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Abstract: The probabilistic approach to welded joints design is presented and methods 
for their fatigue life prediction are suggested. The explicit formula for estimation the 
mean value of fatigue life for welded joints subjected to random loading causing in the 
critical point of weld toe stresses with certain stress history distributed after Weibull 
law, is obtained. For the first time, the unique and explicit formula for estimation the 
fatigue life of pre-stressed welded joints subjected to acting of stress spectrum 
corresponding to stationary gaussian random process, is derived in this paper, by means 
of results of constant amplitude test. Some directions to fatigue design approach of 
marine welded structures are given.  
 
Sažetak: Prikazan je vjerojatnosni pristup projektiranju zavarenih spojeva i predložene 
metode za predviđanje njihovog vijeka trajanja do zamora. . Izvedena je eksplicitna 
formula za procjenu srednje vrijednosti trajnosti do zamora zavarenih spojeva izloženih 
djelovanju slučajnih opterećenja, koja kritičnu točku korijena vara naprežu s 
naprezanjima, čija povijest, prikazana u obliku spektra, odgovara Weibullovoj 
raspodjeli.  Po prvi put je izvedena i formula za računanje vijeka trajanja zavarenih 
spojeva sa zaostalim naprezanjima izloženih djelovanju spektra slučajnih opterećenja 
distribuiranih po Gaussovom (normalnom) zakonu. Date su smjernice za pristup 
proračunu zamora zavarenih konstrukcija u pomorstvu. 
 



1. Introduction 
Metal fatigue is a principal mode of failure in structures and machine parts. 

Many of design parameters associated with fatigue are subjected to considerable 
uncertainty and probabilistic approach to design seems necessary and appropriate. It 
understands knowing of entire stress history, distribution of fatigue strength and of all 
other data. Prediction of fatigue life of the machine parts and structural elements 
subjected to random load spectrum was a subject of great number of investigations, e.g. 
[1,2,3,4], which are expensive, unavailable to most of designers, not completed and not 
always possible to be done. That is why the need for a method exists, which should 
make possible fatigue life estimation on the basis of only the results of constant 
amplitude testings, which are widely available. A number of methods was suggested, 
e.g. [2,4,5], but explicit formula for fatigue life estimation of the parts subjected to 
random stress spectrum of arbitrarily shape has never been derived. However, the parts 
are mostly stressed by spectra having asymmetry factor r≠-1. They are often pre-
stressed, too. The question arises about fatigue life prediction in such conditions.  
 

2. Limit state design 
 In structural engineering, safety is generally taken into account according to two 
possible approaches: 
• the semi-probabilistic approach which consists of verifying a criterion involving 

characteristic values of strengths (resistances) Ri and stresses Sj, and partial safety 
factors γRi and γSj, and  which may be represented in the following form: 

                                                       γSj Sj≤ Ri/ γRi                                                  (1)       

• the probabilistic method which randomly describes the resistances Ri and stress Sj . 

 The probability  



                                                      Pf=P(Ri≤ Sj)                                                  (2) 

 
is called the probability of failure or risk. It characterizes the reliability level of the 
welded (or any other) joint (or component) with regard to the considered limit state. If 
both resistances and stresses are distributed after normal low, the risk may be carried 
out from the Normal law tables: 

                                               Pf=P(z≤0)= P(u≤-β)                                           (3)    

where 

                                                          Z=R-S                                                       (4)  

is called reliability function, also following normal distribution low, and 
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is called safety index. 

 



 

 Fig.1-Diagram of limit state field  

This probability must be smaller then a reference probability fixed by design code. The 
condition of reliability (3) may be also expressed in the form 

                                                     SR mm /≤ξ                                                  (6) 

where 

                            224222 )(1 SRSR vvvv ββξ −++= /(1-β2 2
Rv )                        (7) 

is the central coefficient of reliability, and  

                                      RRR mv /σ=  and SSS mv /σ=                                   (8)  

are the coefficients of variation. 
 
