SECOND-METACYCLIC FINITE 2-GROUPS

V. Ćepulić, M. Ivanković, E. Kovač-Striko UNIVERSITY OF ZAGREB CROATIA

Introduction

The authors wish to express their gratitude to Professor Zvonimir Janko for suggesting the investigation of the above problem. The starting point is the following result of N.Blackburn.

Theorem 1 (see Janko 1, Th.7.1) Let G be a minimal non-metacyclic 2-group. Then G is one of the following groups:

- (a) The elementary abelian group E_8 of order 8
- (b) The direct product $Q_8 \times Z_2$
- (c) The central product $Q_8 * Z_4$ of order 2^4
- (d) $G = \langle a, b, c \mid a^4 = b^4 = [a, b] = 1, \ c^2 = a^2b^2, \ a^c = a^{-1}, \ b^c = a^2b^3 \rangle$, where G is special of order 2^5 with $\exp(G) = 4$,

$$\Omega_1(G) = G' = Z(G) = \Phi(G) = \langle a^2, b^2 \rangle \cong E_4,$$

 $M = \langle a \rangle \times \langle b \rangle \cong Z_4 \times Z_4$ is the unique abelian maximal subgroup of G.

For brevity, we call the groups from the title second-metacyclic groups and denote them as MC(2)-groups. It is clear that their non-metacyclic maximal subgroups are minimal non-metacyclic groups and thus each MC(2)-group contains some group from Th.1 as maximal subgroup. Especially, an MC(2)-group G is of order 16, 32 or 64. Our main result is stated in the following theorem.

Theorem 2 Let G be a second-metacyclic group. Then G is one of the following 17 groups:

(a) four groups of order 16:

$$E_{16}$$
, $Z_4 \times E_4$, $D_8 \times Z_2$, or $G = \langle a, b, c \mid a^2 = b^2 = c^4 = 1$, $[a, b] = [a, c] = 1, b^c = ab \rangle \cong E_4 \cdot Z_4$

(b) ten groups of order 32:

1)
$$G > H \cong Q_8 \times Z_2$$
,

$$H = \langle a, b, c \mid a^4 = 1, b^2 = a^2, c^2 = 1, a^b = a^{-1}, [a, c] = [b, c] = 1, \rangle$$
:

$$G_1 = \langle H, d \mid d^2 = 1, [a, d] = [b, d] = 1, c^d = a^2 c \rangle = \langle a, b \rangle * \langle c, d \rangle \cong Q_8 * D_8$$

$$G_2 = \langle H, d \mid d^2 = 1, a^d = a, b^d = abc, c^d = a^2c \rangle$$

$$G_3 = \langle H, d \mid d^2 = a^2, a^d = a^{-1}, b^d = ab, c^d = c \rangle$$

$$G_4 = \langle H, d \mid d^2 = a^2, a^d = a^{-1}, b^d = bc, c^d = c \rangle$$

$$G_5 = \langle H, d \mid d^2 = c, a^d = a^{-1}, b^d = ab, c^d = c \rangle$$

$$G_6 = \langle H, d \mid d^2 = c, [a, d] = [b, d] = [c, d] = 1 \rangle = \langle a, b \rangle \times \langle d \rangle \cong Q_8 \times Z_4$$

$$G_7 = \langle H, d \mid d^2 = a, a^d = a, b^d = bc, c^d = a^2 c \rangle$$

2)
$$G > H \cong Q_8 * Z_4$$
,

$$H = \langle a,b,c \mid a^4 = 1, b^2 = c^2 = a^2, a^b = a^{-1}, [a,c] = [b,c] = 1 \rangle \ \ and \ \ if \ G > L,$$

then $L \ncong Q_8 \times Z_2$:

$$G_8 = \langle H, d \mid d^2 = c, [a, d] = [b, d] = [c, d] = 1 \rangle$$

$$G_9 = \langle H, d \mid d^2 = 1, a^d = a^{-1}, b^d = ab, c^d = c \rangle$$

$$G_{10} = \langle H, d \mid d^2 = ac, a^d = a, b^d = ab, c^d = c \rangle$$

(c) three groups of order 64:

$$G > H = \langle a, b, c \mid a^4 = b^4 = 1, c^2 = a^2b^2, a^b = a, a^c = a^{-1}, b^c = a^2b^3 \rangle$$

$$G_1 = \langle H, d \mid d^2 = a^2, a^d = a^3b^2, b^d = b^{-1}, c^d = c \rangle$$

$$G_2 = \langle H, d \mid d^2 = b^2, \ a^d = a^{-1}, \ b^d = a^2b^3, \ c^d = ac \rangle$$

$$G_3 = \langle H, d \mid d^2 = b, a^d = ab^2, b^d = b, c^d = ac \rangle$$

We begin by recalling some basic definitions and facts.

Definition 1 A group G is *metacyclic* if there exists a cyclic normal subgroup N of G with cyclic factor group G/N.

Theorem 3 Let G be a metacyclic group, H a subgroup of G, and K a normal subgroup of G. Then H and G/K are also metacyclic.

Proof: By Def.1 there exists $N, N \leq G$, such that N and G/N are both cyclic. By a known theorem $NH/N \cong H/N \cap H$. Since $NH/N \leq G/N$ and $N \cap H \leq N$, the groups $H/N \cap H$ and $N \cap H$ are both cyclic, and H is metacyclic by Def.1.

For $K \subseteq G$, the groups $G/K/NK/K \cong G/NK \cong G/N/NK/N$ and $NK/K \cong N/N \cap K$ are both cyclic, as NK/N and $N \cap K$ are subgroups of cyclic groups G/N and N, respectively. So G/K is metacyclic too.

Theorem 4 Let G be a group. If G/Z(G) is cyclic, then G = Z(G), that is, G is abelian.

