider only the final 
stage of the fatigue process in the gear tooth root, i.e. the 
occurrence of final failure. 

 
However, the complete process of fatigue failure of 

mechanical elements may be divided into the following stages 
(Shang et al., 1998, Glodez et al., 1997, Glodez et al., 1997, 
Cheng et al., 1994): (1) microcrack nucleation; (2) short crack 
growth; (3) long crack growth; and (4) occurrence of final 
failure. In engineering applications the first two stages are 
usually termed as “crack initiation period”, while long crack 
growth is termed as “crack propagation period”. An exact 
definition of the transition from initiation to propagation period 
is usually not possible. However, the crack initiation period 
generally account for most of the service life, especially in 
high-cycle fatigue, see Fig. 1. The total number of stress cycles 
N can than be determined from the number of stress cycles Ni 
required for the fatigue crack initiation and the number of stress 
cycles Np required for a crack to propagate from the initial to 
the critical crack length, when the final failure can be expected 
to occur: 
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 Figure 1: Schematic representation of the service life 
of mechanical elements 
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Presented model for the fatigue crack initiation is based on 

the continuum mechanics approach, were it is assumed that the 
material is homogeneous and isotropic, i.e. without 
imperfections or damages. Methods for the fatigue analyses are 
in that case usually based on the Coffin-Manson relation 
between deformations (ε), stresses (σ) and number of cycles 
(Ni), which can be described as follows (Manson, 1953, 
Tavernelli and Coffin, 1959): 

 
 

where σU is the ultimate strength, see Fig. 1. This relation was 
found to be in a good correlation with available experimental 
results (Jelaska, 2000). 

The most important parameter when determining the crack 
initiation life Ni according to equation (4) is the fatigue limit 
∆σFL, which is a typical material parameter and is determined 
using appropriate test specimen. When determining the fatigue 
limit for gears, the reference test gears are usually used as the 
test specimens. According to ISO 6335 standard (1993), they 
are spur gears with normal module mn=3 to 5 mm, tooth width 
B= 10 to 50 mm, surface roughness Rz≈10 µm, etc, which are 
loaded with repeated pulsating tooth loading. If geometry, 
surface roughness, gear size and loading conditions of real 
gears in the praxis deviate from the reference testing, the 
previously determined fatigue limit ∆σFL must be modified 
through the appropriate correlation factors. 
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where ∆ε is the strain range, ∆εel and ∆εpl are the elastic and 
plastic strain range, E is the Young’s modulus of the material 
and σ'f, ε'f, b and c are the strength coefficient, ductility 
coefficient, strength exponent and ductility exponent for crack 
initiation, respectively. The strain range can be obtained 
numerically (usually by FEM), or by strain gauges measurings 
in the area of tooth root, where the crack initiation is expected. 
The material constants σ'f, ε'f, b and c are obtained for each 
material and stress/strain ratio, from strain controlled tests. 

 
 

FATIGUE CRACK PROPAGATION 
The application of LEFM to fatigue is based upon the 

assumption that the fatigue crack growth rate, da/dN, is a 
function of the stress intensity range ∆K=Kmax−Kmin, where a is 
a crack length and N is a number of load cycles. In this study 
the simply Paris equation is used to describe the crack growth 
rate (Ewalds, 1989). 

 
In the HCF region commonly applicated for gears, where the 

plastic strain can be neglected, the Coffin-Manson relation 
reduces only to elastic part and so transforms to an equation of 
the Basquin type (Nicholas and Zuiker, 1996, Jelaska, 2000):  
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where ∆σ is the applied stress range and ki and Ci are the 
material constants. It is easy to obtain the crack initiation life Ni 
using this relation, if we assume that the crack initiation curve 
passes the same point (NFL; ∆σFL) as the Wöhler (S-N) curve, it 
means at the fatigue limit level the whole fatigue life consists 
of the crack initiation period: 

where C and m are the material parameters. In respect to the 
crack propagation period Np according to Eq. (1), and with 
integration of Eq. (6) one can obtain: 
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This equation indicates that the required number of loading 
cycles Np for a crack to propagate from the initial length ao to 
the critical crack length ac can be explicitly determined, if C, m 
and ∆K(a) are known. C and m are material parameters and can 
be obtained experimentally, usually by means of a three point 
bending test as to the standard procedure ASTM E 399-80. For 
simple cases the dependence between the stress intensity factor 
and the crack length K=f(a) can be determined using the 

 
 

where NFL is the number of cycles at the knee of the Wöhler 
curve, see Fig. 1. On the basis of the same assumption, the 
exponent ki can be obtained as: 

