DEDICATION

Dedicated to the reader.

CONTENTS

Dedication v
Preface ix
Acknowledgments xi
Introduction xiii

1. BITS AND QUBITS: THEORY AND ITS IMPLEMENTATION 1

1.1 The Turing Machine vs. a Computing Machine 1
1.2 Definition of a Turing Machine 2
1.3 Turing Computability 4
1.4 Bit Computability: Boolean Algebra 7
1.5 Bit Implementation: Transistors and Their Limits 9
1.6 Irreversible Bits: Logic Gates 12
1.7 Reversible Gates 14
1.8 Quantum Bits: Qubits 17
1.9 Flying Qubits and Circular Polarization 20
1.10 Superposition of Qubits 22
1.11 Bra-Ket Qubit Formalism 24
1.12 Operators 26
1.13 Detecting Qubits 27
1.14 Quantum Gates and Circuits 29
1.15 Qubit Computation and E-Business 31
1.16 Numbers and Bits 36
1.17 Entangled Qubits 39
1.18 General Single Qubit Formalism 45
1.19 Other Qubits and Universal Gates 51
1.20 Teleportation of Copies and the No-Cloning Theorem 56
1.21 Quantum Cryptography 64
1.22 Quantum Error Correction 72
1.23 Unconditional Security of Quantum Cryptography 81

2. EXPERIMENTS 87
 2.1 Technological Candidates for Quantum Computers 87
 2.2 Zeeman Effects 88
 2.3 Liquid-State Nuclear Magnetic Resonance 94
 2.4 Silicon-Based Nuclear Spins 99
 2.5 Ion Traps 109
 2.6 Future Experiments 123
 2.7 Quantum Communication Implementation 125

3. PERSPECTIVES 135
 3.1 Quantum Network 137
 3.1.1 Laser 138
 3.1.2 One-Atom Laser and Atom-Cavity Coupling 139
 3.1.3 Single Photons on Demand 140
The attraction of quantum computation and quantum communication theory and experiments lies in the fact that we engineer both them themselves and the quantum systems they treat. This approach has turned out to be very resilient. Driven by the final goal of calculating exponentially faster and communicating infinitely more securely than we do today, as soon as we encounter a limitation in either a theory or experiment, a new idea around the no-go emerges. As soon as the decoherence "demon" threatened the first computation models, quantum error correction theory was formulated and applied not only to computation theory but also to communication theory to make it unconditionally secure. As soon as liquid-state nuclear magnetic resonance experiments started to approach their limits, solid-based nuclear spin experiments - the Kane computer - came in. As soon as it was proved that it is theoretically impossible to completely distinguish photon Bell states, three new approaches appeared: hyperentanglement, the use of continuous variables, and the Knill-Laflamme-Milburn proposal. There are many more such examples.

What facilitated all these breakthroughs is the fact that at the present stage of development of quantum computation and communication, we deal with elementary quantum systems consisting of several...
two-level systems. The complexity of handling and controlling such simple systems in a laboratory has turned out to be tremendous, but the basic physical models we follow and calculate for the systems themselves are not equally intricate. We could say that the theory of the field leads the experiments in a particular way—each new model we put forward and apply in the laboratory, we also build up and widen the theory itself. Therefore, we cannot just proceed with assembling quantum computers and quantum networks. We also have to use mathematical models to understand the physics of each step on the road to our goal.

As a consequence, both mathematics and physics are equally essential for any approach in the field and therefore for this book as well. The mathematics used in the book is a tool, but an indispensable tool because the physics of quantum computation and communication theory and their experiments cannot be grasped without good mathematical models. When we describe an experiment many times, we may get used to it, but this does not mean we are more at home with the principles and models behind it. This is why I have chosen to make this book an interplay between mathematics and physics. The idea of the book is to present those details that are used the most often both in theory and experiment and to dispense with many inessential ones. Also, the book is not conceived as a textbook, at least not as a primary one, but more as a guide to a better understanding of theory and experiments by coming back to the same concepts in different models and elaborations. Clear physical ideas make any formalism easy.

Mladen Pavicic

Introduction

Two predictions are cited particularly often whenever one talks or writes about the history or future of computing. One of these is more and more wrong, and the other is less and less right, and they both teach us how to use theoretical opportunities to find new technologies.

The first prediction, a beloved opening of speeches and papers, was made by the head of the electromagnetic relay calculator at Harvard, Howard Aiken, in 1956: "If it should turn out that the basic logics of a machine designed for the numerical solution of differential equations coincide with the logics of a machine intended to make bills for a department store, I would regard this as the most amazing coincidence that I have ever encountered" [Anonymous, 1997]

The amazing "coincidence" did happen and happens more and more every day, tempting us to consider it a part of the history of computers that took its own unexpected course ("Only six electronic digital computers would be required to satisfy the computing needs of the entire United States," Howard Aiken said in 1947): a program and a machine, software and hardware, were interwoven at the beginning and then became more and more separated. At least it seems so when we look at the development of computer designs since Charles Babbage’s 1840s Analytical Engine. A program on punched cards or tapes and a machine for which the specific cards were made look inseparable, in contrast to today’s programs which we move throughout the World Wide Web and compile and execute on virtually any computer.

