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Abstract: Open channel flow equations are solved by implicit 
numerical scheme. Implicit numerical scheme requires 
considerable computational effort consequent upon the need to 
solve block tridiagonal system of equations per each time step, 
and thus parallel solution is employed. Research on different 
linear solvers has become increasingly complex, and this trend 
is likely to accentuate because of the growing need to design 
efficient sparse matrix algorithms for modern parallel 
computers. 
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1.  INTRODUCTION 
 
Upon investigation of efficient ways to solve systems of open 
channel flow and analysis of different numerical schemes, 
parallelization represents one logical step further in that 
direction.  Since implicit numerical scheme is unbound by 
Courant Friedrichs Lewy (CFL) condition allowing in certain 
type of problems large time steps and thus reaching the solution 
very fast, aditional speed up is gained by parallelization of the 
numerical scheme. Implicit methods solve for the unknowns in 
a domain simultaneously, requiring solution of simultaneous 
algebraic equations per each time step. Given the hardware 
limitations of two processor computer and one dimensional 
finite difference problem a special type of direct linear solver is 
constructed and tested. 
 
2. PARALLEL SOLUTION OF THE LINEAR 
SYSTEM 

 
The one-dimensional St. Venant system of governing 
equations, based on conservation of mass and conservation of 
momentum for unsteady flow in a nonprismatic channel of 
arbitrary cross section, can expressed in vector form reads: 
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in which  w is a vector of flow variables, F represents flux 
vector, and S source term vector. Further on t is time; x is the 
horizontal distance along the channel; A is the wetted cross-
sectional area; Q is disharge and g is the gravitational 
acceleration. The friction slope is represented by Sf, the bed 
slope by Sb, and the hydrostatic pressure force by I1, and the 
pressure force due to longitudinal channel width variation by I2. 
 
Direct consequence of one-dimensional open channel model 
solution with implicit numerical scheme is the system of linear 

equations that needs to be solved in each time step. For solution 
of one-dimensional mathematical model of that type, 
employment of finite difference discretization method is a 
logical choice. Finite difference method produces block 
tridiagonal linear system of equations with block matrices [2 x 
2], that is to be solved in each time step: 
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where A, B, C are block matrices that are elements of a global 
matrix of the system and D represents RHS vector containing 
source term, some data from previous time level tn and 
eventually, imposed boundary conditions. For brevity, 
treatment of boundary conditions in implicit case will not be 
discussed here. Matrices A,B,C are of order n=2 and solution 
block vector X and right hand side vector D have length 2 since 
mathematical model consists of two partial differential 
equations. 
 
Linear solver parallelization can lead into two basic directions: 

• iterative parallel linear solver with different 
overrelaxation techniques or with different 
preconditioners; 

• direct solver. 
Two different aspects of the iterative solution of a linear system 
are distinguished. The first one is the particular acceleration 
technique that is used to construct a new approximation for the 
solution with information from previous approximations. This 
leads to specific iteration methods, such as SOR, Conjugate 
Gradients, etc. The second aspect is preconditioning of a given 
system to one that can be more efficiently parallelized. Second 
aspect is much more employed and usualy combined with 
different domain partitioners (CHACO, METIS, PARMETIS). 
These principles are embedded in widely used programs for 
solution of linear systems such as AZTEC, PETSc, 
BlockSolve95, ScaLAPACK, PLAPACK, pARMS, PARDISO 
etc.  
For the direct solution of tridiagonal matrices there is not much 
that can be done in parallel if we do not want to do additional 
work by rearranging the order of computation. The different 
parallel techniques for the factorization of tridiagonal matrices 
fall into four classes: twisted factorization, recursive doubling, 
cyclic reduction and divide and conquer algorithm. Last three 
of the four mentioned methods are numerically too expensive 
whether because parallelization is too fine grained thus yielding 
too much communication or because parallel algorithms are 
much more computationaly expensive than simple serial 
Gaussian elimination and therefore impractical. Since on the 
hardware side test computer available was two-processor Intel 
Xeon workstation, parallel technique choosen was a version of 
twisted factorization method or also known as Burn At Both 
Ends (BABE) algorithm. The degree of parallelism of that type 
of procedure is clearly two. MPI communication protocol was 
used in this test.  
This parallel algorithm amounts to starting Gauss Jacobi 
procedure from top-down and from bottom-up simultaneously. 
Parallel method is presented by pictures Fig. 1, Fig. 2. where p1 
represents master process, and p2 worker process. Solution 