Theorem 5 Let G be an abelian p-group, $|G| = p^{\alpha}$, for some prime p. Then $G \cong Z_{p^{\alpha_1}} \times Z_{p^{\alpha_2}} \times \cdots \times Z_{p^{\alpha_k}}$, $\sum_{i=1}^k \alpha_i = \alpha$. The k-tuple $(\alpha_1, \alpha_2, \ldots, \alpha_k)$ is uniquely determined up to order and so we can assume $\alpha_1 \geq \cdots \geq \alpha_i \geq \alpha_{i+1} \geq \cdots \geq \alpha_k$.

Definition 2 An abelian p-group $G \cong \underbrace{Z_p \times \cdots \times Z_p}_{n \text{ times}} \equiv E_{p^n}$ is called elementary abelian p-group of order p^n .

Definition 3 Let G be a p-group. The Frattini-subgroup of G, $\Phi(G) = \bigcap_{\substack{M < G \\ max}} M, \text{ is the intersection of all maximal subgroups of } G.$

Theorem 6 Let G be a p-group and $\Phi(G)$ its Frattini-subgroup. Then:

- 1) $\Phi(G) \leq G$ and $G/\Phi(G)$ is elementary abelian
- 2) If $|G/\Phi(G)| = p^n$, then G is generated by (at least) n elements
- 3) For a 2-group, $\Phi(G) = \mho_1(G) := \langle x^2 \mid x \in G \rangle$

Theorem 7 Let $g \in G$. The conjugation by $g, \varphi_g : x \mapsto x^g = g^{-1}xg$ is an automorphism of G. For $S \subseteq G$, $S^g := \{s^g | s \in S\}$

Theorem 8 Let $S \subseteq G$, $H \subseteq G$. Denoting $N_H(S) = \{h \in H | S^h = S\}$ and $C_H(S) = \{h \in H | \forall s \in S, s^h = s\}$, we have $C_H(S) \subseteq N_H(S)$. For $K \subseteq G$, the factor group $N_H(K)/C_H(K)$ is isomorphic to some subgroup of AutK - the group of all automorphisms of K.

Remark:

$$Z(G) \equiv C_G(G)$$
.

Definition 4 The chain $G = G_0 \triangleright G_1 \triangleright \cdots \triangleright G_{i-1} \triangleright G_i \triangleright \cdots \triangleright G_k = 1$ is a composition series of G, if each G_i is a maximal normal subgroup of G_{i-1} . If, moreover, each G_i should be a maximal subgroup of G_{i-1} normal in G, such a series is called a *chief series* of G.

Theorem 9 Let G be a p-group. Then

- 1) Z(G) > 1
- 2) It is $N_G(P) > P$ for any P < G. Especially, if |G:P| = p, then $P \triangleleft G$.
- 3) All factor groups G_{i-1}/G_i of a composition series or a chief series are of order p, $|G_{i-1}/G_i| = p$.
- 4) Each subgroup P of G belongs to some composition series, and each normal subgroup N of G to some chief series.

Theorem 10 Let E be an elementary abelian subgroup of a 2-group G, and $g \in G$, $g^2 \in E$. Then $|C_E(g)|^2 \ge |E|$.

Proof: Because of $g^2 \in E$ and E abelian, $x^{g^2} = x$ for any $x \in G$. Thus $(xx^g)^g = x^gx^{g^2} = x^gx = xx^g$, for all $x \in G$, and so $xx^g \in C_E(g)$. Now $xx^g = yy^g \Leftrightarrow xy = x^gy^g = (xy)^g \Leftrightarrow xy \in C_E(g) \Leftrightarrow C_E(g)x = C_E(g)y$. Therefore $xx^g \neq yy^g \Leftrightarrow C_E(g)x \neq C_E(g)y$, and so $|C_E(g)| \geq |E|$.

Theorem 11 (see Janko[1, Proposition 1.9]) Let G be a p-group with a non-abelian subgroup P of order p^3 . If $C_G(P) \leq P$, then G is of maximal class. Especially, if p = 2, G is metacyclic.

Theorem 12 (see Janko [1, Proposition 1.13]) A 2-group G is metacyclic if and only if G and all its subgroups are generated by two elements.

OVERVIEW OF 2-GROUPS OF ORDER $< 2^4$

Theorem 13 Let G be a 2-group of order $\leq 2^4$. Then one of the following holds:

(a) For
$$|G| = 2 : G \cong Z_2$$

(b)
$$For|G| = 4 : G_1 \cong Z_4 \text{ or } G_2 \cong E_4$$

(c) For
$$|G| = 8$$
:

$$G_1 \cong Z_8, \ G_2 \cong Z_4 \times Z_2, \ G_3 \cong E_8,$$

$$G_4 = \langle a, b | a^4 = 1, b^2 = 1, a^b = a^{-1} \rangle \cong D_8$$
 - dihedral group,

$$G_5 = \langle a, b | a^4 = 1, b^2 = a^2, a^b = a^{-1} \rangle \cong Q_8$$
 - quaternion group

(d) For
$$|G| = 16$$
:

 (α) abelian groups:

$$G_1 \cong Z_{16}, G_2 \cong Z_8 \times Z_2, G_3 \cong Z_4 \times Z_4, G_4 \cong Z_4 \times E_4,$$

$$G_5 \cong E_{16}$$

(β) nonabelian groups, $\exp G = 8$ - containing a cyclic maximal subgroup:

$$G_6 = \langle a, b | a^8 = 1, b^2 = 1, a^b = a^{-1} \rangle \cong D_{16}$$
 - dihedral group,

$$G_7 = \langle a, b | a^8 = 1, b^2 = a^4, a^b = a^{-1} \rangle \cong Q_{16}$$
 - quaternion group,

$$G_8 = \langle a, b | a^8 = 1, b^2 = 1, a^b = a^3 \rangle \cong SD_{16}$$
 - semidihedral group,

$$G_9 = \langle a,b | \ a^8 = 1, b^2 = 1, a^b = a^5 \rangle \cong M_{16}$$
 - M-group.

