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Introduction

The authors wish to express their gratitude to Professor Zvonimir Janko
for suggesting the investigation of the above problem. The starting point is

the following result of N.Blackburn.

Theorem 1 (see Janko 1, Th.7.1) Let G be a minimal non-metacyclic 2-
group. Then G is one of the following groups:

(a) The elementary abelian group Eg of order 8

(b) The direct product Qg X Zo

(c) The central product Qg * Zy of order 24

(d) G = {a,b,c | a* =b*=[a,b] =1, & =a??, a°=a"t, b¢=a?b?),
where G is special of order 2° with exp(G) = 4,

M (G) =G = Z(G) = ®(G) = (a®,V?) = Ey,

M = (a) x (b)y = Zy x Zy is the unique abelian mazimal subgroup of G.

For brevity, we call the groups from the title second-metacyclic groups
and denote them as MC(2)-groups. It is clear that their non-metacyclic
maximal subgroups are minimal non-metacyclic groups and thus each M C(2)-
group contains some group from Th.1 as maximal subgroup. Especially, an
MC(2)-group G is of order 16, 32 or 64. Our main result is stated in the

following theorem.



Theorem 2 Let G be a second-metacyclic group. Then G is one of the fol-
lowing 17 groups:

(a) four groups of order 16:
E16, Z4 X E4, Dg X ZQ, or
G={(a,bc|la®=b=ct=1, [a,b] =[a,c] =1,b¢ =ab) = E,- 7,

(b) ten groups of order 32:
1)G>H Qg x Z,
H={abcl|la*=10=dc=1a"=a""[a,c]=[bc =1
G1 =(H,d | d>=1,[a,d] = [b,d] = 1,c? = a®c) = (a,b) * {c,d)
=(H,d | d>=1,a = a,b? = abc, ¢* = a’c)
Gg— (H,d | d®> =a%a? =a1,b? = ab,c? = ¢)
G4— (H,d| d*>=a%a’=a"", b =bc,c? =c)

=(H,d|d>=ca?=a"1b%=ab,c? = c)

Gﬁ— (H,d | d*> = ¢,[a,d] = [b,d] = [c,d] = 1) = (a,b) x (d) = Qs X Z4
Gy =(H,d | d*>=a,a® = a,b? = bc, c? = a?c)

2) G > H = Qgx* Zy,

H={abc|a*=1,0>=c2=d*>a"=a""[a,c] =[b,c] =1) and if G > L,
then L 2 Qg X Zs :

Gs = (H,d | d*=c,[a,d] = [b,d] = [c,d] = 1)
Gy=(H,d|d>=1,a=0a"1,b%=ab,c? = ¢)

G = (H,d | d® = ac,a® = a,b? = ab, c? = c)

(c) three groups of order 64:
G>H={abc|a*=b'=1,c=d%?a"=a,a® =a',1° = a’b?)
Gi=(H,d|d>=a%a’=a’b?=b"1,c =¢)
Gy=(H,d|d>=10% a%=a""', b?=0a?3 c?=ac)

G3=(H,d | d>=b,a® = ab?b? = b,c? = ac



We begin by recalling some basic definitions and facts.

Definition 1 A group G is metacyclic if there exists a cyclic normal sub-

group N of G with cyclic factor group G/N.

Theorem 3 Let G be a metacyclic group, H a subgroup of G, and K a
normal subgroup of G. Then H and G/K are also metacyclic.

Proof: By Def.1 there exists N, N < G, such that N and G/N are both
cyclic. By a known theorem NH/N = H/NNH. Since NH/N < G/N and
NN H < N, the groups H/N N H and N N H are both cyclic, and H is
metacyclic by Def.1.

For K<@G, the groups G/K/NK/K 2 G/NK 2 G/N/NK/N and NK/K =
N/NNK are both cyclic, as NK/N and NNK are subgroups of cyclic groups
G/N and N, respectively. So G/K is metacyclic too.