Yet Alan Mathison Turing (and also Alonzo Church, Stephen Cole Kleene, and Emil Post independently at the same time) had already proved in 1936 that the only possible course the history could have taken was the one it in fact took. Turing used what we now also cite often and call a Turing machine to prove that only the simplest calculus, such as a propositional algebra with a Boolean evaluation (true, false) and its main model a 0-1 Boolean algebra, is computable, i.e., effectively calculable [Turing 1936; Turing, 1937]. He (and others) also proved that real numbers are not computable, that there exists no algorithm with the help of which we can decide for every arithmetical sentence in finitely many steps whether it is true or false, etc. In other words, from the very start we only had Boolean algebra at our disposal, and once hardware was developed that could handle classical logic operations - such implementations of logic
operations are called logic gates - the universal classical computer was born. The "only" thing one had to develop were "digital" algorithms and programs for all possible applications, i.e., the software for a universal computer. Everything - solving nonlinear differential equations, 3D modeling, speech recognition, and "making bills for a department store" - had to be reduced to a Boolean language. Since such a reduction imposes ever-growing speed and memory requirements upon the hardware, until mid-2002 we were witnessed quite the opposite situation than half a century ago: the software lagged behind the hardware, following the Wirth’s law: "Software gets slower faster than hardware gets faster." Will this computing history repeat itself with quantum computers? Will quantum hardware start to advance faster than quantum software (quantum algorithms) in the near future? In this book we shall try to learn how close we are to answering these questions.

The second prediction is known as Moore’s Law, or better yet, Moore’s laws, since there are many versions and varieties of the several formulations made by Gordon Moore of the Intel Corporation. One widespread rendering of the law, "The number of transistors on a single integrated-circuit chip doubles every 18 months" [Birnbaum and Williams, 2000], does not correspond to the historical data which show 26 months [Brenner, 2001]. Moore himself commented. "I never said 18 months. I said one year [in 1965], and then two years [in 1975]. One of my Intel colleagues changed it from the complexity of the chips to the performance of computers and decided that not only did you get a benefit from the doubling every two years but we were able to increase the clock frequency, too, so computer performance was actually doubling every 18 months. I guess that’s a corollary of Moore’s Law. Moore’s Law has been the name given to everything that changes exponentially in the industry... If Al Gore invented the Internet, I invented the exponential" [Yang, 2000]

And this "exponential" element is what is essential for our development and what quantum computers are about. Apparently everything underlying the development of technology and society grows exponentially: research, information, production and organization complexity, and above all, the costs of keeping pace. So only an exponential increase of our computational and processing power and an exponential decrease of computer cost per processed bit could support such a development. Therefore, Moore’s law was been kept as a guideline in the computer industry in past three decades and it has supported a global development during this period.

Gates in today’s computers are switched on and off by about 1000 electrons. In 2010, the exponential Moore’s Law would require that only about 10 electrons do the job. Miniaturization cannot go much further than that. It is true that many other possible roads could still keep up the pace for a few more years: insulating layers can be reduced in their thickness from the present 25 atoms to 4 or 5 atoms (wires connecting transistors in a chip already occupy more than 25% of its space); computing power can be increased by designing processors so as to contain execution units that process multiple instructions within one cycle; processors can rely on parallel compiling technology and use innovative software; and finally, chips can eventually get bigger by using reversible gates to avoid overheating. Still, by 2020 or 2025 computing technology will hit the quantum barrier, and if we want to support the growth of our technology and science beyond that point in time, we need to find a substitute for exponentially rising classical computational power by then. Actually, the exponential increase of the clock speed of processors (CPUs) already became linear in 2002 (see Fig. 3.1, p. 135), and an extensive patching activity onto classical hardware and software is currently under way in order to compensate for this lack of an exponential increase in speed (see p. 136).

Now that both Wirth’s and Moore’s laws are coming to an end, we should draw a moral from them. Wirth’s law taught us that classical hardware development has prompted ever new software, and Moore’s law taught us that this hardware development has followed an exponential trend of speed, memory, and lately of number of processors (multiple cores, multiple processors, clusters). Such an approach to computation will apparently change completely in the quantum realm. Quantum hardware is exponential
in itself, and if we eventually succeed in making functional scalable quantum computers, we will dispense with the need for a steadily growing quantum hardware development - to make a quantum computer faster means to scale it up linearly or polynomially. We will also dispense with writing ever new software for faster and faster hardware. Once developed, quantum software (quantum algorithms) will simply scale up as we scale - and therefore speed up - quantum hardware. The "exponential" is built into quantum hardware from its very first quantum bit or qubit. Qubits, physically supported by single atoms, electrons, or photons, can superpose and entangle themselves so as to support an arbitrary number of states per unit. Recently devised algorithms - quantum software - relying on the exponential feature of quantum hardware have explicitly demonstrated how one can reduce important problems that are assumed to be exponentially complex, to polynomially complex tasks for quantum computers. This has opened a vast new interdisciplinary field of quantum computation and communication theories, together called quantum information theory, which along with its experimental verifications are already taught at many universities and have resulted in several very successful textbooks.