 (γ) nonabelian groups, $\exp G = 4$:

1)
$$G > L \cong E_8$$
:

$$G_{10} = \langle a, b, c | a^4 = 1, b^2 = c^2 = 1, a^b = a^{-1}, [a, c] = [b, c] = 1 \rangle \cong D_8 \times Z_2,$$

 $G_{11} = \langle a, b, c | a^2 = b^2 = 1, c^4 = 1, [a, b] = [a, c] = 1, b^c = ab \rangle = \langle a, b \rangle \cdot \langle c \rangle \cong E_4 \cdot Z_4, \text{ the semidirect product of } E_4 \text{ by } Z_4.$

2) $G > L \Rightarrow L \ncong E_8$. Then, by Th.8 and Th.9, there is some $K \triangleleft G$, |K| = 4. If $K \cong Z_4$, the order |AutK| = 2 and if $K \cong E_4$, the order |AutK| = 6. Thus $|N_G(K)/C_G(K)| \le 2$, and there exists some abelian subgroup H < G, |H| = 8, such that K < H. As $H \ncong Z_8$, E_8 , it is $H \cong Z_4 \times Z_2$. There are two possibilities:

2a)
$$G > H \cong Z_4 \times Z_2$$
 and $\exists x \in G \backslash H$, $x^2 = 1$:

$$G_{12} = \langle a, b, c | a^4 = 1, b^2 = c^2 = a^2, a^b = a^{-1}, [a, c] = [b, c] = 1 \rangle = \langle a, b \rangle * \langle c \rangle \cong Q_8 * Z_4$$
, the central product of Q_8 and Z_4 .

2b)
$$G > H \cong Z_4 \times Z_2$$
 and $x \in G \backslash H \Rightarrow x^2 \neq 1$, that is $|x| = 4$:

$$G_{13} = \langle a, b, c | a^4 = 1, b^2 = a^2, c^2 = 1, a^b = a^{-1}, [a, c] = [b, c] = 1 \rangle = \langle a, b \rangle \times \langle c \rangle \cong Q_8 \times Z_2,$$

 $G_{14} = \langle a, b \mid a^4 = b^4 = 1, \ a^b = a^{-1} \rangle = \langle a \rangle \cdot \langle b \rangle \cong Z_4 \cdot Z_4$, the semidirect product of Z_4 by Z_4 .

PROOF OF THE THEOREM 2

A. Groups of order 16.

As group E_8 is the only (minimal) nonmetacyclic group of order 8, the second metacyclic groups of order 16 are those among them which contain E_8 . According to Th.11(d), we have four such groups: $Z_4 \times E_4$, E_{16} , $D_8 \times Z_2$ and $E_4 \cdot Z_4$, the semidirect product of E_4 by Z_4 .

B. Groups of order 32.

According to Th.1, such a group contains a subgroup isomorphic to $Q_8 \times Z_2$, or to $Q_8 * Z_4$, the central product of Q_8 by Z_4 .

B1. $G > H \cong Q_8 \times Z_2$.

We use the bar convention for subgroups and elements of factor groups. For $\overline{G} = G/\langle a^2 \rangle$, we have $\overline{H} = H/\langle a^2 \rangle = \langle \overline{a}, \overline{b}, \overline{c} \rangle \cong E_8$, and $\overline{G} = \langle \overline{H}, \overline{d} \rangle$, $\overline{d}^2 \in \overline{H}$. By Th.10, it is $|C_{\overline{H}}(\overline{d})|^2 \geq |H| = 8$, and so $|C_{\overline{H}}(\overline{d})| \geq 4$.

On the other hand, $\langle a^2, c \rangle \lhd G$ implies $\langle \overline{c} \rangle \lhd \overline{G}$ and $\overline{c} \in C_{\overline{H}}(\overline{d})$. As $|C_{\overline{E}}(\overline{d}) \cap \langle \overline{a}, \overline{b} \rangle| \geq 2$, some of the elements \overline{a} , \overline{b} , or $\overline{a}\overline{b}$ is contained in $C_{\overline{E}}(\overline{d})$, and we can assume without loss that $\overline{a} \in C_{\overline{E}}(\overline{d})$.

Now, $\overline{b}^{\overline{d}} \in \overline{H} \setminus \langle \overline{a}, \overline{c} \rangle = \langle \overline{a}, \overline{c} \rangle \cdot \overline{b}$, and so: $G = \langle H, d \mid d^2 \in H, \ a^d = az_1, \ b^d = a^{\varepsilon} c^{\eta} b z_2, \ c^d = cz_3 \rangle$, $\varepsilon, \eta \in \{0, 1\}, \ z_1, z_2, z_3 \in \{1, a^2\}.$

There are 3 cases with respect to the element d.

1) $\exists d \in G \backslash H$, s.th. $d^2 = 1$.

Since $\langle a^2, c, d \rangle \ncong E_8$ it must be $c^d \neq c$, and so $c^d = a^2c$. If $a^d = a^3$, then $(ac)^d = a^dc^d = a^3a^2c = ac$, and replacing a with ac, we have without loss $a^d = a$, $c^d = a^2c$.

Now $b^{d^2} = b^1 = b = (b^d)^d = (a^{\varepsilon}c^{\eta}bz_2)^d = a^{\varepsilon}a^{2\eta}c^{\eta}a^{\varepsilon}c^{\eta}bz_2z_2 = a^{2(\varepsilon+\eta)}b$. Therefore $\varepsilon = \eta = 0$ or $\varepsilon = \eta = 1$.