Theorem 4 Let G be a group. If G/Z(G) is cyclic, then G = Z(G), that

is, G 1is abelian.

Theorem 5 Let G be an abelian p—group, | G |= p%, for some prime p.
Then G = Zpay X Zpas X -+ X ey, Zaz—a The k-tuple (a1, ag,..., ag)

18 uniquely determined up to order and S0 WeE can assume qq > -+ > Q@

| \/

Qiy] =+ 2 Q.

Definition 2 An abelian p-group G = Z, x - -+ x Z, = Ep» is called
—_——
n times
elementary abelian p-group of order p™.
Definition 3 Let G be a p-group. The Frattini-subgroup of G,

®(G) = () M, is the intersection of all maximal subgroups of G.
M<G

max

Theorem 6 Let G be a p-group and ®(G) its Frattini-subgroup. Then:
1) ®(G) <G and G/P(G) is elementary abelian

2) If | G/®(G) |=p", then G is generated by (at least) n elements

3) For a 2-group, ®(G) = U1(G) := (2% | x € G)



Theorem 7 Let g € G. The conjugation by g, pg : & — 29 = g txg is an
automorphism of G. For S C G, 89 := {s9|s € S}

Theorem 8 Let S C G, H < G. Denoting Ny(S) = {h € H|S" = S}and
Cu(S) ={h € H|Vs € S,s" = s}, we have Cy(S) Q Ny(S). For K < G,
the factor group Ny (K)/Cy(K) is isomorphic to some subgroup of AutK -
the group of all automorphisms of K.

Remark :

Z2(G) = Co(Q).

Definition 4 The chain G = Go>G1> - >G_1>G>--->Gp=11isa
composition series of G, if each GG; is a maximal normal subgroup of G;_1.
If, moreover, each G; should be a maximal subgroup of G;_1 normal in G,

such a series is called a chief series of G.

Theorem 9 Let G be a p-group. Then

1) Z(G) > 1

2) It is Ng(P) > P for any P < G. Especially, if |G : P| = p, then P < G.
3) All factor groups G;—1/G; of a composition series or a chief series are of
order p, |Gi—1/Gi| = p.

4) Each subgroup P of G belongs to some composition series, and each

normal subgroup N of G to some chief series.

Theorem 10 Let E be an elementary abelian subgroup of a 2-group G, and
g€ G, g>€c E. Then |Cr(g)]* > |E|.

Proof: Because of g> € E and E abelian, 29" = z for any ¢ € G. Thus
(z29)9 = 2929° = 292 = za9, for all € G, and so z29 € Cp(g). Now
zxd = yyd & zy = 29y = (2y)d & zy € Cp(g) & Cr(g)r = Cr(9)y.
Therefore zz9 # yy? < Cg(g)x # Cr(g)y, and so |Cr(g)| > |E : Ce(g)| =
ICE(9)” > |E].



Theorem 11 (see Janko[l, Proposition 1.9]) Let G be a p-group with a
non-abelian subgroup P of order p®. If Cq(P) < P, then G is of mazimal
class. Especially, if p =2, G is metacyclic.

Theorem 12 (see Janko [1, Proposition 1.13]) A 2-group G is metacyclic

if and only if G and all its subgroups are generated by two elements.

OVERVIEW OF 2-GROUPS OF ORDER < 2*

Theorem 13 Let G be a 2-group of order < 2*. Then one of the following holds:
(a) For |G| =2:G = Z,

(b) ForlG| =4:G1 = Zy or Go = Ey

(c) For |G| =8:
G1 = Zs, Gy = Zy X Zy, G3 = Es,
Gy ={a,b| a* =1,b> =1,a" = a™1) = Dg - dihedral group,

Gs = {(a,b] a* =1,b> = a?,a® = a™') = Qg - quaternion group

(d) For |G| = 16:
() abelian groups:
G122 Zg, Go =2 Zg X Zo, G332 Zy x Zy, Gy =2 7y X Ey,
Gs = Eg
(B) nonabelian groups, expG = 8 - containing a cyclic mazimal
subgroup:
Ge = {a,b] a® = 1,02 =1,a" = a™ 1) = Dyg - dihedral group,
G7 = {a,b| a® = 1,02 = a*,a® = a™') = Q16 - quaternion group,
Gs = {a,b] a® = 1,02 = 1,4’ = a3) = SD1g - semidihedral group,
Go = {a,b| a® =1,b> = 1,a’ = a®) = Mg - M-group.