 
 



methodology given in (Ewalds and Wanhill, 1989, ASTM E 
399-80). For more complicated geometry and loading cases it is 
necessary to use alternative methods. In this work the Finite 
Element Method in the framework of the programme package 
FRANC2D has been used for simulation of the fatigue crack 
growth. The determination of the stress intensity factor is based 
on the displacement correlation method using singular quarter-
point elements, Fig. 2. The stress intensity factor in mixed 
mode plane strain condition can then be determined as: 
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where G is the shear modulus of the material, ν is the Poisson 
ratio, L is the finite element length on crack face, u and v are 
displacements of the crack tip elements. The combined stress 
intensity factor is then: 

 
Figure 2: Triangular quarter-point  
             elements around crack tip 

 
  
 alloy steel 42CrMo4 (0.43 %C, 0.22 %Si, 0.59 %Mn, 1.04 

%Cr, 0.17 %Mo) with Young’s modulus E=2.1⋅105 MPa and 
Poison’s ratio ν=0.3. The gear material is thermally treated as 
follows: flame heated at 810 °C; 2 min, hardened in oil; 3 min 
and tempered at 180 °C; 2 h. 

                              ( ) )( 222 1 ν−⋅+= III KKK                          (9)   
 
 
The computational procedure is based on incremental crack 

extensions, where the size of the crack increment is prescribed 
in advance. In order to predict the crack extension angle the 
maximum tensile stress criterion (MTS) is used. In this 
criterion it is proposed that crack propagates from the crack tip 
in a radial direction in the plane perpendicular to the direction 
of greatest tension (maximum tangential tensile stress). The 
predicted crack propagation angle can be calculated by, see Fig. 
2: 

 
 

Table 1. Basic data of a treated spur gear 
  module mn = 4.5 mm 
 number of teeth z = 39 
 pressure angle on pitch    
 circle αn = 24o 

 coefficient of profile   
 displacement 

x = 0.06 

  tooth width B = 28 mm 
  gear material  42CrMo4 
  surface roughness  Rz = 10 µm 
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    A new local remeshing around the new crack tip is then 

required. The procedure is repeated until the stress intensity 
factor reaches the critical value Kc, when the complete tooth 
fracture is expected. Following the above procedure, one can 
numerically determine the functional relationship K=f(a). 

 
Fatigue crack initiation 

The procedure as described before has been used to 
determine the number of stress cycles Ni required for the 
fatigue crack initiation. The ultimate tensile strength σu=1100 
MPa, fatigue limit ∆σFL=550 MPa and number of cycles at the 
knee of the Wöhler curve NFL=3⋅106 have been taken from ISO 
6335, Niemann and Winter (1983) and Abersek (1993) for the 
same material as used in this study. The computational analysis 
have been done for different values of normal pulsating force F, 

 
 
PRACTICAL EXAMPLE 
The presented model has been used for the computational 
determination of the service life of real spur gear with complete 
data set given in Table 1. The gear is made of high strength  



 which is acting at the outer point of single tooth contact, see 
Fig. 3. As a consequence of F the maximum principal stress ∆σ 
in a gear tooth root has been determined numerically with the 
Finite Element Method, where the FE-model shown in Fig. 3 
has been used. The results are summarised in Table 2. 

Table 2. Computational results for the fatigue crack 
initiation 

 
Loading 

F [N/mm] 

Maximum principal stress 
in a gear tooth root 

σ [MPa] 

Number of cycles 
Νi 

800 527 8,192⋅106 

900 593 5,109⋅105 

1000 659 4,271⋅104 

1100 725 4,526⋅103 

1200 790 6,010⋅102 

1300 857 8,861⋅101 

1400 922 1,588⋅101 

1500 988 3,087⋅100 

 

 F

  critical area

     Figure 3: Finite element model 
  

In numerical computations it has been assumed that the 
initial crack ao corresponds to the threshold crack length ath, 
below which LEFM is not valid. The threshold crack length 
may be estimated approximately (Bhattacharya and  
Ellingwood, 1998) as 

 

Fatigue crack propagation 
The FEM-programme package FRANC2D as described 

before, has been used for the numerical simulation of the 
fatigue crack growth. The initial crack has been located 
perpendicularly to the surface at the point of the maximum 
principal stress on the tensile side of gear tooth, see Fig. 4. 
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Figure. 4: Finite element mesh around initial crack in a gear tooth root
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where ∆σFL is the fatigue limit ∆Kth is the threshold stress 
in0tensity range. However, a wider range of values have been 
selected for ath in the literature, usually between 0.05 and 1 
mm for steels, where high strength steels take the smallest 
values. 