If $\varepsilon = \eta = 0$, then $b^d = bz_2$. For $z_2 = a^2$ it is $(bc)^d = ba^2a^2c = bc$, and replacing bc with b, we have without loss $b^d = b$. Thus

$$G_1 = \langle H, d \mid d^2 = 1, [a, d] = [b, d] = 1, c^d = a^2 c \rangle = \langle a, b \rangle * \langle c, d \rangle \cong Q_8 * D_8.$$

If $\varepsilon = \eta = 1$, then $b^d = acbz_2 = az_2bc$. Now, replacing a with az_2 , we get

without loss $b^d = abc$, and the group:

$$G_2 = \langle H, d \mid d^2 = 1, a^d = a, b^d = abc, c^d = a^2c \rangle$$

.

2)
$$x \in G \backslash H \Rightarrow x^2 \neq 1$$
, $\exists d \in G \backslash H \text{ s.th. } d^4 = 1$.

Now $d^2 \in H$ and d^2 is an involution, $d^2 = \{a^2, c, a^2c\}$. As a^2c and c are interchangeable, we may assume that $d^2 \in \{a^2, c\}$. If $d^2 = c$, then $c^d = (d^2)^d = d^2 = c$. If $d^2 = a^2$, then $(cd)^2 = cd^2c^d = ca^2cz_2 = a^2z_3 \neq 1$, by our assumption. Thus $z_3 = 1$, and so $c^d = c$ in both cases.

2a) Case
$$d^2 = a^2$$
:

Now, $(ad)^2 = ad^2a^d = a^3az_1 = z_1 \neq 1$, by our assumption. Thus $z_1 = a^2$ and so $a^d = a^3$, $c^d = c$, $d^2 = a^2$.

For $\varepsilon = 1$, $b^d = ac^{\eta}bz_2$. Replacing a with az_2 , we may assume $b^d = ac^{\eta}b$. If $\eta = 1$, $b^d = acb$, and replacing a with ac, we get $b^d = ab$, as in the case $\eta = 0$, and so

$$G_3 = \langle H, d \mid d^2 = a^2, a^d = a^{-1}, b^d = ab, c^d = c \rangle$$

. For $\varepsilon = 0$, it is $b^d = c^{\eta}bz_2$. If $z_2 = a^2$, then $b^{ad} = (a^2b)^d = a^2c^{\eta}ba^2 = c^{\eta}b$. Replacing d with ad, we get $b^d = c^{\eta}b$. For $\eta = 0$, $b^d = b$ and $(bd)^2 = bd^2b^d = ba^2b = 1$, a contradiction. Thus, $\eta = 1$, $b^d = bc$, and we have:

$$G_4 = \langle H, d \mid d^2 = a^2, a^d = a^{-1}, b^d = bc, c^d = c \rangle$$

.

2b) Case
$$d^2 = c$$
:

For $\varepsilon = 1$, $b^d = ac^{\eta}bz_2$, and replacing a with az_2 , $b^d = ac^{\eta}b$. Again if $\eta = 1$, replacing a with ac, we get $b^d = ab$. Now, $b^{d^2} = b = (b^d)^d = (ab)^d = a^db^d = az_1ab \Rightarrow z_1 = a^2$, and so:

$$G_5 = \langle H, d \mid d^2 = c, a^d = a^{-1}, b^d = ab, c^d = c \rangle.$$

For $\varepsilon = 0$, $b^d = c^{\eta}bz_2$. If $\eta = 1$, then $b^d = cbz_2$, and $(bd)^2 = bd^2b^d = bccbz_2 = b^2z_2 = a^2z_2 \neq 1$, by our assumption. Thus $z_2 = 1$ and $(bd)^2 = a^2$, which leads to the case 2a). Thus we may assume that $\eta = 0$, and so $b^d = bz_2$, $a^d = az_1$, $c^d = c$. Thus $(a^d, b^d) \in \{(a, b), (a, b^3), (a^3, b), (a^3, b^3)\}$. As a, b and ab are interchangeable here, and for $a^d = a^3$, $b^d = b^3 \Rightarrow (ab)^d = a^3b^3 = ab$, there remain, without loss, only two cases: $a^d = a$, $b^d = b$ and $a^d = a$, $b^d = b^3$.

In the latter case $(ad)^2 = ad^2a^d = aca = a^2c$, $a^{ad} = a^d = a$, $b^{ad} = (b^3)^d = b^9 = b$, $(a^2c)^{ad} = (a^2c)^d = a^2c$, and replacing c with a^2c , and d with ad, we get without loss, that $a^d = a$, $b^d = b$, $c^d = c$, and thus

$$G_6 = \langle H, d \mid d^2 = c, [a, d] = [b, d] = [c, d] = 1 \rangle$$

.

3)
$$d \in G \backslash H \Rightarrow |d| = 8$$

Now, $d^2 \in H$ and $|d^2| = 4$. As all elements of order 4 in H are interchangeable, we may assume that $d^2 = a$, and so $a^d = a$. Now $d^2 = a$, $a^d = a$, $b^d = a^\varepsilon c^\eta b z_2$, $c^d = c z_3$. If $\varepsilon = 1$, then $(bd)^2 = bd^2b^d = baac^\eta b z_2 = c^\eta z_2$, an involution, against our assumption. Therefore $\varepsilon = 0$, and $b^d = c^\eta b z_2$. Now $b^{d^2} = b^a = b^3 = (b^d)^d = (c^\eta b z_2)^d = c^\eta z_3^\eta c^\eta b z_2 z_2 = z_3^\eta b \Rightarrow z_3^\eta = b^2 = a^2 \Rightarrow z_3 = a^2$, $\eta = 1$. Thus $b^d = bc z_2$, $c^d = a^2 c$, $a^d = a$. If $z_2 = a^2$, replacing c with $a^2 c$, we get $b^d = bc$ and finally:

$$G_7 = \langle H, d \mid d^2 = a, a^d = ab^d = bc, c^d = a^2c \rangle.$$

B2. $G > H \cong Q_8 * Z_4$, and if G > L then $L \ncong Q_8 \times Z_2$.