(v) nonabelian groups, expG = 4:

1) G> L= Eg:
Gio = (a,b,cl a* =1,0> =2 =1,a* = a1, [a,c] = [b,c] = 1) = Dg x Z,
G11 = (a,b,c| a®> =b* = 1,c¢* = 1,[a,b] = [a,c] = 1,b¢ = ab) = (a,b) - (c) =
Ey - Zy4, the semidirect product of E4 by Zy.

2)G>L= L% Es. Then, by Th.8 and Th.9, there is some K <G,
|K| = 4. If K = Zy, the order |AutK| = 2 and if K = E4, the order
|AutK| = 6. Thus |Nq(K)/Cq(K)| < 2, and there exists some abelian sub-
group H < G, |H| =8, such that K < H. As H % Zg, Eg, itis H = Zyx Zs.
There are two possibilities:

2a4) G>H =7y x Zy and 3z € G\H, 2? = 1:
Gia = {a,b,c] a* =1, ¥ = 2 = a?, a®* = a7V [a,d = [b,c] = 1) =
(a,b) x (c) = Qg * Zy4, the central product of Qs and Zy.

2b) G > H =~ Zy x Zy and v € G\H = 22 # 1, that is |z| = 4:
Gi3 = {a,b,c| a* = 1,0> = a%,¢2 = 1,a® = a7V, [a,d = [b,d = 1) =
(a,b) x (c) = Qg X Za,
Gy = {a,b | a* =b* =1, a® = a7 ') = (a) - (b) = Zy - Z4, the semidirect
product of Zy by Zy.

PROOF OF THE THEOREM 2

A. Groups of order 16.
As group Eyg is the only (minimal) nonmetacyclic group of order 8, the sec-
ond metacyclic groups of order 16 are those among them which contain Fs.
According to Th.11(d), we have four such groups: Zy x Ey, Fig, Dg X Z3
and Ej4 - Z4, the semidirect product of F4 by Zj.

B. Groups of order 32.
According to Th.1, such a group contains a subgroup isomorphic to Qg X Zs,

or to Qg x Z4, the central product of Qg by Z4.



Bl. G > H 22 Qg X Zo.
Let H = (a,b,c | a* = 1,0*> = a%,¢* = 1,a® = a7 Y, [a,c] = [b,c] = 1,) =
{a,b) x {c) = Qg x Zy. Now, |G : H| =2, G = (H,d),d* € H. Since ®(H) =
O1(H) = (22 | 2 € H) = {a®) and Y (H) = (z € H | 22 = 1) = (a?,¢),
thus (a?), (a%,¢) char H and so {a?), (a?,c) <G. The maximal subgroups
of H are the following ones: (a,b) = (a,bc) = (ac,b) = (ac,bc) = Qg, and
(a,c) = (b,c) = (ab,c) = Zy X Zs.
We use the bar convention for subgroups and elements of factor groups. For
G = G/(a?), we have H = H/{(a?) = (a,b,¢) = Fg, and G = (H, d), & ed.
By Th.10, it is |C(d)|* > |H| = 8, and so |C(d)| > 4.
On the other hand, (a?,¢) < G implies (¢) <G and ¢ € C(d). As [Cx(d) N
(@, b)| > 2, some of the elements @, b, or ab is contained in Cx(d), and we
can assume without loss that a € Cx(d).
Now, ¥ e H\(a,¢) = (@,c) - b, and so:
G=(H,d|d?cH, a = az, b = a*c"bzy, c? = cz3),
e,n € {0,1}, z1,29,23 € {1,a%}.

