
16th INTERNATIONAL DAAM SYMPOSIUM
"Intelligent Manufacturing & Automation: Focus on Young Researchers and Scientists"
19 – 22nd October 2005

PARALLEL SOLUTION OF IMPLICIT NUMERICAL
 SCHEME FOR OPEN CHANNEL FLOW EQUATIONS

Kranjčević, L.; Družeta, S. & Čarija, Z.

Abstract: Open channel flow equations are solved by implicit
numerical scheme. Implicit numerical scheme requires
considerable computational effort consequent upon the need to
solve block tridiagonal system of equations per each time step,
and thus parallel solution is employed. Research on different
linear solvers has become increasingly complex, and this trend
is likely to accentuate because of the growing need to design
efficient sparse matrix algorithms for modern parallel
computers.
Key words: Parallel computation, open channel flow
equations, direct linear solver parallelization

1. INTRODUCTION

Upon investigation of efficient ways to solve systems of open
channel flow and analysis of different numerical schemes,
parallelization represents one logical step further in that
direction. Since implicit numerical scheme is unbound by
Courant Friedrichs Lewy (CFL) condition allowing in certain
type of problems large time steps and thus reaching the solution
very fast, aditional speed up is gained by parallelization of the
numerical scheme. Implicit methods solve for the unknowns in
a domain simultaneously, requiring solution of simultaneous
algebraic equations per each time step. Given the hardware
limitations of two processor computer and one dimensional
finite difference problem a special type of direct linear solver is
constructed and tested.

2. PARALLEL SOLUTION OF THE LINEAR
SYSTEM

The one-dimensional St. Venant system of governing
equations, based on conservation of mass and conservation of
momentum for unsteady flow in a nonprismatic channel of
arbitrary cross section, can expressed in vector form reads:

() ()wSwF
w

,x
xt

=
∂

∂
+

∂

∂

⎟
⎠
⎞⎜

⎝
⎛=

Q
A

w , () ()⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+
=

AxgI
A

Q

Q

,1

2wF

() () ()⎟⎠
⎞

⎜
⎝

⎛
−++

=
fSbSgALqxuAxgI

Lq
x ,2
, wS

in which w is a vector of flow variables, F represents flux
vector, and S source term vector. Further on t is time; x is the
horizontal distance along the channel; A is the wetted cross-
sectional area; Q is disharge and g is the gravitational
acceleration. The friction slope is represented by Sf, the bed
slope by Sb, and the hydrostatic pressure force by I1, and the
pressure force due to longitudinal channel width variation by I2.

Direct consequence of one-dimensional open channel model
solution with implicit numerical scheme is the system of linear

equations that needs to be solved in each time step. For solution
of one-dimensional mathematical model of that type,
employment of finite difference discretization method is a
logical choice. Finite difference method produces block
tridiagonal linear system of equations with block matrices [2 x
2], that is to be solved in each time step:

DCwBwAw =+
+++++

−
1
1

11
1

n
i

n
i

n
i

where A, B, C are block matrices that are elements of a global
matrix of the system and D represents RHS vector containing
source term, some data from previous time level tn and
eventually, imposed boundary conditions. For brevity,
treatment of boundary conditions in implicit case will not be
discussed here. Matrices A,B,C are of order n=2 and solution
block vector X and right hand side vector D have length 2 since
mathematical model consists of two partial differential
equations.

Linear solver parallelization can lead into two basic directions:

• iterative parallel linear solver with different
overrelaxation techniques or with different
preconditioners;

• direct solver.
Two different aspects of the iterative solution of a linear system
are distinguished. The first one is the particular acceleration
technique that is used to construct a new approximation for the
solution with information from previous approximations. This
leads to specific iteration methods, such as SOR, Conjugate
Gradients, etc. The second aspect is preconditioning of a given
system to one that can be more efficiently parallelized. Second
aspect is much more employed and usualy combined with
different domain partitioners (CHACO, METIS, PARMETIS).
These principles are embedded in widely used programs for
solution of linear systems such as AZTEC, PETSc,
BlockSolve95, ScaLAPACK, PLAPACK, pARMS, PARDISO
etc.
For the direct solution of tridiagonal matrices there is not much
that can be done in parallel if we do not want to do additional
work by rearranging the order of computation. The different
parallel techniques for the factorization of tridiagonal matrices
fall into four classes: twisted factorization, recursive doubling,
cyclic reduction and divide and conquer algorithm. Last three
of the four mentioned methods are numerically too expensive
whether because parallelization is too fine grained thus yielding
too much communication or because parallel algorithms are
much more computationaly expensive than simple serial
Gaussian elimination and therefore impractical. Since on the
hardware side test computer available was two-processor Intel
Xeon workstation, parallel technique choosen was a version of
twisted factorization method or also known as Burn At Both
Ends (BABE) algorithm. The degree of parallelism of that type
of procedure is clearly two. MPI communication protocol was
used in this test.
This parallel algorithm amounts to starting Gauss Jacobi
procedure from top-down and from bottom-up simultaneously.
Parallel method is presented by pictures Fig. 1, Fig. 2. where p1
represents master process, and p2 worker process. Solution

process commences by communication where master process
(p1) sends worker (p2) its share of system matrix i.e. bottom
nw rows of matrix, and master clearly keeps nm rows (upper
part) considering . nw and nm need not be equal
necesarilly, since load balancing technique might be employed.
Master starts computation by normalizing block rows from top-
down turning block B into identity matrix I and then
eliminating block A underneath the current row. Worker starts
from bottom-up normalizing current block row by turning
block B into identity matrix I and then eliminating block C
from upper row (Fig. 1.)