The target of these courses, seminars, and textbooks is to teach and familiarize students and scientists with this new field - in which new research projects will keep opening for decades to come - and to help integrate the theory and experiments of quantum computation and communication into a would-be quantum network implementation. The goal of the book in front of the reader is the same; however, it allows her or him to digest the field "by reading." That means that there will be no homework and no exercises. Instead, most of the required details are elaborated within the main body of the book, and a polynomial complexity of reading is intended, optimally in one run.

So, a few words about the reader. She or he is expected to be familiar with higher mathematics and the basics of physics - in particular, quantum physics. The reader could be any former student who graduated in the technical or natural sciences, although an undergraduate student might also find many if not all sections of the book digestible. Students as well as specialists in the field might also find the nutshell approach of the book helpful and stimulating.

Chater 1

BITS AND QUBITS: THEORY AND ITS IMPLEMENTATION

In 1936 several authors showed, in effect, that if a function is effectively calculable, then it is Turing computable and, of course, vice versa [Church, 1936c; Turing, 1936; Turing, 1937; Church, 1936a; Church, 1936b; Kleene, 1936; Post, 1936]. Turing concluded:

> We do not need to have an infinity of different machines doing different jobs. A single one will suffice. The engineering problem of producing various machines for various jobs is replaced by the office work of "programming" the universal machine to do these jobs.

This statement does not mean that Turing envisioned the "universal computer" we have today, although he was well acquainted with the project of breaking the cryptographic codes of German messages carried out on the Colossus (the British "computer" at Bletchley Park, which operated from 1943 until the 1950s). His universal Turing machine is a "universal computer" only in the sense that it keeps to the standard digital (classical, 0-1) implementation, i.e., to the binary digits, or bits, of today’s hardware.
1.1 The Turing Machine vs. a Computing Machine

The software used by any classical computer must be based on what a Turing machine can confirm to be calculable, recursive, and decidable. A historical problem with the development of computers was that there were few calculus categories of the latter kind. The only types of calculus that Turing machines can show to be calculable are the simplest algebras with the simplest evaluations, such as propositional calculus with Boolean (true-false) evaluation, or 0-1 Boolean algebra. It can be shown that even the simplest propositional calculus with a nonordered evaluation [Pavicic and Megill, 1999] or simplest arithmetic with natural numbers [Hermes, 1969] is not calculable simply because such types of algebra are neither recursive nor decidable nor calculable. Directly, a Turing machine can only be used to prove that no mathematics we know from primary school can be literally run on it.

Turing machines, or any equivalent mathematical algorithms, are essential in order to decide whether a chosen problem is calculable or not, but we do not use them to write down a new program for, say, 3D modeling or speech recognition. Still, since there are many references to the Turing machine in the literature on quantum computing, let us provide some details [Hermes, 1969]. In doing so, we bear in mind that Turing machines and all related concepts are "concepts of pure mathematics. It is however very suggestive to choose a technico-physical terminology suggested by the mental image of a machine" [Hermes, 1969, p.31].

The Turing machine is neither today’s "universal" computing machine - generally called a computer - nor a generator of new algorithms for the latter machine. Instead, it is simply a mathematical procedure to check whether a chosen algebra and/or calculus can or cannot be implemented into a computer. To show this, we present some details of the procedure. The details often appear in the literature without being put into the context of a final outcome and so are just left hanging, giving the impression of being building blocks for a computer, or an algorithm to be carried out on one. On the other hand, the notion of the classical Turing machine is rather important for understanding the role that the quantum Turing machine has in the theory of quantum computation.

INDEX

A-gate, 103
adiabatic passage, 144
algebra
 modular, 193
algorithm
 Bernstein-Vazirani, 31, 179
Deutsch’s, 31, 173
Deutsch-Jozsa, 31, 176
exponential speedup, 178

eigenvalue
 exponential speedup, 186
 exponential time, 186

Euclid’s, 180
field sieve, 180
general number field sieve, 35
GNFS, 35, 180
Grover’s, 31, 186
Kochen–Specker, 168
 statistical exponential speedup, 171
MMP diagram, 168
Shor’s, 31, 35, 36, 64, 98, 137, 180, 181
 exponential speedup, 181
 exponential time, 181
 NMR, 98, 180, 183
Simon’s, 31, 180
 exponential speedup, 180

Alice
 classical, 65
 quantum, 68, 131
alkali-metal atoms, 147
all-optical, 124
 CNOT gate, 153
ancilla, 78