There are 3 cases with respect to the element d.

1) 3d € G\H, s.th. d*> = 1.
Since (a?,¢,d) 2 Es it must be ¢? # ¢, and so ¢? = a?c. If a® = a3, then
(ac)? = a’c? = a*a’c = ac, and replacing a with ac, we have without loss
a =a, = d’c.
Now b = b = b = (b)? = (a°cbzy)? = afa21cMacMbzgzy = a2ETM),
Therefore e =n=0o0re=n=1.
If ¢ = n = 0, then b = bzy. For zo0 = a? it is (be)? = ba’a’c = be, and

replacing be with b, we have without loss b% = b. Thus
G = <H7d | d2 = 17[a’7d] = [b’d} = 1acd = CL2 > = <a7b> * <Cud> = QS * Dg.

If e = np = 1, then b = acbzy = azbe. Now, replacing a with azy, we get



without loss b = abe, and the group:

Go = (H,d | d®>=1,a% = a,b = abe, ¢* = a®c)

2)x € G\H = 2% # 1, 3d € G\H s.th. d* = 1.
Now d? € H and d? is an involution, d*> = {a? c,a?c}. As a’c and ¢
are interchangeable, we may assume that d?> € {a?c}. If d> = ¢, then
c? = (d*)? = d? = c. If d?> = a?, then (cd)? = cd?c? = ca’czy = a®z3 # 1, by

d

our assumption. Thus z3 = 1, and so ¢ = ¢ in both cases.

2a) Case d? = a*:

Now, (ad)? = ad?a® = a3az, = 21 # 1, by our assumption. Thus z; = a?

and so a? = a3, ¢ =¢, d? = a2
For ¢ = 1, b = ac"bzy. Replacing a with azs, we may assume b% = ac’b.
If n =1, b* = ach, and replacing a with ac, we get b% = ab, as in the case

n =0, and so
Gs = (H,d | d* =da%a?=a"1 0% =ab,c? = ¢)

. For e =0, it is b% = c"bzy. If 29 = a2, then b% = (a2b)? = a®c"ba’® = c"b.
Replacing d with ad, we get b¢ = ¢"b. For n = 0, b% = b and (bd)? = bd?b? =

ba’b = 1, a contradiction. Thus, n = 1, b% = be, and we have:

Gy = (H,d|d* =a%a?=a"1 0% =be,c =)

2b) Case d* = c:
For € = 1, b% = acbzy, and replacing a with azy, b = ac’b. Again if n = 1,
replacing a with ac, we get b? = ab. Now, b%° = b = (b%)? = (ab)? = ab? =

azjab = z; = a2, and so:

Gs=(H,d|d®=c,a=a"1b¢=ab,c? =¢).



For ¢ = 0, b = ¢bzy. If n = 1, then b = cbzy, and (bd)? = bd?b? =
beehzg = b?zy = a’z9 # 1, by our assumption. Thus zo = 1 and (bd)? = a?,
which leads to the case 2a). Thus we may assume that n = 0, and so
b4 = bzg, a = az;, ¢ = c. Thus (a4, b9) € {(a,b), (a,b?), (a3,b), (a3, b%)}.
As a,b and ab are interchangeable here, and for a? = a3, b? = b® = (ab)? =
a®b3 = ab, there remain, without loss, only two cases: a? = a, b% = b and
a® =a, b =13,

In the latter case (ad)? = ad?a? = aca = a’c, a® = a? = a, b*? = (b3)4 =
b’ =b, (a%c)* = (a’c)? = a’c, and replacing ¢ with a?c, and d with ad, we

get without loss, that a® = a, b =b, ¢ = ¢, and thus

Ge=(H,d| d*=ca,d =[bd=][cd=1)