Let
$$H = \langle a, b, c \mid a^4 = 1, b^2 = c^2 = a^2, a^b = a^{-1}, [a, c] = [b, c] = 1 \rangle$$
. Again, $G = \langle H, d \rangle, d^2 \in H$. Now $\mho_1(H) = \Phi(H) = \langle a^2 \rangle, Z(H) = \langle c \rangle$.

There are 8 elements of order 4: a, a^3 , b, a^2b , ab, a^3b , c, a^2c , and 7 involutions: a^2 , ac, a^3c , bc, a^2bc , abc, a^3bc . The maximal subgroups of H are: $\langle a,b\rangle\cong Q_8$, $\langle a,c\rangle\cong \langle b,c\rangle\cong \langle ab,c\rangle\cong Z_4\times Z_2$ and $\langle a,bc\rangle\cong \langle b,ac\rangle\cong \langle ab,ac\rangle\cong D_8$. Obviously, $\langle c\rangle$, $\langle a,b\rangle$ char H and so $\langle c\rangle$, $\langle a,b\rangle\lhd G$.

Again, for $\overline{G} = G/\langle a^2 \rangle$, we have $\overline{H} \cong H/\langle a^2 \rangle = \langle \overline{a}, \overline{b}, \overline{c} \rangle \cong E_8$, and $|C_{\overline{H}}(\overline{d})| \geq 4$ by Th.10. We may assume, without loss, that $C_{\overline{H}}(\overline{d}) \geq \langle \overline{a}, \overline{c} \rangle$, which implies $\overline{b}^{\overline{d}} \in \{\overline{b}, \overline{a}\overline{b}\}$. Returning to the originals, it means that either

1)
$$G = \langle H, d \mid d^2 \in H, \ a^d = az_1, \ b^d = bz_2, \ c^d = cz_3 \rangle$$
, or

2)
$$G = \langle H, d \mid d^2 \in H, \ a^d = az_1, \ b^d = abz_2, \ c^d = cz_3 \rangle$$
, where $z_1, z_2, z_3 \in \langle a^2 \rangle$.

Case 1):

1a)
$$\exists d \in G \backslash H, |d| = 2$$
:

$$\langle a^2, ac, d \rangle$$
, $\langle a^2, bc, d \rangle$, $\langle a^2, abc, d \rangle \ncong E_8$, thus $(ac)^d = acz_1z_3 \neq ac$,

$$(bc)^d = bcz_2z_3 \neq bc$$
, $(abc)^d = abcz_1z_2z_3 \neq abc \Rightarrow z_1z_3, z_2z_3, z_1z_2z_3 \neq 1 \Rightarrow z_1 = z_2 = 1, z_3 = a^2$, and so:

$$G = \langle H, d \mid d^2 = 1, [a, d] = [b, d] = 1, c^d = a^2 c \rangle = \langle a, b \rangle * \langle c, d \rangle \cong Q_8 * D_8.$$

But now $G > \langle a, b, d \rangle = \langle a, b \rangle \times \langle d \rangle \cong Q_8 \times Z_2$, against the assumption. G is isomorphic to G_1 .

1b)
$$x \in G \backslash H \Rightarrow x^2 \neq 1, \ \exists d \in G \backslash H, \ |d| = 4$$
:

Now, d^2 is an involution on H. We may assume, without loss, that $d^2 = a^2$ or $d^2 = ac$.

If
$$d^2 = a^2$$
, then $(ad)^2 = ad^2a^d = aa^2az_1 = z_1 \neq 1$, $(bd)^2 = z_2 \neq 1$, and $(abd)^2 = z_1z_2 \neq 1$, a contradiction.

If $d^2 = ac$, then $b^{d^2} = b^{ac} = b^3 = (b^d)^d = (bz_2)^d = bz_2z_2 = b$, a contradiction again.

1c)
$$x \in G \backslash H \Rightarrow |x| = 8, \ d \in G \backslash H, \ d^2 \in H$$
:

We may assume, without loss, that $d^2 = a$, or $d^2 = c$.

If $d^2 = a$, $b^{d^2} = (bz_2)^d = b = b^a = b^3$, a contradiction. Thus $d^2 = c$, $a^d = az_1$, $b^d = bz_2$, $c^d = c$. Now $(a^d, b^d) \in \{(a, b), (a, b^3), (a^3, b), (a^3, b^3)\}$ In the latter case $(ab)^d = a^3b^3 = ab$, and since a, b and ab may be replaced with each other, we may assume that: $a^d = a$, $b^d = b$ or $a^d = a$, $b^d = b^3$. In the latter case $(ad)^2 = a^2c$, $b^{ad} = b$, and thus replacing c with a^2c and d with ad, the second case is reduced to the first, and we get

$$G_8 = \langle H, d \mid d^2 = c, [a, d] = [b, d] = [c, d] = 1 \rangle = \langle a, b \rangle * \langle d \rangle \cong Q_8 * Z_8.$$

Case 2):

Replacing a with az_2 , we may assume that $b^d = ab$.

2a) $\exists d \in G \backslash H, |d| = 2$:

$$\langle a^2, ac, d \rangle \ncong E_8 \Rightarrow (ac)^d = acz_1z_3 \neq ac \Rightarrow z_3 \neq z_1$$
. If $a^d = a$, then $b^{d^2} = b = (b^d)^d = (ab)^d = aab = b^3$, a contradiction. Therefore $a^d = a^3$, $c^d = c$, and

$$G_9 = \langle H, d \mid d^2 = 1, a^d = a^{-1}, b^d = ab, c^d = c \rangle.$$

2b) $x \in G \backslash H \Rightarrow x^2 \neq 1, \exists d \in G \backslash H, |d| = 4$:

Now, without loss $d^2 = a^2$ or $d^2 = ac$ or $d^2 = bc$.