process commences by communication where master process  
(p1) sends worker  (p2) its share of system matrix i.e. bottom 
nw rows of matrix, and master clearly keeps nm rows (upper 
part) considering . nw and nm need not be equal 
necesarilly, since load balancing technique might be employed. 
Master starts computation by normalizing block rows from top-
down turning block B into identity matrix I and then 
eliminating block A underneath the current row. Worker starts 
from bottom-up normalizing current block row by turning 
block  B into identity matrix I and then eliminating block C 
from upper row (Fig. 1.) 

nwnmn +=

 

 
Fig. 1. First half of the solution process 
 
After nm i.e. nw steps of normalization and nm-1 and nw-1 
elimination steps block matrix two processes meet and then 
miminal communication is needed, as shown in Fig. 2. That 
communication contact represents the only sinchronization 
point in whole procedure and processes then turn their ways 
back. Worker starts eliminating matrices A on the way down, 
and master eliminates matrices C on the way back up.  
 

 

 
 

 
Fig. 2. Sinchronization and second half of the calculation  
           process 
 
After all the eliminations, block matrix is left with only identity 
matrices I on diagonal i.e. turning into identity matrix itself. 
Solution vector X is preserved in the right hand side vector D. 
Mathematicaly, this parallel Gauss-Jordan procedure matrix 
system  

DXT =  

is multiplied by vector product from the left with matrix 1−T  

DTXTT 11 −=−  

DTX 1−= . 
With one final communication message in solution procedure, 
master receives nw block rows of vector D containing solutions 
calculated by worker. 
 
Since the goal of this paper is analysis of the parallel algorithm 
only, results obtained by calculation won’t be presented. Test 
problem employed in this paper was chosen to emphasise 
parallel efficency of the code presented. Test case is an 

idealized dam-break flow in a rectangular, L=1 m long, 
frictionless channel with variable bottom topography which 
represents bump represented by some function B(x) situated in 
the middle part of the channel. Imaginary dam is located at 
x=0.5 m and it separates reservoir h=1m and the tail water part 
h=0.5m. At time t=0 s dam is removed instantly, and water is 
released into the downstream side in the form of a shock wave. 
Implicit numerical method is used with CFL number set to 
CFL=3. Boundary conditions are reflective walls on both sides 
causing shock wave to reflect back and forth. After 
computational time T=3.5 s shock wave travels the lenght of 
the channel approximately 10 times, calculation is stopped and 
wall time measured.  
 

Method CPU TIME [s] 
Gaussian elimination serial 14,83 
Gauss Jordan serial 15,2 
Gauss Jordan parallel 7,849 

Table 1. Run times comparison 
 
5. CONCLUSION 
 
Parallel algorithm was successfully constructed and 
implemented in calculation of given physical problem. Parallel 
code showed excellent parallel efficency Table 1.  Even though 
direct methods are rarely paralelized, in this case it was 
justified considering the hardware given. Furthermore, it is 
important to notice rapid increase in number of two processor 
machines entering lately even the field of home PCs. Dual Intel 
Xeon parallel computer as being parallel computer with shared 
memory, allows also usage of OPEN MP communication 
protocol. Even though OPEN MP is easier to program having 
simpler fork-join parallelization principles with implicit 
communication directives, MPI protocol was chosen because of 
the portability reasons. MPI protocol allows the 
implementation of the algorithm on the both shared and 
distributed memory parallel computers (for instance LAN 
connected PC-c). Major reason why communication needs to 
be minimized lays in fact that in distributed memory parallel 
environment communication stands for major latency cause. 
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