AND

classical, 8

angular

momentum

electron, 91, 100

nuclear, 147

quantum number, 89, 147

total, 147

annihilation operator, 40, 59, 111

atom

interference, 163

lattice, 195

atom-cavity coupling, 140, 145

constant, 145

atomic

lattice, 195

atomic dipole matrix element, 114

B92 protocol, 81, 82

balanced function, 174

bandwidth, 33

barrier

oxide, 10

transistor, 10
BB84 protocol, 69, 82
BBN Technologies, 125
BCNOT gate, 153
beam splitter, 23
 polarizing, 150
Bell
 inequalities, 167
 state, 43, 62, 154
 decomposition, 156
Bennett-Brassard protocol, 69
Bernstein-Vazirani algorithm, 31, 179
binormality, 6
birefringent
 plates, 129
 prism, 40
bit, 1
 train
 Kane computer, 107
bit-flip, 72
 correction, 80
 quantum, 76
bits, 17
Bloch sphere, 51
blue sideband frequency, 121
Bob

classical, 65
quantum, 68, 131

Bohr magneton, 89

Boolean

algebra, xiii, 2, 7, 193
axioms for, 8
single axiom for, 9
circuit, 7
operation, 12
bra vector, 24
bra-ket notation, 20
bracket, 25
Calderbank-Shor-Steane code, 76
carrier frequency, 121
cat

Schrodinger, 57
cavity, 145
dark state, 146
optical, 138, 140, 163
spherical mirror, 140
QED, 88, 124
quantum electrodynamics, 88

CC-U gate
quantum, 55

CCNOT gate
 classical
 reversible, 16
 quantum, 77

central processing unit, 14

cesium, 147

check matrix, 74
Church’s thesis, 6

circuit
 Boolean, 7
 classical, 14
 integrated, 135
 reversible, 16, 54

CMOS, 10

NMOS, 10

PMOS, 10
quantum, 30, 32, 52, 55--57, 77--80, 122, 153, 176, 182, 191
 diagram, 32, 182
 interaction-free, 166
 quantum logic, 61
 size, 30
 transistor, 12

circular polarization, 20
left-hand, 21
right-hand, 21
classical
circuit
 integrated, 135
 reversible, 16
cryptography, 65
logic, 194
 completeness, 194
 soundness, 194
clock speed
 classical, xv, 135
cloned state, 58
closed subspace, 26
CNOT gate
 all-optical, 153
 bilateral, 153
classical
 reversible, 15
f-, 174
interaction-free, 160
pseudo, 160
quantum, 55
 ion trap, 122
Kane, 107, 108
NMR, 98
silicon-based spin, 107, 108
code, 73
codeword, 73
coherence
length
laser, 33
time
laser, 33
coincidence probability, 61, 62
collection efficiency, 128, 138
completeness
lattice, 195
complex numbers
field of, 191, 196
complexity
exponential, 35
subexponential, 35, 180
super-polynomial, 180
composite Hilbert space, 136
computer
human, 4, 6
computing
green, 15
physical, 34
tape, 3
continued fraction expansion, 185
continuous
 quantum
 computer, 194
 variables, 194
continuous wave laser, 33
control qubit, 51
controlled-controlled-U gate
 quantum, 55
controlled-controlled-NOT gate
 classical
 reversible, 16
 quantum, 77
controlled-NOT gate
 classical
 reversible, 15
 quantum, 55
cooling
 laser
 Doppler, 111
 Sisyphus, 111, 119
copied state, 58

coprime, 180

coset, 84

Coulomb
 potential, 195
 repulsion, 110

countable orthonormal basis, 26

counterfactual computation, 166

coupler, 156
 fiber, 81, 132

coupling constant, 98

CPU
 classical, xv, 14, 135
 quantum, 137

creation operator, 40

cryptography
 classical, 65
 quantum, 36, 64, 69
 continuous variables, 126
 entangled pairs, 126, 128
 free space transmission, 126
 phase-coding, 81
 roadmap, 126
 single-photon sources, 126, 127
weak laser pulses, 126

CSS code, 76

CW laser, 33

dark

counts, 127

state, 143, 145, 147

cavity, 146

mixing angle, 143

teleportation, 147

DARPA quantum network, 125

decidability, 6

decoherence, 123

delay

gate, 38

demand

photons on, 127

density

matrix, 47

operator, 28

detection, 27

deterministic

transition function

Turing machine, 4

Turing machine, 4
Deutsch’s algorithm, 31, 173
Deutsch-Jozsa algorithm, 31, 176
 exponential speedup, 178
diagram
 MMP, 168
diode laser, 126
dipole
 approximation, 114, 116
 matrix element
 atomic, 114
 moment
 electric, 145
 magnetic, 89
Dirac’s bra-ket notation, 20
discrete Fourier transform, 173
distributive lattice, 193
distributivity, 193
divergenceless field, 21
DiVincenzo Criteria, 124
donor
 phosphorus, 102
dopant, 9
Doppler laser cooling, 111
down-conversion, 128
type-I, 130