Considering the material parameters ∆σFL ≈ 550 MPa and 
Kth ≈269 MPa√mm available in (Niemann and Winter, 1983, 
Abersek, 1993), the threshold crack length is equal to ath≈0.1 
mm. The fracture toughness KIc≈2620 MPa√mm, and the 
material parameters C=3.31⋅10-17 mm/cycl/(MPa√mm)m and 
m=4.16 have been determined previously by the three-point 
bending samples according to ASTM E 399-80 standard and 
for the same material as used in this study ( Abersek, 1993). 

  
The tooth loading was equal as by the computational 

analysis of the fatigue crack initiation, see the previous section  
During numerical simulations the crack increment size ∆a was 
0.2 mm up to the crack length a = 4 mm, and after this 0.4 mm 
up to the critical crack length ac, see Fig. 2. To be able to 
determine the number of loading cycles Np required for the 
crack to propagate from the initial crack length ath to the 
critical crack length ac according to Eq. (7), it is necessary to 
determine the dependence ∆K=f(a) first. Figure 5 shows the 
functional relationship between the equivalent stress intensity 
factor K  and crack length a, where K is obtained by Eq. (9) 
using numerically determined values of KI and KII. Numerical 
analysis have shown that the KI stress intensity factor is much 
higher if compared with KII (KII was less than 5 % of KI for all 
load cases and crack lengths ). Therefore, the fracture 
toughness KIc can be considered as the critical value of K and 
the appropriate crack length can be taken as the critical crack 

length ac. The loading cycles Np for the crack propagation to 
the critical crack length can than be estimated using Eq. (7), 
see Table 3. Figure 6 shows the numerically determined crack 
propagation path in a gear tooth root. 

 
On the basis of the computational results for crack initiation 

(Ni) and crack propagation (Np) period in Tables 2 and 3, the 
complete service life of gear tooth root can be obtained 
according to Eq. (1), see Fig. 7. It is clear from Fig. 7 that the 
ratio among the periods of initiation and of end of propagation 
(i.e. final breakage) depends on the stress level. At low stress 
level almost all service life is spent in crack initiation, but at 
high stress levels the significant part of the life is spent in the 
crack propagation. The computational results for total service 
life are in a good agreement with the available experimental 
results, which are taken from (Niemann and Winter, 1983). 

 
 Table 3. Computational results for the fatigue crack 
propagation 

 
Loading 
F [N/mm] 

 
Critical crack length 

ac [mm] 

 
Number of 

cycles 
Np 

800 8.6 9,473⋅105 

900 8.4 5,845⋅105 
1000 8.2 3,768⋅105 
1100 7.9 2,534⋅105 
1200 7.7 1,773⋅105 
1300 7.5 1,264⋅105 

1400 7.3 9,322⋅104 
1500 7.1 6,993⋅104 
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Fig. 5: Functional relationship between the stress intensity factor and crack length 



 

 
 

Figure 6: Crack propagation path in a gear tooth root 
 
 

 

 
Figure 7: The computed service life of treated gear 

a) crack initiation, and b) final fracture 
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CONCLUSIONS 
The paper presents a computational model for 

determination of service life of gears in regard to 
bending fatigue in a gear tooth root. The fatigue 
process leading to tooth breakage in a tooth root is 
divided into crack initiation (Ni) and crack 
propagation (Np) period, which enables the 
determination of total service life as N = Ni+Np. The 
simple Basquin equation is used to determine the 
number of stress cycles Ni. In the model it is 
assumed that the crack is initiated at the point of the 
maximum principal stress in a gear tooth root, 
which is calculated numerically using FEM. The 
displacement correlation method is then used for 
the numerical determination of the functional 
relationship between the stress intensity factor and 
crack length K=f(a), which is necessary for 
consequent analysis of fatigue crack growth, i.e. 
determination of stress cycles Np. 

  
The model is used to determine the complete 

service life of spur gear made from high strength 
alloy steel 42CrMo4. The final results of the 
computational analysis are shown in Fig. 7, where 
two curves are presented: the crack initiation curve 
(a) and the curve of tooth breakage (b), which at the 
same time represents the total service life. The 
results show that at low stress levels near fatigue 
limit almost all service life is spent in crack 
initiation. It is very important cognition by 
determination the service life of real gear drives in 
the praxis, because majority of them really operate 
with loading conditions close to the fatigue limit. 

 
The computational results for total service life 

are in a good agreement with the available 
experimental results. However, the model can be 
further improved with additional theoretical and 
numerical research, although additional 
experimental results will be required to provide the 
required material parameters. 
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