If $d^2 = a^2$, then $(ad)^2 = z_1 \neq 1$ and $(cd)^2 = z_3 \neq 1$, thus $z_1 = z_3 = a^2$. So $G = \langle H, d \mid d^2 = a^2, a^d = a^3, b^d = ab, c^d = c^3 \rangle$.

Here $(ac)^d = a^3c^3 = ac$, and $G > \langle a, d, ac \rangle = \langle a, d \rangle \times \langle ac \rangle \cong Q_8 \times Z_2$, against the assumption. Actually, $G \cong G_2$.

If $d^2 = ac$, then $b^{d^2} = (ab)^d = az_1ab = b^{ac} = b^3$, and so $z_1 = 1$. Now, $(ac)^d = ac = a^dc^d = acz_3$, thus also $z_3 = 1$. Therefore:

$$G_{10} = \langle H, d \mid d^2 = ac, a^d = a, b^d = ab, c^d = c \rangle.$$

If $d^2 = bc$, then $(bc)^d = bc = abcz_3 = az_3bc$, implying $az_3 = 1$, a contradiction.

2c) $x \in G \backslash H \Rightarrow |x| = 8, \ d \in G \backslash H, \ d^2 \in H:$

We may assume, without loss, that $d^2 = a$ or $d^2 = b$ or $d^2 = c$.

For $d^2 = a$, we get $(bd)^2 = bd^2b^d = baab = 1$, a contradiction. As $b^d = ab$, it

cannot be $d^2 = b$. If $d^2 = c$, then $(bd)^2 = bcab = b^2ca^b = a^2ca^{-1} = ac$, and so |bd| = 4, a contradiction again.

C. Groups of order 64.

According a previous remark and by Th.1(d), such a group G contains a subgroup $H = \langle a, b, c \mid a^4 = b^4 = 1, c^2 = a^2b^2, a^b = a, a^c = a^{-1}, b^c = a^2b^3 \rangle$, where $\Omega_1(H) = \langle x \in H \mid x^2 = 1 \rangle = Z(H) = \Phi(H) = \langle a^2, b^2 \rangle \equiv K \cong E_4$. One can easily check that there are only 4 square roots for a^2 (that is, such $x \in H$, that $x^2 = a^2$), and 12 square roots for b^2 and a^2b^2 each. Thus $A = \langle a^2 \rangle \text{char} H$. The square roots of a^2 generate the subgroup $N = \langle a, b^2 \rangle \cong Z_4 \times Z_2$. The group $L = \langle a, b \rangle$ is the unique subgroup of H isomorphic to $Z_4 \times Z_4$. Thus, A, K, N, L are all characteristic in H and consequently normal in G, as $H \triangleleft G$.

It can easily be seen that

(*)
$$\begin{cases} AutH = \Phi \sqcup \Psi, \text{ where} \\ \Phi = \{\varphi | \varphi : a \mapsto a\zeta_1, \ b \mapsto b\zeta_2, \ c \mapsto a^{\alpha}b^{2\beta}c\}, \\ \Psi = \{\psi | \psi : a \mapsto a\zeta_1, \ b \mapsto ab\zeta_2, \ c \mapsto a^{\alpha}b^{1+2\beta}c\}, \\ \text{and } \zeta_1, \zeta_2 \in K, \ \alpha \in \{0, 1, 2, 3\}, \ \beta \in \{0, 1\} \end{cases}$$

As $A \triangleleft K \triangleleft N \triangleleft L \triangleleft H \triangleleft G$ is a normal chain G, we have:

$$(**) G = \langle H, d \mid (H), d^2 \in H, a^d = az_1, b^d = a^{\varepsilon}bz_2, c^d = a^{\gamma}b^{\delta}z_3c \rangle,$$

where $z_1, z_2, z_3 \in K$ and $\gamma, \delta, \varepsilon \in \{0, 1\}$.

We split our proof into several steps.

(i) If T < G, |T| = 8, than T is abelian and $T \ncong E_8$: Let T be a nonabelian subgroup of order 8 in G, thus $T \cong D_8$ or $T \cong Q_8$ and |Z(T)| = 2. If $C_G(T) \le T$, then G is metacyclic by Th.11, a contradiction. Hence $C_G(T) \nleq T$ and take in $C_G(T)$ a subgroup U of order 4 containing Z(T). Now $\langle T, U \rangle = T * U$, the central product of T and U, is isomorfic to some of the groups $D_8 \times Z_2$, $Q_8 \times Z_2$, or $Q_8 * Z_4 \cong D_8 * Z_4$. Thus $\langle T, U \rangle$ would be a non-metacyclic subgroup of order 16 in G, a contradiction. Therefore every subgroup T of order 8 in G is abelian and, being metacyclic, it must be $T \ncong E_8$.

(ii) If $g \in G \backslash H$, then $g^2 \neq 1$: If $g^2 = 1$, then $T = \langle K, g \rangle = \langle a^2, b^2, g \rangle$ is abelian, by (i), and isomorphic to E_8 , a contradiction.

(iii) $G/L \cong E_4$

Else $G/L \cong Z_4$ and $G = \langle L, d \mid d^2 \in H \setminus L = Lc \rangle$. By (i) we see that we can assume without loss that $d^2 = c$, and so $d^4 = c^2 = a^2b^2$. Now $a^{d^2} = a^c = a^3 = (a^d)^d = (az_1)^d = az_1z_1^d$ implying $z_1^d = a^2z_1$ and thus $z_1 \in \{b^2, a^2b^2\}$ and $(b^2)^d = a^2b^2 = c^2 = (c^2)^d$, and so $b^2 = c^2$, a contradiction.