type-II, 130

Earnshaw’s theorem, 110
eavesdropping
 quantum, 70
edge, 168
eigenfunction, 26
eigenket, 26
eigenvalue, 26, 186
 algorithm
 exponential speedup, 186
 exponential time, 186
eigenvector, 26, 186
Einstein-Podolsky-Rosen pair, 44
electric dipole moment, 145
electric-field vector, 18
electron
 angular
 momentum, 100
 angular momentum, 91
 commutation relations, 117
magnetic
 moment, 100
Planck energy, 93
single
 transistor, 12, 105

spin, 91, 100

empty
 state, 40

entangled
 pair, 44
 phase-coding, 132
 polarization-coding, 131

photons, 42, 62

qubits, 57

states, 45, 57, 79
 on demand, 122

entanglement, 20, 62, 63, 68, 167

EPR pair, 44
 phase-coding, 132
 polarization-coding, 131

equations
 lattice, 197

error
 correction
 classical, 72
 Hadamard gate, 77
 quantum, 76
weigh, 75
Euclid’s algorithm, 180
Euler angles, 48
evaluation according to rule, 5
Eve
quantum, 70, 132
exponential
complexity, 34, 35
improvement
quantum repeater, 159
speed increase, 135
speedup, 39
Deutsch-Jozsa algorithm, 178
eigenvalue algorithm, 186
Shor’s algorithm, 181
Simon’s algorithm, 180
statistical speedup
Kochen--Specker algorithm, 171
time, 34, 35
eigenvalue algorithm, 186
Shor’s algorithm, 181
extraordinary ray, 68
f-CNOT gate, 174
Fabry-Perrot resonator, 138
factoring a number, 34, 180

fault-tolerant computation, 80

Fermi
 operator, 117

fiber
 coupler, 81, 132

fictitious magnetic
 dipole
 ion trap, 117

field
 ion trap, 117

field
 divergenceless, 21
 irrotational, 21
 longitudinal, 21
 of complex numbers, 191, 196
 of quaternions, 191, 196
 of real numbers, 191, 196
 sieve algorithm, 180
 transversal, 21

finite dimensional space, 26

Fock
 space, 40

state
single-photon, 127
Fourier
transform, 186
Fourier transform
discrete, 173
quantum, 173, 183
free space transmission
cryptography
quantum, 126
frustrated total internal reflection, 161
FTIR, 161
full adder, 37
gas
van der Waals, 190
gate
A, 103
BCNOT, 153
CNOT
all-optical, 153
bilateral, 153
classical reversible, 15
interaction-free, 160
ion trap, 122
Kane, 107, 108
NMR, 98
quantum, 55
silicon-based spin, 107, 108
delay, 38
Hadamard, 32, 175, 177, 186
ion trap, 121
NMR, 98
J, 103, 104
logic
classical, 12
quantum, 29
reversible, 15
NOT
classical, 11
ion trap, 121
quantum, 29
square root of NOT, 23, 29
NMR, 98
phase, 32
quantum, 17, 23, 29, 108
reversible
classical CNOT, 15
universal, 15
S, 107
Toffoli, 16, 54

universal
 quantum, 53
 reversible, 15

gcd, 180

general
 number field sieve algorithm, 35, 180
 recursiveness, 5

generator matrix, 49

GNFS algorithm, 35, 180

Godel
 numbers, 6

numbering of Turing machines, 6

greatest common divisor, 180

green computing, 15

Grover’s algorithm, 31, 186

gyromagnetic factor, 46, 90

Hadamard gate, 32, 175, 177, 186

 error correction, 77
 ion trap, 121

NMR, 98

half adder, 37

half-wave plate, 22, 149, 166

Hamiltonian
harmonic oscillator, 111
ion trap, 116
Jaynes-Cummings, 139
Kane computer, 104
local, 186
NMR, 97, 100
Hamming
code, 73, 76
codeword, 76
distance, 73
rule, 73
scheme, 73
harmonic oscillator, 111
 Hamiltonian, 111
Heisenberg microscope, 164
Hermitian
 conjugate operator, 26
 operator, 27
hidden variable theory, 167
Hilbert
 lattices, 195
 space, 26
 n-dimensional, 167
 composite, 136
embedding, 156
polarization, 156
HWP, 22, 166
hyper-entangled quantum state, 156
hyperfine interaction, 100, 103, 147
hyperthreading technology, 136
ID Quantique, 125
idler photon, 129
information theory
 quantum, 61
Intel, 135
interaction
 picture, 120
 strong, 190
 weak, 190
interaction-free
 CNOT gate, 160
 experiment, 160
quantum
 circuit, 166
 resonance detection, 163
interferometer
 Mach--Zehnder, 29, 34, 81, 132
Internet, 35, 65
interval analysis, 171
inverted population, 138, 140
ion trap, 88, 109
 computer, 121
 scalable, 122
 fictitious magnetic dipole, 117
 fictitious magnetic field, 117
 Hamiltonian, 116
 laser beam, 113
irrotational field, 21
isomorphism-free generation of MMP diagrams, 169
J-coupling, 98
J-gate, 103, 104
Jaynes--Cummings
 Hamiltonian, 139
 model, 116
join
 lattice, 192
Jones vectors, 19, 21
Kane
 CNOT gate, 107
 computer, 103, 106
 bit train, 107
 Hamiltonian, 104
radio frequency magnetic field, 103
spin subspace, 106
magnetic
field, external, 101
Karnaugh map, 17
ket vector, 20, 24
key
distribution, 81
RSA, 35
sifted, 71
Kochen--Specker
algorithm, 168
statistical exponential speedup, 171
set, 168
setup, 167
theorem, 167
vectors, 168
KS
algorithms, 168
set, 168
setup, 167
vectors, 168
lambda-definability, 5
Lamb--Dicke
limit, 119