nwnmn +=

Fig. 1. First half of the solution process

After nm i.e. nw steps of normalization and nm-1 and nw-1
elimination steps block matrix two processes meet and then
miminal communication is needed, as shown in Fig. 2. That
communication contact represents the only sinchronization
point in whole procedure and processes then turn their ways
back. Worker starts eliminating matrices A on the way down,
and master eliminates matrices C on the way back up.

Fig. 2. Sinchronization and second half of the calculation
 process

After all the eliminations, block matrix is left with only identity
matrices I on diagonal i.e. turning into identity matrix itself.
Solution vector X is preserved in the right hand side vector D.
Mathematicaly, this parallel Gauss-Jordan procedure matrix
system

DXT =

is multiplied by vector product from the left with matrix 1−T

DTXTT 11 −=−

DTX 1−= .
With one final communication message in solution procedure,
master receives nw block rows of vector D containing solutions
calculated by worker.

Since the goal of this paper is analysis of the parallel algorithm
only, results obtained by calculation won’t be presented. Test
problem employed in this paper was chosen to emphasise
parallel efficency of the code presented. Test case is an

idealized dam-break flow in a rectangular, L=1 m long,
frictionless channel with variable bottom topography which
represents bump represented by some function B(x) situated in
the middle part of the channel. Imaginary dam is located at
x=0.5 m and it separates reservoir h=1m and the tail water part
h=0.5m. At time t=0 s dam is removed instantly, and water is
released into the downstream side in the form of a shock wave.
Implicit numerical method is used with CFL number set to
CFL=3. Boundary conditions are reflective walls on both sides
causing shock wave to reflect back and forth. After
computational time T=3.5 s shock wave travels the lenght of
the channel approximately 10 times, calculation is stopped and
wall time measured.

Method CPU TIME [s]
Gaussian elimination serial 14,83
Gauss Jordan serial 15,2
Gauss Jordan parallel 7,849

Table 1. Run times comparison

5. CONCLUSION

Parallel algorithm was successfully constructed and
implemented in calculation of given physical problem. Parallel
code showed excellent parallel efficency Table 1. Even though
direct methods are rarely paralelized, in this case it was
justified considering the hardware given. Furthermore, it is
important to notice rapid increase in number of two processor
machines entering lately even the field of home PCs. Dual Intel
Xeon parallel computer as being parallel computer with shared
memory, allows also usage of OPEN MP communication
protocol. Even though OPEN MP is easier to program having
simpler fork-join parallelization principles with implicit
communication directives, MPI protocol was chosen because of
the portability reasons. MPI protocol allows the
implementation of the algorithm on the both shared and
distributed memory parallel computers (for instance LAN
connected PC-c). Major reason why communication needs to
be minimized lays in fact that in distributed memory parallel
environment communication stands for major latency cause.

6. REFERENCES:

Saad, Y., Iterative Methods for Sparse Linear Systems,

 Copyright 2000 by Y. Saad, 2000.
Bermudez, A.,Vazquez,M.E., “Upwind methods for hyperbolic

conservation laws with source terms”, Comput.&Fluids
23(8),1049, 1994.

Garcia-Navarro, P., Priestly, A., Alcrudo, F., “An Implicit
Method for Water Flow Modeling in Channel and Pipes”,
Journal of Hydraulic Research, Vol. 32, No.5, 1994.

Pacheco, P.S., Ming, W.C., MPI User Guide in FORTRAN
Rabenseifner, R., Resch. M. Hardware Architectures and
 Parallel Programming Models An Introduction, Parallel
 Programming Workshop, Stuttgart 2004.
Dongarra, J.J., Eijkhout, V. Numerical linear algebra
 algorithms and software, Journal of Computational and
 Applied Mathematics, Vol 123, Issues1-2, 2000. pag.
 489-514

	Upon investigation of efficient ways to solve systems of open channel flow and analysis of different numerical schemes, parallelization represents one logical step further in that direction. Since implicit numerical scheme is unbound by Courant Friedrichs Lewy (CFL) condition allowing in certain type of problems large time steps and thus reaching the solution very fast, aditional speed up is gained by parallelization of the numerical scheme. Implicit methods solve for the unknowns in a domain simultaneously, requiring solution of simultaneous algebraic equations per each time step. Given the hardware limitations of two processor computer and one dimensional finite difference problem a special type of direct linear solver is constructed and tested.
	2. PARALLEL SOLUTION OF THE LINEAR SYSTEM