(iv) If there exists some $d \in G \backslash H$, s.th. |d| = 4, then either: $G \cong G_1 = \langle a, b, c, d \mid (H), d^2 = a^2, a^d = a^3b^2, b^d = b^3, c^d = c \rangle$, or $G \cong G_2 = \langle a, b, c, d \mid (H), d^2 = b^2, a^d = a^3, b^d = a^2b^3, c^d = ac \rangle$. As $d^2 \in L$, and d^2 is an involution, we have $d^2 \in \Omega_1(L)^\sharp = \{a^2, b^2, a^2b^2\} = K^\sharp$. By $(i), \langle a^2, b^2, d \rangle$ is abelian, and so $b^d = bz_2$. Now $(c^2)^d = c^2 = (c^d)^2 = (a^{\gamma}b^{\delta}z_3c)^2 = a^{\gamma}b^{\delta}z_3c^2a^{3\gamma}a^{2\delta}b^{3\delta}z_3 = a^{2\delta}c^2$, implying d = 0 and $c^d = a^{\gamma}z_3c$. From $c^{ad} = (a^2c)^d = a^2c^d$, $c^{bd} = (a^2b^2c)^d = a^2b^2c^d$, and $c^{abd}(a^2c)^{bd} = (a^2a^2b^2c)^d = b^2c^d$, and, by $(ii), (ad)^2 = ad^2a^d = a^2d^2z_1 \neq 1$, $(bd)^2 = b^2d^2z_2 \neq 1$ and $(abd)^2 = a^2b^2d^2z_1z_2 \neq 1$, we conclude that

(1) $z_1 \neq a^2 d^2$, $z_2 \neq b^2 d^2$, $z_1 z_2 \neq a^2 b^2 d^2$, and replacing, if needed, d by ad or bd or abd, we can assume, without loss, that $c^d = a^{\gamma}c$, and so:

(2)
$$c^d = c \text{ or } c^d = ac.$$

Case 1) $c^d = c$:

Now $(cd)^2 = c^2 d^2 = a^2 b^2 d^2 \neq 1$, by (ii), and so $d^2 \neq a^2 b^2$. Therefore $d^2 \in \{a^2, b^2\}$. If $d^2 = b^2$, then $(cd)^2 = c^2 d^2 = a^2$. Thus, replacing d by cd, we

may assume without loss that $d^2=a^2$. Besides of (1), we also have now the following conditions on z_1, z_2 : $(acd)^2=acd^2az_1c=ac^2d^2a^cz_1=c^2d^2z_1\neq 1$, and similarly $(bcd)^2=b^2d^2z_2\neq 1$, $(abcd)^2=abcd^2az_1bz_2c=b^2d^2z_1z_2\neq 1$, that is:

(3)
$$z_1 \neq c^2 d^2$$
, $z_2 \neq b^2 d^2$, $z_1 z_2 \neq b^2 d^2$.

From (1) and (3) we get:

 $z_1 \neq 1, b^2, \ z_2 \neq a^2b^2, \ z_1z_2 \neq b^2, a^2b^2$. If $z_1 = a^2$, then $a^d = a^3$, and $\langle a, d \mid a^4 = 1, \ d^2 = a^2, \ a^d = a^3 \rangle \cong Q_8$, a contradiction, by (i). Thus $z_1 = a^2b^2, \ z_2 \neq a^2b^2, \ a^2b^2z_2 \neq b^2, a^2b^2$, and so $z_2 = b^2$, giving:

$$G_1 = \langle a, b, c, d \mid (H), d^2 = a^2, \ a^d = a^3b^2, \ b^d = b^3, \ c^d = c \rangle.$$

Case 2) $c^d = ac$:

We already know that $a^d = az_1$, $b^d = bz_2$ and $d^2 \in \{a^2, b^2, a^2b^2\}$. Now $c = c^{d^2} = (c^d)^d = (ac)^d = az_1ac = a^2z_1c$, so $z_1 = a^2$ and $a^d = a^3$. If $d^2 = a^2$, then $\langle a, d \mid a^4 = 1, d^2 = a^2, a^d = a^3 \rangle \cong Q_8$, against (i). Therefore $d^2 \in \{b^2, a^2b^2\}$. Since $(bd)^2 = bd^2b^d = b^2z_2d^2$, we have $z_2 \neq b_2d_2$.

Case 2.1) $d^2 = b^2$:

From $z_2 \neq b^2 d^2$ it follows $z_2 \in \{a^2, b^2, a^2 b^2\}$. If $z_2 = a^2$, then $b^d = a^2 b$ and $\langle a, bd \mid a^4 = 1, (bd)^2 = a^2, a^{bd} = a^3 \rangle \cong Q_8$, against (i). Similarly, for $z_2 = b^2$ we have $\langle b, d \mid b^4 = 1, d^2 = b^2, b^d = b^3 \rangle \cong Q_8$ again. It remains as the only possibility $z_2 = a^2 b^2$, and we obtain the group

$$G_2 = \langle a, b, c, d \mid (H), d^2 = b^2, \ a^d = a^3, \ b^d = a^2b^3, \ c^d = ac \rangle.$$

Case 2.2) $d^2 = a^2b^2$:

Because of $z_2 \neq b^2 d^2 = a^2$, we have now $z_2 \in \{1, b^2, a^2 b^2\}$, that is $b^d \in \{b, b^3, a^2 b^3\}$. If $b^d = b$, then $(bd)^2 = bd^2 b^d = ba^2 b^2 b = a^2$, and $\langle a, bd \rangle \cong Q_8$, against (i). If $b^d = b^3$, then $(ab)^d = (ab)^3$ and $\langle ab, d \rangle \cong Q_8$, again the same contradiction. Therefore $b^d = a^2 b^3$. Replacing a by $a' = a^3 b^2$, b by b' = ab, c by c' = bc, we get:

 $d^2 = b'^2$, $a'^d = (a^3b^2)^d = ab^2 = a'^3$, $b'^d = (ab)^d = a^3a^2b^3 = ab^3 = (a^3b^2)^2 \cdot (ab)^3 = a'^2b'^3$, $c'^d = (bc)^d = a^2b^3ac = a^3b^2bc = a' \cdot c'$, that is the relations of G_2 . Thus, this group is isomorphic to G_2 .