parameter, 119

Lande factor, 92

Larmor frequency, 93

resonance, 103

laser, 138

beam

atom interaction, 113

ion trap, 113

beam-electron-phonon interaction, 116

beam-ion interaction, 116

coherence length, 33

coherence time, 33

continuous wave, 33

cooling, 111, 119

diode, 126

phase-coding, 81

Doppler cooling, 111

one-atom, 139

pulse

quantum cryptography, 126

pump beam

down-conversion, 130

pumping, 63
lattice, 96, 192
atom, 195
completeness, 195
distributive, 193
equations, 197
Hilbert, 195
join, 192
meet, 192
modular, 193
operation, 192
orthocomplementation, 193
orthomodular, 193
superposition, 195
principle, 195
least significant bit, 37
left-hand circular polarization, 21
linear
ion trap, 110
optical elements, 31, 156
subspace, 27
linearization of wave equation, 46
linewidth, 33
local Hamiltonian, 186
logic
classical, 194
completeness, 194
soundness, 194
gate
classical, 12
quantum, 23, 29
reversible, 15
propositional, 7
quantum, 15, 61
completeness, 194
proper, 194
soundness, 194
reversible, 15
longitudinal field, 21
LSB, 37
mu-recursiveness, 5
Mach–Zehnder interferometer, 29, 34, 36, 81, 132
MagiQ Technologies, 125
magnetic
dipole moment, 89
fictitious dipole
ion trap, 117
fictitious field
ion trap, 117
field
 Kane, external, 101
 radio frequency, Kane, 103
 radio frequency, NMR, 96
 Zeeman, external, 88, 90
 Zeeman, inner, 91
moment
 electron, 100
 nuclear, 100
 quantum number, 89
magneto-optical trap, 163
Malus law, 19, 131
matrix
 check, 74
 density, 47
 generation, 74
MatrixExp, 50, 98
measurement
 quantum, 27
meet
 lattice, 192
microchannel plate detector, 164
mixing angle
 dark state, 143
MMP diagram, 168
algorithm, 168
isomorphism-free generation, 169

modular
algebra, 193
lattice, 193
modularity, 193
modulo, 8, 74, 78, 174, 181
momentum
electromagnetic, 21
space, 189
monolithic total-internal-reflection resonator, 161

Moore’s Law, xiv, 135
MOSFET, 9
NPN, 9
PNP, 9
most significant bit, 37
MOTIRRR, 161
MSB, 37
multicore technology, 136
NAND
classical, 8
negative absorption, 138
neutral atom, 124
NMOS, 9
NMR, 88, 124, 180
 square root of NOT gate, 98
 computer, 98, 99
 radio frequency magnetic field, 96
Hadamard gate, 98
Hamiltonian, 97, 100
 Shor’s algorithm, 98, 180, 183
no-cloning theorem, 58
nonlinear optics, 128

NOR
 classical, 8
normal algorithm, 6

NOT
 classical, 8
 gate
 classical, 11
 ion trap, 121
 quantum, 29
 square root of NOT gate, 23, 29
NMR, 98
NPN MOSFET, 9
nuclear
 fusion, 87
magnetic
 moment, 100
magnetic resonance, 88, 124
spin quantum number, 94

number
 field sieve
 general algorithm, 35
operator, 111
state
 notation, 117
one-atom laser, 139

