SECOND-METACYCLIC p-GROUPS $(p>2)$

V. Ćepulić, E. Kovač Striko, O.Pylyavska

Let G be a p-group that contains a proper nonmetacyclic subgroup and such that all its subgroups of index p^{2} are metacyclic. Such group is called an $M C(2)$-group. The 2 -groups which are $M C(2)$-groups were classified in [1]. The aim of this investigation is to classify the $M C(2)$-groups whose order is a power of a prime $p, p>2$.

There are two well-known Blackburn's Theorems
Theorem 1. (Blackburn[2]) Let $p>2$ and $|G|=p^{n}$ where $n \geq 5$. If all subgroups of G of order p^{r} for every integer r with $3 \leq r \leq n-2$ are generated by two elements, then one of the following assertions holds:
a) G is metacyclic;
b) G is a 3 -group of maximal class;
c) $r=3$ and the elements of order p of G (with e) form a nonabelian normal subgroup $\Omega_{1}(G)$ of G of order p^{3} with a cyclic factor group $G / \Omega_{1}(G)$.

Any $M C(2)$ group contains some nonmetacyclic maximal subgroup N whose all proper subgroups are metacyclic. The following Blackburn's Theorem determines such groups.

Theorem 2. (Blackburn [2]) Let G be a p-group, all whose proper subgroups are metacyclic, but G itself is not. Then one of the following assertions holds:
a) G is elementary abelian of order p^{3}.
b) It is $p>2$ and G is a nonabelian group of order p^{3} and exponent p.
c) G is a 3 -group of class 3 and of order 3^{4}.
d) G is a 2 -group with $|G| \leq 2^{5}$.

According these theorems each $M C(2)$-group is either of order p^{4} for $p \geq 3$, or of order 3^{5}.

There is a full description of groups of order p^{n} where $p \geq 3, n \leq 6$ in the lists obtained by R. James ([3]) and O.Pylyavska ([4]). However, the authors preferred to give a direct proof based on structural properties of the investigated groups.

Authors have proved that there are ten $M C(2)$ groups of order $p^{4}, p>2$, more precisely

1) 7 groups, which contain an elementary abelian subgroup of order p^{3} :
a) two abelian : the elementary abelian and the group of type $(2,1,1)$;
b) three groups with center $Z(G)$ of order p^{2} and commutator subgroup G^{\prime} of order p:
$G=\langle a, b, c|[a, b]=d,[a, c]=[b, c]=[a, d]=[b, d]=[c, d]=1, a^{p}=d, b^{p}=c^{p}=$ $\left.d^{p}=1\right\rangle$
$G=\left\langle a, b \mid[a, b]=d,[a, d]=[b, d]=1, a^{p^{2}}=b^{p}=d^{p}=1\right\rangle$
$G=\langle a, b, c|[a, b]=d,[a, c]=[b, c]=[a, d]=[b, d]=[c, d]=1, a^{p}=b^{p}=c^{p}=d^{p}=$ 1)
c) two groups G of maximal class with center $Z(G)$ of order p and commutator subgroup G^{\prime} of order p^{2} :
$G=\langle a, b|[a, b]=c,[a, c]=d,[b, c]=[a, d]=[b, d]=[c, d]=1, a^{p}=d, b^{p}=c^{p}=$ $\left.d^{p}=1\right\rangle$
$G=\langle a, b|[a, b]=c,[a, c]=d,[b, c]=[a, d]=[b, d]=[c, d]=1, a^{p}=b^{p}=c^{p}=d^{p}=$ 1)
2) 3 groups, which have none elementary abelian subgroup of order p^{3}, but have a nonabelian subgroup of order p^{3} and exponent p :
$G=\langle a, b, c|[a, b]=d,[a, c]=[b, c]=[a, d]=[b, d]=[c, d]=1, c^{p}=d, a^{p}=b^{p}=$ $\left.d^{p}=1\right\rangle$
$G=\langle a, b|[a, b]=c,[a, c]=d,[b, c]=[a, d]=[b, d]=[c, d]=1, b^{p}=d, a^{p}=c^{p}=$ $\left.d^{p}=1\right\rangle$
$G=\langle a, b|[a, b]=c,[a, c]=d,[b, c]=[a, d]=[b, d]=[c, d]=1, b^{p}=d^{\delta}, a^{p}=c^{p}=$ $\left.d^{p}=1\right\rangle$
where δ is a nonquadratic residue modulo p.
For $p=3$ there are two groups of order 3^{5} which are $\mathrm{MC}(2)$-groups:
3) the group of maximal class with an abelian maximal subgroup:
$G=\langle d, f|[d, f]=c,[c, d]=b,[b, d]=a^{2},[a, b]=[a, c]=[a, d]=[a, f]=[b, c]=$ $\left.[b, f]=[c, f]=1, a^{3}=b^{3}=1, c^{3}=d^{3}=a, f^{3}=a b\right\rangle$
4) the group of maximal class without any abelian maximal subgroup
$G=\langle d, f|[d, f]=c,[c, d]=b,[b, d]=a^{2},[c, f]=a,[a, b]=[a, c]=[a, d]=[a, f]=$ $\left.[b, c]=[b, f]=1, a^{3}=b^{3}=1, c^{3}=d^{3}=a, f^{3}=a b\right\rangle$
[1] V. Ćepulić, M. Ivanković, E. Kovač Striko, Second-metacyclic finite 2-groups, to be published in Glasnik Matematički
[2] N. Blackburn, Generalizations of certain elementary theorems on p-groups, Proc.London Math.Soc.-1961.- 11, P.1-22
[3] R. James, The groups of order p^{6} (p - an odd prime),
Math.Comp.-1980.-34, V.150-P.613-637.
[4] O.S.Pilyavskaya (O.S.Pylyavska), Classification of groups with order $p^{6}, p>3$, Vseross. Inst. Nauchn. I Tekhn. Inform.(VINITI), Moscow, 1983, Deposit No. 1877-83 (in Russian).

Ćepulić, Vladimir
Department of Applied Mathematics
Faculty of Electrical Engineering and Computing
University of Zagreb
Unska 3
HR10000 Zagreb, Croatia
Kovač Striko, Elizabeta
Faculty of Transport and Traffic Engineering
University of Zagreb
Vukelićeva 4
HR10000 Zagreb, Croatia
Pylyavska, Olga,
Department of Mathematics
National University "Kyjevo-Mogyljans'ka Akademiya"
G.Skovorody, 2

Kyiv-70, 04070
Ukraine