3)de G\H = |d| =8

Now, d? € H and |d?| = 4. As all elements of order 4 in H are interchange-

¢ =¢q. Now d®> =a, a® =a, b? =

a®cbzy, ¢ = cz3. If € = 1, then (bd)? = bd*b? = baac’bzg = czy, an
involution, against our assumption. Therefore e = 0, and b = ¢"bzy. Now
b =1 = b3 = (b)) = (cbzy)? = Azdcbzozy = zJb = 21 = b = a® =

23 = a®, n = 1. Thus b% = bezy, @ = a’c, a® = a. If 2z = a?, replacing ¢

able, we may assume that d?> = a, and so a

with a?c, we get b? = bc and finally:

Gr = (H,d | d? = a,a® = ab® = be, ¢ = a? ).



B2. G > H=Qg*Zy, and if G > L then L 2 Qg X Zs.
Let H = (a,b,c | a* = 1,0> = = a%,a® = a7, [a,c] = [b,c] = 1). Again,
G = (H,d), d> € H. Now U1(H) = ®(H) = (a?), Z(H) = (c).
There are 8 elements of order 4: a, a3, b, a?b, ab, a3b, ¢, a’c, and 7
involutions: a2, ac, a3c, be, a’be, abe, a’be. The maximal subgroups of H
are: (a,b) = Qs, (a,c) = (b,c) = (ab,c) = Zy X Zy and (a,bc) = (b,ac) =
(ab,ac) = Dg. Obviously, (c), (a,b) char H and so (c), (a,b) < G.
Again, for G = G/(a?), we have H = H/(a*) = (a,b,c) = Es, and |Cx(d)| >
4 by Th.10. We may assume, without loss, that Cg(d) > (a,c), which
implies = {b,ab}. Returning to the originals, it means that either
1)G=(H,d|d*cH, a = az, b = bzy, c? = cz3), or
2) G=(H,d|d>cH, a = az, b? = abzo, ¢ = cz3),
where 21, 29, 23 € {a?).

Case 1):
la) 3d € G\H, |d| = 2:
(a%,ac,d), {a% bc,d), (a?, abc,d) % Fg, thus (ac)? = acz 23 # ac,
(be)? = bezozz # be, (abe)d = abezizozg # abe = 2123, 2023, 212023 # 1 =

2 and so:

z1=2z0=1, z3=a
G={(H,d|d=1,a,d =[bd =1,c? = a’c) = (a,b) * (c,d) = Qg * Ds.
But now G > (a,b,d) = (a,b) x (d) = Qs X Zs, against the assumption. G
is isomorphic to G;.

1b) z € G\H = 2?> # 1, 3d € G\H, |d| = 4:

Now, d? is an involution on H. We may assume, without loss, that d?> = a?
or d? = ac.

If d> = a2, then (ad)? = ad?a® = aa’az; = 21 # 1, (bd)® = 2, # 1, and
(abd)? = 2122 # 1, a contradiction.

If d2 = ac, then b%" = b¢ = b3 = (b)) = (bzy)? = bzg2 = b, a contradiction
again.

le) z € G\H = |z| =8, d € G\H, d*> € H:

We may assume, without loss, that d? = a, or d? = c.

10



If d2 = a, b¥ = (bzy)? = b = b* = b3, a contradiction.

Thus d? = ¢, a® = azy, b? = bzy, ¢ = c. Now (a?,b%) € {(a,b), (a,b), (a3, b), (a®,b%)}
In the latter case (ab)? = a®b® = ab, and since a,b and ab may be replaced

with each other, we may assume that: a = a, b = b or a = a, b% = b3.

In the latter case (ad)? = a’c, b = b, and thus replacing ¢ with a’c and d

with ad, the second case is reduced to the first, and we get
Gs = (H,d | d* = c,[a,d] = [b,d] = [c,d] = 1) = (a,b) * (d) = Qg * Zs.