operation
 Boolean, 12
 lattice, 192
operator, 26
 adjoint, 26
 annihilation, 40, 59
 creation, 40
 density, 28
 Fermi, 117
 Hermitian conjugate, 26
 linear, 26
 projection, 27
 unitary, 27, 186
optical
cavity, 138--140, 163
 spherical mirror, 140
element
 linear, 31, 156
 path difference, 34
 resonator, 138
OR
 classical, 8
order, 181
ordinary ray, 68
ortho-isomorphism, 196
orthoautomorphism
 unitary, 196
orthocomplementation, 193
ortholattice, 192
orthomodular
 lattice, 193
poset
 sigma, 193
orthomodularity, 193
orthonormal basis
 countable, 26
oxide
barrier, 10
P-doped substrate, 9
parametric
down-conversion, 128
generation, 128
parity, 72
bit, 72
path difference
optical, 34
Paul trap, 109
Pauli
matrices, 46
problem, 156
uniqueness, 156
Penning trap, 109
phase
gate, 32
retarder, 22
shift, 18, 76
correction, 80
phase-coding
entangled pair, 132
EPR pair, 132
quantum cryptography, 81
phonon, 110, 112
 anticommutation relations, 112
 state, 112
phosphorus donor, 102
photon
 angular momentum, 20
 entangled, 62
 gun, 127
 idler, 129
 on demand, 127, 140
 particle aspect, 18
 Planck energy, 18
 pump, 129
 signal, 129
 total angular momentum, 21
 wave aspect, 18
physical computation, 34
pickup coil, 96
Planck energy, 18
 electron, 93
 photon, 18
PMOS, 9
PNP MOSFET, 9
Poisson distribution, 127
polarization, 18
 circular, 20, 147
Hilbert space, 156
linear, 18, 19, 22, 39, 40, 44, 59, 63, 68, 70, 129, 147
 nonlinear, 129
polarization-coding
 entangled pair, 131
 EPR pair, 131
polarizing beam splitter, 150
population
 inversion, 138
 inverted, 140
poset
 orthomodular
 sigma, 193
Poynting vector, 19, 21
precession, 96
 frequency, 97
prime
 relatively, 67, 180
privacy amplification, 85
probabilistic
 device
 quantum, 20
intrinsically
 quantum measurement, 27
transformation function
 Turing machine, 190
Turing machine, 190
probability
 amplitudes
 quantum, 27
 coincidence, 61, 62
 quantum, 20, 27, 28
projector, 27
propagation vector, 20
propositional logic, 7
protocol
 B92, 81, 82
 BB84, 69, 82
 Bennett-Brassard, 69
 six-state, 81
pseudo CNOT gate, 160
public
 key cryptography
 classical, 66
 key protocol
 classical, 67
RSA, 67
pump photon, 129
pure state, 28, 40
purification, 153
QED, 90
cavity, 88, 124
QKD, 125, 127
QND device, 157
quantum
bit-flip, 76
bits, 17
CCNOT gate, 77
circuit, 30, 32, 52, 55--57, 77--80, 122, 153, 176, 182,

191
diagram, 32, 182
interaction-free, 166
quantum logic, 61
size, 30
coin, 173
computation
roadmap, 124
computer
cavity quantum electrodynamics (QED), 88
continuous, 194
ion trap, 121
Kane, 103
NMR, 98
silicon-based, 103
controlled-controlled-NOT gate, 77
cryptography, 36, 64, 69
 continuous variables, 126
 entangled pairs, 126, 128
 free space transmission, 126
 phase-coding, 81
 roadmap, 126
 single-photon sources, 126, 127
 weak laser pulses, 126
dot, 128, 152
Fourier transform, 173, 183
gate, 17, 23, 29, 108
information theory, 61
key distribution, 125
logic, 15, 61
 completeness, 194
 gate, 17, 29
 proper, 194
 soundness, 194
measurement, 27
intrinsically probabilistic, 27

network, 20

DARPA, 125

nondemolition detection device, 157

number

angular momentum, 89, 147

magnetic, 147

probabilistic device, 20

probability, 20, 27, 28

amplitudes, 27

register, 182

repeater, 151

transition function

Turing machine, 190

Turing machine, 190

quarter-wave plate, 22, 149, 166

quaternions

(skew) field of, 191, 196

qubit, 19

control, 51

entangled, 57

flying, 20, 123

stationary, 20, 123

target, 51
qutrits, 51
QWP, 22, 166

Rabi
 flopping frequency, 115
 frequency, 115, 119
radio-frequency (RF), 96, 103
 magnetic field
 Kane computer, 103
 NMR computer, 96
Raman
 adiabatic passage
 stimulated, 144
 scheme, 113
ray
 extraordinary, 68
 ordinary, 68
real numbers
 field of, 191, 196
reckonability, 5
red sideband frequency, 121
reflectance, 41
reflection coefficient, 41
reflectivity, 161
register
quantum, 182
relatively prime numbers, 67, 180
resonance
 interaction-free detection, 163
resonant pulses, 96
resonator, 161
 Fabry-Perrot, 138
 optical, 138
 total-internal-reflection
 monolithic, 161
reversible
 circuit, 16, 54
 logic, 15
 logic gate, 15
 universal gate, 15
RF, 96, 103
 coil, 96
 electric field, 110
 field, 103
 generator, 96
 pulses, 96
 signals, 96
right-hand circular polarization, 21
Ritt’s characteristic set calculations, 171
roadmap
 quantum computation, 124
 quantum cryptography, 126
rotating wave approximation, 115
round-trip, 161
RSA
 key, 35
 public key protocol, 67
rubidium, 148, 165
S-gate, 107
sigma-orthomodular poset, 193
scalable
 ion trap computer, 122
Schrodinger
 cat states, 57
 equation, 114, 136, 142, 187, 197
 picture, 120
selection frequency, 162
semiconductor, 9
 Si, 103
separable subspace, 26
SET, 12, 105
Sheffer stroke, 7
Shor’s algorithm, 31, 35, 36, 64, 98, 137, 180, 181
exponential speedup, 181
exponential time, 181