Both approaches are clearly reviewed in limit state field on Fig.1, where the fields of 
less probability are more strongly shadowed. Every point has its own probability of 
state, but also it represents appropriate reliability of welded joint or structural element, 
and level of possibility, too [6]. The ultimate limit state is represented by point U, and 
straight line connecting it and origin splits the diagram in the region of failure and 
region of safety. It is possible to get various probability levels by various design values 
of failure probability Pf (usually 10-7 to 10-3) or by corresponding value of design safety 
index β whose value vary from 3,09 to 5,20. The design standard EUROCODE 3 
determined safety index by a value of 3,8 for a reference time of 50 years. This is valid 
for all welded joints of steel structures except for those applied in marine and maritime 
structures, which are not yet involved by this design code. 
In the general case, the limit state is defined not only by two random variables, but n of 
them. The limit state is then described by the relation 

                                  Z= g(X1, X2,…, Xn)=0  ,                                    (9) 

U



and the reliability is  

                                PR=P(g>0)= ∫
G

nnx dxdxxxxf ...),...,,( 121  ,                         (10) 

where fx is joint probability density function of X1, X2,…, Xn. The integration is 
performed over the region G in which g>0. Safety is insured by requiring that Pf be 
acceptably small for any possible design. 

 
3. Fatigue life prediction at random loading 

Machine parts and structural elements are mostly subjected to random loading.  
It results with random stress history S(t), which causes fatigue. In general, S(t) wil be a 
random process, meaning it is a random variable at any time t. The central notion 
involved in the concept of a random stress process is that not just one time history is 
described, but the whole family of possible time histories, which might be result of 
same experiment, are described. A sample time function belonging to this family is 
called a stress history. Thus, it becomes clear that process, at any time, has an 
appropriate distribution with mean value mS and standard deviation σS . If distribution is 
normal, such process is called gaussian. If mS and σS remain constant with time, the 
process is stationary. It was found that all random processes might be considered as 
stationary, except those resulting from the sea waves loads. In such a cases the 
nonstationary process can be modeled as a sequence of stationary gaussian process or 
by distribution of long term peaks if sequence effects are ignored. One of the most 
appropriate is Weibull's distribution. If the random process is treated as a sequence of 
peaks, the question of stationarity is not relevant. 

 
 

For an acceptable probability Pf of fatigue failure, determined by design point, the 
corresponding design life is 
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in which the mean value of N and its coefficient of variation are related to uN and αN 
through 
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where Γ denotes Gamma function. Required mean fatigue life enabling safe operating 
design life ND is now obtained from Eq. (12) and (13): 
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 This method requires that E(N) and VN  be estimated for various random loading 
conditions. 

The mean life (expectation of N) can be obtained from constant amplitude S-N curve  

                                                          NSk=C                                                   (16) 

or Palmgren-Miner's rule  
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and fS(s) is the probability density function (PDF) for the random variable S denoting 
the magnitude of fatigue stress cycles. The relations (17) and (18) are valid for any 
distribution of random variable S.  

For the Pearson’s distribution, which represents a generalisation of all exponential 
distributions having PDF  
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where σ1 and n are the parameters of distribution, and  
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the result of integration is 
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For n=1 the Pearson’s distribution transforms to normal one, and expectation is 
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where σ1 equals the standard deviation σ . Finally, the explicit formula for predicting the 
mean value of the fatigue life of the parts or joints subjected to random loading cousing 
stresses whose stress history corresponds to stationary gaussian random process, is 
obtained:    
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For n=2 the Pearson’s distribution transforms to Regleigh’s, which gives 
significantly  less fatigue lives for the same stress histories.  

For the Weibull’s distribution with PDF 

fS(s)=1- S
Suse

α)/(− , 

the result of integration of (18) is: 
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where uS and αS are the parameters of distribution.  

When random stress history is described by the gaussian random process, and if 
the stress amplitude always exceeds a certain level p (called spectrum density factor and 
equals share of minimum spectrum amplitude), corresponding spectrum is then defined 
by maximum stress amplitude, spectrum density factor and cumulative frequency. A 
great number of investigations, e.g. [1,3], were performed in order to obtain the fatigue 
strength and fatigue life of parts subjected to acting of such spectra. The results were 
presented by corresponding S-N  curves. It was evident that the rate of fatigue strength 
amplitudes at p<1 spectrum density factor and p=1 spectrum density factor (constant 
amplitude spectrum) and corresponding fatigue lives ratio, depend only on the spectrum 
density factor p, but appropriate analytical expression was not obtained. It was later 
done by some authors, e.g. [10,11,12]. Different analitical expressions for fatigue lives 
ratio at spectrum and constant amplitude loading was obtained, but every one of 
exponential type. Thus, it can be written in general case: 

bap
CS AeNN +=/  

where a constants A, a and b have to be determined from boundary conditions: 

NS/NC=1  for  p=1, 
NS/NC=kN   for  p=0. 