Case 2):
Replacing a with azs, we may assume that b% = ab.
2a) 3d € G\H, |d| =2:
(a®,ac,d) 2 Eg = (ac)? = acz123 # ac = 23 # z1. If a = a, then b = b=

(b9 = (ab)? = aab = b*, a contradiction. Therefore a? = a®, ¢? = ¢, and
Go=(H,d|d®*=1,a%=0a"1,0%=ab,c? = ¢).

2b) 2 € G\H = 22 #1, 3d€ G\H, |d| =4:

Now, without loss d? = a? or d*> = ac or d? = bc.

If d®> = a?, then (ad)? = 21 # 1 and (cd)? = 23 # 1, thus 21 = 2z3 = a®. So
G=(Hd|d=d? al=a3 b =ab, ¢ =c3).

Here (ac)? = a®c® = ac, and G > (a,d, ac) = {(a,d) x {ac) = Qg x Z, against
the assumption. Actually, G = Gs.

If d> = ac, then b = (ab)? = aziab = b* = b3, and so z; = 1. Now,

(ac)? = ac = ac? = aczs, thus also z3 = 1. Therefore:

G = (H,d| d*=ac,a® = a,b% = ab,c? = ¢).

If d®> = be, then (be)? = be = abezs = azzbe, implying azs = 1, a contradic-
tion.

2c) x € G\H = |z| =8, d€ G\H, d* € H :

We may assume, without loss, that d*> = a or d> = b or d* = c.

For d?> = a, we get (bd)? = bd?b? = baab = 1, a contradiction. As b? = ab, it

11



cannot be d? = b. If d?> = ¢, then (bd)? = bcab = b2ca® = a’ca™! = ac, and

so |bd| = 4, a contradiction again.

C. Groups of order 64.

According a previous remark and by Th.1(d), such a group G contains a
subgroup H = (a,b,c | a* = b* = 1,c? = a®b?,a® = a,a® = a1, b¢ = a?b?),
where Qi (H) = (x € H | 22 = 1) = Z(H) = ®(H) = (a®>,b?) = K = E,.
One can easily check that there are only 4 square roots for a? (that is,
such x € H, that 22 = @?), and 12 square roots for b> and a?b? each. Thus
A = (a®)charH. The square roots of a? generate the subgroup N = (a, b?) =
Zy X Zy. The group L = (a,b) is the unique subgroup of H isomorphic to
Zy x Zy. Thus, A, K, N, L are all characteristic in H and consequently nor-
mal in G, as H < G.

It can easily be seen that

AutH = ® LI ¥, where

O = {p|lp:a— ali, b bla, c— aabwc},

U ={plY:ar ali, b— able, c— a®b1+2hc},
and (1, € K, a€{0,1,2,3}, 3€{0,1}

As A K <N < L<H<G is anormal chain G, we have:
(%) G = (H,d | (H), d*> € H, a® = az, b = a°bzy, ¥ = a"Vz3¢),

where 21, 29,23 € K and v,d,¢ € {0,1}.

We split our proof into several steps.

(1) f T < G, |T| =8, than T is abelian and T' 2 Eg:
Let T be a nonabelian subgroup of order 8 in G, thus T' =2 Dg or T' = (Yg and
|Z(T)| =2. If Cq(T) < T, then G is metacyclic by Th.11, a contradiction.
Hence Cg(T) £ T and take in Cg(T) a subgroup U of order 4 containing

12



Z(T). Now (T,U) = T % U, the central product of T" and U, is isomorfic to
some of the groups Dg x Za, Qg X Za, or QsxZy = DgxZy. Thus (T, U) would
be a non-metacyclic subgroup of order 16 in G, a contradiction. Therefore

every subgroup 7' of order 8 in (G is abelian and, being metacyclic, it must
be T % Eg.

(ii) If g € G\H, then g% # 1:
If g2 =1, then T = (K, g) = (a?,b?,g) is abelian, by (i), and isomorphic to

Eg, a contradiction.