NMR, 98, 180, 183

Si semiconductor, 103
Si substrate, 103
sideband frequency, 121
sifted key, 71
signal photon, 129
silicon-based nuclear spins, 88, 100
Simon’s algorithm, 31, 180
 exponential speedup, 180
single-electron transistor, 12, 105
single-photon
detector, 126
Fock state, 127
singlet state, 43, 62
 maximal, 153
 nonmaximal, 153
Sisyphus cooling, 111, 119
six-state protocol, 81
size of a quantum circuit, 30
SO(3) group, 47
solid state, 124
space
finite dimensional, 26
Fock, 40
Hilbert
 n-dimensional, 167
 composite, 136
 embedding, 156
 polarization, 156
spin, 48
vector, 24
special
 2-dimensional unitary group, 47
 orthogonal 3-dimensional rotation group, 47
spherical mirror
 optical cavity, 140
spin
 electron, 91, 100
 space, 48
subspace
 Kane computer, 106
spin-orbit interaction, 91, 102, 147
state
 Bell, 154
 decomposition, 156
cloned, 58
copied, 58

dark, 143, 145, 147
cavity, 146
teleportation, 147
empty, 40
entangled, 45, 57, 79
 on demand, 122
Fock
 single-photon, 127
hyper-entangled, 156
metastable, 138
number, 117
pure, 28, 40
singlet, 43, 62
 maximal, 153
 nonmaximal, 153
teleported, 64
triplet, 62, 131
unknown, 58, 137
vacuum, 40, 117
stimulated Raman adiabatic passage, 144
STIRAP, 144, 146, 149
Stokes
 laser, 144
beam, 143
field, 144
strong
interaction, 190
SU(2) group, 47
subexponential
complexity, 35, 180
subspace
closed, 26
linear, 27
separable, 26
spin
Kane computer, 106
substrate, 9
Si, 103
super-polyomial complexity, 180
superconducting, 124
superposition, 20, 22, 24, 167
lattice, 195
principle
lattice, 195
swapper, 156
syndrome, 75
tally, 4
target qubit, 51
teleportation, 61, 63, 68, 150, 151
deterministic, 122
teleported state, 64
tensor product, 40
Toffoli gate, 16, 54
tokamak, 87
total-internal-reflection resonator
monolithic, 161
transistor, 9
 barrier, 10
 channel, 9
 circuit, 12
 single electron, 12, 105
transition function
deterministic
 Turing machine, 4
probabilistic
 Turing machine, 190
quantum
 Turing machine, 190
transmission coefficient, 41
transmittance, 41
transversal field, 21
trapped ion, 109, 124
 computer, 109
trial divisions, 34
trichloroethylene, 97
triplet state, 62, 131
truth table, 8
tunneling
 resonator, 161
Turing machine, 1
deterministic, 4
 transition function, 4
Godel numbering of, 6
probabilistic, 190
 transition function, 190
quantum, 190
 transition function, 190
universal, 7
Turing-computable, 5
type-I down-conversion, 130
type-II down-conversion, 130
unconditional security of quantum cryptography, ix, 72, 83, 126
unitary
 orthoautomorphism, 196
unitary operator, 27, 186
universal
 quantum gate, 53
 reversible gate, 15
 Turing machine, 7
unknown state, 58, 137
vacuum
 state, 40, 117
van der Waals gas, 190
vector
 space, 24
vertex, 168
wave
 approximation
 rotating, 115
equation
 linearization, 46
vector, 20
weak
 interaction, 190
Weierstrass solid immersion lenses, 128
welcher Weg, 164
which way, 164
winner (would be quantum computer), 124
XOR, 8, 65, 72, 74, 85, 174
Zeeman

effect

anomalous, 88

normal, 88

nuclear, 95

magnetic

field, external, 88, 90

field, inner, 91

Hamiltonian part, 104

splitting, 90, 142

sublevels, 147

ON THE AUTHOR

The field of quantum computing has experienced rapid development and many different experimental and theoretical groups have emerged worldwide. This book presents the key elements of quantum computation and communication theories and their implementation in an easy-to-read manner for readers coming from physics, mathematics, and computer science backgrounds. Integrating both theoretical aspects and experimental verifications of developing quantum computers, the author explains why particular mathematical methods, physical models, and realistic implementations might provide critical steps towards achieving the final goal—constructing quantum computers and quantum networks. The book serves as an excellent introduction for new researchers and also provides a useful review for specialists in the field.