It was obtained: 

NS/NC= p
Nk −1 . 

By means of regression analyses of mentioned experimental investigations, it was 
experienced for welded joints 

kN=kk  
NS/NC=k(1-p)k. 

Otherwise 
kN=k(0,68k-1,34)(1-p)k. 

 



When pre-stressed parts are subjected to the acting of variable amplitude stresses 
whose history is presented by stress spectrum having r asymmetry factor, the equation 
of fatigue limit line in Smith's diagram (Fig.3), after author [13], is 

                                   [ ]2
,1 )/(1 smNSmDNS RSRSR −+= − ,                            (23)     

where RS is an ultimate strength. 
 

Fig.2- Comparison of calculated and experimental fatigue lives after Haibach [1] 
 
The equation of the r=const line, after which maximum stresses of the stress 

spectrum change versus the mean stress, was obtained to be 
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where Sm is a mean stress of stress spectrum, and Spr is pre-stress. From this equation, it 
is easy to obtain 
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Involving in Eq. (23) maxSRDNS = , and Sm after Eq. (25), it is obtained a fatigue limit of 
welded joint for stress spectrum having asymmetry number r=-1 ,at fatigue life N : 
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Fig.3 Fatigue limit estimation of the pre-stressed welded joint subjected to acting of 
stress spectrum 
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where km denotes the ratio Sm/RS, and kp the ratio Spr/RS. Substituting Eq. (21) in Eq. 
(26), it is easy to obtain the expression for the fatigue life prediction of a welded joints 
having in critical point the built in stress Spr and subjected to acting of stress spectrum 
having r asymmetry factor: 
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It is clear that N represents the mean value if all other random variables Xi (R-1, Smax and 
Ngr) are represented with their mean values. Whereas all of three random variables are 
statistically independent, the standard deviation of N may be approximated by gaussian 
approximation formula: 
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 where the derivatives has to be calculated in the mean of the distribution of Xi.          

 
4. Conclusion 

The probabilistic approach to fatigue design is presented and methods for the 
fatigue life prediction are suggested. The relations for estimation the fatigue life at 



random loading are obtained. For the first time, the unique and explicit formula for 
estimation the fatigue life of pre-stressed parts subjected to acting of stress spectrum 
corresponding to stationary gaussian random process, is derived in this paper, by means 
of results of constant amplitude test. Many parameters are included in these formulae, 
and one has to make a certain effort to get its reliable values, because fatigue life 
estimation is good in so far as parameters existing in it are well estimated. The first task 
is to define stress spectrum in the critical point of a part, as the consequence of the load 
spectrum, usually by means of corresponding counting method. It implies determining 
of minimum and maximum spectrum stress, its shape and frequency of occurrence. In 
case of vibrations, the stress amplitude, frequency and phase are different from 
corresponding values of load spectrum. 

In the estimation of the dynamic stress levels at a local structure, both the global 
and local stress components need to be considered. The global stress components 
include wave-induced vertical and horizontal hull girder bending stresses. The local 
stress component results from the external sea pressure and the pressure loads from 
internal cargo. For each loading condition, the local stress components need to be 
combined with global stresses.   

It must be also taken into account that marine structures are mostly biaxial 
stressed near the welded attachments. Principal stress directions may be constant or they 
may vary during the load cycle. The former case is normally termed proportional 
loading, and the latter is nonproportional loading. Eurocode 3 design code recommends 
that the maximum principal stress range may be used as fatigue damage parameter if the 
loading is proportional. For nonproportional loading, the components of damage for 
normal and shear stresses are assessed separately using the Palmgren-Miner rule and 
then combined using an interaction equation. Maximum shear stress may also be used 
as an equivalent stress for welded joints when the direction of the principal stresses 
changes during the stress cycle. 

The fatigue strength data of standard recommendations are partly in agreement 
with lower fatigue strength data of the nominal stress approach, since the effect of the 
true shape of the joint is included in strength data of the resistance side. When the 
fatigue test results are presented as measured strains, extrapolated to the location of the 
site of the fatigue crack initiation, the effect of all imperfections increasing the true 
stress need to be taken into account on the loading side [12]. 

In estimating the fatigue properties of a part, the special attention has to be paid 
to fatigue curve exponent k, which depends also on its shape. The necessary attention 
has to be paid also to spectrum equivalence factor estimation, to dynamic impact factor 
calculations, particularly to fatigue stress concentration factor influence, to possible 
elevated temperature influence and to other environmental conditions. 
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