(iii) G/L = Ey
Else G/L =~ Zyand G = (L,d | d> € H\ L = Lc). By (i) we see that we can
assume without loss that d®> = ¢, and so d* = ¢ = a?b?>. Now a?’ = q¢ =
a® = (a)? = (az1)? = az 2z{ implying 2¢ = a?z; and thus z; € {b?,a?b?}
and (0*)? = a?b® = ¢® = (*)?, and so b? = ¢?, a contradiction.

iv) If there exists some d € G\H, s.th. |d| = 4, then either:
G =2 Gy = (a,bc,d | (H), d> = a? ot = ap?, v =%, ¢! = ¢), or
G =Gy =(a,bc,d| (H), d> =0, a? =a>, b? =a??, ! = ac).
As d? € L, and d? is an involution, we have d? € Q1(L)* = {a?,b?,a?b?} =
K*. By (i), (a?,b?,d) is abelian, and so b% = bzy. Now (c?)? = 2 = (%)% =
(a7 z3¢)? = a"V0 2323 a?0b3 23 = a®°c?, implying d = 0 and ¢? = a7 z3c.
From ¢ = (a%c)? = a?c?, & = (a®b?c)? = a®b?c?, and ¢ (a%c)? =
(a%a®b?c)? = b%c?, and, by (i), (ad)?® = ad?a? = a’d’z # 1, (bd)? =
b2d?zy # 1 and (abd)2 = a’b?d?2129 # 1, we conclude that

(1) 21 # ad?, 29 # b2d?, 2129 # a®b%d?, and replacing, if needed, d by
ad or bd or abd, we can assume, without loss, that ¢? = a7¢, and so:

(2) ¢ =cor c? = ac.

Case 1) ¢? = ¢
Now (cd)? = c*d? = a?b*>d®> # 1, by (ii), and so d> # a?b®. Therefore
d? € {a?,b?}. If d> = b2, then (cd)? = c2d? = a®. Thus, replacing d by cd, we
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may assume without loss that d?> = a?. Besides of (1), we also have now the
following conditions on z1, z0: (acd)? = acd?azic = ac’d®a®z; = 2d?z # 1,
and similarly (bed)? = b2d%29 # 1, (abed)? = abed?az1bzoc = b?d? 2120 # 1,
that is:

(3) 21 # 2d?, 29 # b2d?, 2129 # b2d>.
From (1) and (3) we get:
21 # 1,02 29 # a®b?, 21z # b%,a’b?. If 21 = a?, then a? = @3, and
{a,d | a* = 1, d®> = a?, a® = a®) = Qs, a contradiction, by (i). Thus
21 = a?b?, 29 # a®b?, a’b’zy # 1%, ab?, and so 2o = b?, giving:

Gi1 = {a,b,c,d | (H),d* =a?, ot =a®?, b =03, ¢ =c).

Case 2) ¢ = ac:
We already know that a? = az;, b¢ = bz and d? € {a?,b?,a%b?}. Now
c = = (N = (ac)? = azjac = a>
d?> = a?, then (a,d | a* =1, d?> = a2, a? = a3) = Qs, against (i). Therefore
d? € {b?,a%b?}. Since (bd)? = bd%b? = b%2pd?, we have zg # bads.

Case 2.1) d? = v
From zo # b%d? it follows zo € {a?,b%,a%b?}. If 2o = a?, then b? = a?b
and (a,bd | a* = 1, (bd)? = a?, a’® = a®) = Qs, against (7). Similarly, for
29 = b% we have (b,d | b* = 1, d® = b%, b% = b3) = Qg again. It remains as
the only possibility 2o = a?b?, and we obtain the group

Go = {a,b,c,d | (H),d* =, a? = a?, b? = a?b3, ¢ = ac).