(v) If all elements in $G\backslash H$ are of order 8, then

$$G = G_3 = \langle a, b, c, d \mid (H), d^2 = b, \ a^d = ab^2, \ b^d = b, \ c^d = ac \rangle.$$

As $G/L \cong E_4$, $G = \langle H, d \rangle$, |d| = 8, it follows that d^2 is an element of order 4 in L. According to (*), all such elements are replaceable by a or b, and so we may assume without loss that:

 $G = \langle H, d \mid (H), d^2 \in \{a, b\}, \ a^d = az_1, \ b^d = a^{\varepsilon}bz_2, \ c^d = a^{\gamma}b^{\delta}z_3c \rangle$, where $z_1, z_2, z_3 \in K, \ \gamma, \delta, \varepsilon \in \{0, 1\}.$

Now
$$(c^2)^d = (c^d)^2 = (a^{\gamma}b^{\delta}z_3c)^2 = a^{\gamma}b^{\delta}z_3c^2a^{3\gamma}a^{2\delta}b^{3\delta}z_3 = a^{2\delta}c^2$$
.

Case 1) $d^2 = a$:

Now $a^d=a$. If $\varepsilon=0$ then $z^d=z$ for $z\in K$, and from $(c^2)^d=c^2=a^{2\delta}c^2$ it follows $\delta=0,\ c^d=a^{\gamma}z_3c$. Similarly, from $c^{d^2}=c^a=a^2c=(a^{\gamma}z_3c)^d=a^{\gamma}z_3a^{\gamma}z_3c=a^{2\gamma}c$, we get $\gamma=1$ and $c^d=az_3c$. But now $(cd)^2=cd^2c^d=a^2c^2z_3\in K$, and |cd|=4, against our assumption.

If $\varepsilon = 1$, then $b^d = abz_2$, $(b^2)^d = c^2$ and $(c^2)^d = b^2 = a^{2\delta}c^2$. Thus $\delta = 1$, and $c^d = a^{\gamma}bz_3c$. Therefore, $c^{d^2} = a^2c = (a^{\gamma}bz_3c)^d = a^{\gamma} \cdot abz_2z_3^da^{\gamma}bz_3c = a \cdot a^{2\gamma}bb^2z_2z_3z_3^dc = azc$, for some $z \in K$. This implies z = a, a contradiction because a is not in K.

Case 2) $d^2 = b$:

Now $b^d=b$, and $z^d=z$ for $z\in K$. From $(c^2)^d=c^2=a^{2\delta}c^2$ it follows $\delta=0,\ c^d=a^{\gamma}z_3c$. Since $[b,c]=b^{-1}b^c=a^2b^2=[c,b]$, we have $c^{d^2}=c^b=a^2b^2c=(a^{\gamma}z_3c)^d=a^{\gamma}z_1^{\gamma}z_3a^{\gamma}z_3c$, implying $a^{2\gamma}z_1^{\gamma}=a^2b^2$. Thus $\gamma=1,\ z_1=b^2$ and so $a^d=ab^2,\ c^d=az_3c$. Replacing a by az_3 , we get the group G_3 as stated above.

Remarks:

It is of some interest to check the maximal subgroups of second-metacyclic groups. We present them in the following table:

(i)
$$|G| = 32$$
:
 $G_1 \rightarrow 5 \cdot (Q_8 \times Z_2), \ 10 \cdot (Q_8 * Z_4)$
 $G_2 \rightarrow Q_8 \times Z_2, \ Q_8 * Z_4, \ 2 \cdot SD_{16}, \ 2 \cdot Q_{16}, \ M_{16}$
 $G_3 \rightarrow 2 \cdot (Q_8 \times Z_2), \ Z_8 \times Z_2, \ 4 \cdot Q_{16}$
 $G_4 \rightarrow 2 \cdot (Q_8 \times Z_2), \ Z_4 \times Z_4, \ 4 \cdot (Z_4 \cdot Z_4)$
 $G_5 \rightarrow Q_8 \times Z_2, \ Z_4 \cdot Z_4, \ Z_8 \times Z_2$
 $G_6 \rightarrow Q_8 \times Z_2, \ 3 \cdot (Z_4 \times Z_4), \ 3 \cdot (Z_4 \cdot Z_4)$
 $G_7 \rightarrow Q_8 \times Z_2, \ 2 \cdot M_{16}$
 $G_8 \rightarrow Q_8 * Z_4, \ 3 \cdot (Z_8 \times Z_2), \ 3 \cdot M_{16}$
 $G_9 \rightarrow 2 \cdot (Q_8 * Z_4), \ Z_8 \times Z_2, \ 2 \cdot SD_{16}, \ Q_{16}, \ D_{16}$
 $G_{10} \rightarrow Q_8 * Z_4, \ Z_4 \times Z_4, \ M_{16}$

(ii)
$$|G| = 64$$
:
Denoting $H_r = \langle a, b \mid a^8 = b^4 = 1, \ a^b = a^r \rangle$, we have:
 $G_1 \to 15 \cdot H$
 $G_2 \to 2 \cdot H, \ 2 \cdot H_3, \ 2 \cdot H_7, \ Z_8 \times Z_4$
 $G_3 \to H, \ 2 \cdot H_5.$

The factor groups $\overline{G}_i = G_i/\langle a^2 \rangle$, i = 1, 2, 3, are isomorphic to the groups G_1 , G_4 and G_7 of order 32 from (i), respectively.

REFERENCES

[1] Z. JANKO, Finite 2-groups with exactly four cyclic subgroups of order 2ⁿ, preprint, Math. Institute, University of Heidelberg, 2002.
[2]Y. BERKOVICH, Groups of prime power order, in preparation.