Case 2.2) d? = a?b*:
Because of zy # b2d?> = a?, we have now 2, € {1,0% a?b?}, that is b? €
{b,b3,a%b3}. If b = b, then (bd)? = bd?*b? = ba’b?b = a?, and (a,bd) = Qs,

against (7). If b = b3, then (ab)? = (ab)?® and (ab,d) = Qg, again the
3

zic, SO z1 = a? and a¢ = o®. If

same contradiction. Therefore b = a?b3. Replacing a by o' = a3b?, b by
b = ab, c by ¢ = be, we get:

d? =12, o = (@) = ab® = a3, V' = (ab)? = a3a®b® = ab® =
(a®b?)? - (ab)® = 203, ¢ = (be)? = a?b3ac = a®b?bc = o’ - ¢, that is the

relations of G2. Thus, this group is isomorphic to Gs.
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(v) If all elements in G\ H are of order 8, then

G =Gs=(a,b,c,d | (H),d>=b, a® = ab?®, b4 =b, c¢? = ac).
As G/L = Ey, G = (H,d), |d| =8, it follows that d? is an element of order
4 in L. According to (*), all such elements are replaceable by a or b, and so
we may assume without loss that:

G=(H,d| (H),d? € {a,b}, a® = az1, b = abzy, c? = a"V’z3¢), where
21,22,23 € K, 7,0, € {0,1}.

Now (c2)4 = (c¢?)? = (a"b923¢)% = a7 B0 23¢2a>7a® b 23 = a0 2.

Case 1) d? = a:
Now a? = a. If e = 0 then 2% = 2z for z € K, and from (¢?)¢ = ¢? = a®°¢?
it follows 6 = 0, ¢? = a7z3¢. Similarly, from = = q2c = (a7 z3c)d =

aVz3a"z3¢ = a®c, we get v = 1 and ¢? = azzc. But now (cd)? = cd?c? =
a’c?z3 € K, and |cd| = 4, against our assumption.

If £ = 1, then b? = abzy, (b*)? = ¢? and (?)? = b = a®°c?. Thus 6 = 1,
and ¢? = aYbzsc. Therefore, = a2 = (aVbz3c)? = a7 - abzzzgcﬂbz?,c =
a- a27bb22223zgc = azc, for some z € K. This implies z = a, a contradiction
because a is not in K.

Case 2) d* = b:

Now b? = b, and 2¢ = z for z € K. From (¢?)? = ¢ = a¥¢? it follows
§ =0, ¢! = avzsc. Since [b,c] = b~1b¢ = a2b% = [¢,b], we have ¢’ = ¢ =
202c = (a7 23¢)? = a72] 2307 23¢, implying a®7z] = a?b?.
d

a Thus’yzl, z1 =

b? and so a? = ab?, ¢ = azzc. Replacing a by azs, we get the group Gs as

stated above.

15



Remarks :
It is of some interest to check the maximal subgroups of second-metacyclic
groups. We present them in the following table:
(1) |G| =32:
G1— 5-(Qs X Z2), 10 (Qs * Z4)
G2 — Qs X Za, Qs * Zy, 2-SD1s, 2-Qre, Mis
Gs — 2 (Qg X Z3), Zg X Za, 4- Q16
Gy — 2 (Qs X Z2), Zy X Zy, 4+ (Zy- Za)
Gs — Qg X Ly, Zy-Zy, Lg X Ly
G — Qs X Zo, 3-(Zy X Zy), 3-(Zy- Zy)
G7 — Qs X Za, 2- Mg
Gs — Qs * Za, 3-(Zs X Z3), 3+ M
Gy — 2 (Qs * Z4), Zs x Za, 2-SD1g, Q16 Dis
Gro — Qs * Zy, Zy X Zy, Mg

(i7) |G| = 64 :
Denoting H, = (a,b | a® =b* =1, a®* = @), we have:
Gy —15-H
Go—2-H,2 Hs, 2-Hy, Zg x Zy
Gs — H, 2-Hs.

The factor groups G; = G;/(a?), i = 1,2,3, are isomorphic to the groups
G1, G4 and Gy of order 32 from (i), respectively.
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