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P r e f a c e
The attraction of quantum computation and quantum communication theory and experiments lies in the
fact that we engineer both them themselves and the quantum systems they treat. This approach has turned
out to be very resilient. Driven by the final goal of calculating exponentially faster and communicating
infinitely more securely than we do today, as soon as we encounter a limitation in either a theory or
experiment, a new idea around the no-go emerges. As soon as the decoherence "demon" threatened the
first computation models, quantum error correction theory was formulated and applied not only to
computation theory but also to communication theory to make it unconditionally secure. As soon as
liquid-state nuclear magnetic resonance experiments started to approach their limits, solid-based nuclear
spin experiments - the Kane computer - came in. As soon as it was proved that it is theoretically
impossible to completely distinguish photon Bell states, three new approaches appeared:
hyperentanglement, the use of continuous variables, and the Knill-Laflamme-Milburn proposal. There are
many more such examples. 
What facilitated all these breakthroughs is the fact that at the present stage of development of quantum
computation and communication, we deal with elementary quantum systems consisting of several



two-level systems. The complexity of handling and controlling such simple systems in a laboratory has
turned out to be tremendous, but the basic physical models we follow and calculate for the systems
themselves are not equally intricate. We could say that the theory of the field leads the experiments in a
particular way-with each new model we put forward and apply in the laboratory, we also build up and
widen the theory itself. Therefore, we cannot just proceed with assembling quantum computers and
quantum networks. We also have to use mathematical models to understand the physics of each step on
the road to our goal. 
As a consequence, both mathematics and physics are equally essential for any approach in the field and
therefore for this book as well. The mathematics used in the book is a tool, but an indispensable tool
because the physics of quantum computation and communication theory and their experiments cannot be
grasped without good mathematical models. When we describe an experiment many times, we may get
used to it, but this does not mean we are more at home with the principles and models behind it. This is
why I have chosen to make this book an interplay between mathematics and physics. The idea of the book
is to present those details that are used the most often both in theory and experiment and to dispense with
many inessential ones. Also, the book is not conceived as a textbook, at least not as a primary one, but
more as a guide to a better understanding of theory and experiments by coming back to the same concepts
in different models and elaborations. Clear physical ideas make any formalism easy. 
Mladen Pavicic 

I  n t r o d u c t i o n
Two predictions are cited particularly often whenever one talks or writes about the history or future of
computing. One of these is more and more wrong, and the other is less and less right, and they both teach
us how to use theoretical opportunities to find new technologies. 
The first prediction, a beloved opening of speeches and papers, was made by the head of the
electromagnetic relay calculator at Harvard, Howard Aiken, in 1956: "If it should turn out that the basic
logics of a machine designed for the numerical solution of differential equations coincide with the logics
of a machine intended to make bills for a department store, I would regard this as the most amazing
coincidence that I have ever encountered" [Anonymous, 1997] 
The amazing "coincidence" did happen and happens more and more every day, tempting us to consider it a
part of the history of computers that took its own unexpected course ("Only six electronic digital
computers would be required to satisfy the computing needs of the entire United States," Howard Aiken
said in 1947): a program and a machine, software and hardware, were interwoven at the beginning and
then became more and more separated. At least it seems so when we look at the development of computer
designs since Charles Babbage’s 1840s Analytical Engine. A program on punched cards or tapes and a
machine for which the specific cards were made look inseparable, in contrast to today’s programs which
we move throughout the World Wide Web and compile and execute on virtually any computer. 
Yet Alan Mathison Turing (and also Alonzo Church, Stephen Cole Kleene, and Emil Post independently
at the same time) had already proved in 1936 that the only possible course the history could have taken
was the one it in fact took. Turing used what we now also cite often and call a Turing machine to prove
that only the simplest calculus, such as a propositional algebra with a Boolean evaluation (true, false) and
its main model a 0-1 Boolean algebra, is computable, i.e., effectively calculable [Turing 1936; Turing,
1937]. He (and others) also proved that real numbers are not computable, that there exists no algorithm
with the help of which we can decide for every arithmetical sentence in finitely many steps whether it is
true or false, etc. In other words, from the very start we only had Boolean algebra at our disposal, and once
hardware was developed that could handle classical logic operations - such implementations of logic



operations are called logic gates - the universal classical computer was born. The "only" thing one had to
develop were "digital" algorithms and programs for all possible applications, i.e., the software for a
universal computer. Everything - solving nonlinear differential equations, 3D modeling, speech
recognition, and "making bills for a department store" - had to be reduced to a Boolean language. Since
such a reduction imposes ever-growing speed and memory requirements upon the hardware, until
mid-2002 we were witnessed quite the opposite situation than half a century ago: the software lagged
behind the hardware, following the Wirth’s law: "Software gets slower faster than hardware gets faster."
Will this computing history repeat itself with quantum computers? Will quantum hardware start to
advance faster than quantum software (quantum algorithms) in the near future? In this book we shall try to
learn how close we are to answering these questions. 
The second prediction is known as Moore’s Law, or better yet, Moore’s laws, since there are many
versions and varieties of the several formulations made by Gordon Moore of the Intel Corporation. One
widespread rendering of the law, "The number of transistors on a single integrated-circuit chip doubles
every 18 months" [Birnbaum and Williams, 2000], does not correspond to the historical data which show
26 months [Brenner, 2001]. Moore himself commented. "I never said 18 months. I said one year [in 1965],
and then two years [in 1975]. One of my Intel colleagues changed it from the complexity of the chips to
the performance of computers and decided that not only did you get a benefit from the doubling every two
years but we were able to increase the clock frequency, too, so computer performance was actually
doubling every 18 months. I guess that’s a corollary of Moore’s Law. Moore’s Law has been the name
given to everything that changes exponentially in the industry... If Al Gore invented the Internet, I
invented the exponential" [Yang, 2000] 
And this "exponential" element is what is essential for our development and what quantum computers are
about. Apparently everything underlying the development of technology and society grows exponentially:
research, information, production and organization complexity, and above all, the costs of keeping pace.
So only an exponential increase of our computational and processing power and an exponential decrease
of computer cost per processed bit could support such a development. Therefore, Moore’s law was been
kept as a guideline in the computer industry in past three decades and it has supported a global
development during this period. 
Gates in today’s computers are switched on and off by about 1000 electrons. In 2010, the exponential
Moore’s Law would require that only about 10 electrons do the job. Miniaturization cannot go much
further than that. It is true that many other possible roads could still keep up the pace for a few more years:
insulating layers can be reduced in their thickness from the present 25 atoms to 4 or 5 atoms (wires
connecting transistors in a chip already occupy more than 25% of its space); computing power can be
increased by designing processors so as to contain execution units that process multiple instructions within
one cycle; processors can rely on parallel compiling technology and use innovative software; and finally,
chips can eventually get bigger by using reversible gates to avoid overheating. Still, by 2020 or 2025
computing technology will hit the quantum barrier, and if we want to support the growth of our
technology and science beyond that point in time, we need to find a substitute for exponentially rising
classical computational power by then. Actually, the exponential increase of the clock speed of processors
(CPUs) already became linear in 2002 (see Fig. 3.1, p. 135), and an extensive patching activity onto
classical hardware and software is currently under way in order to compensate for this lack of an
exponential increase in speed (see p. 136). 
Now that both Wirth’s and Moore’s laws are coming to an end, we should draw a moral from them.
Wirth’s law taught us that classical hardware development has prompted ever new software, and Moore’s
law taught us that this hardware development has followed an exponential trend of speed, memory, and
lately of number of processors (multiple cores, multiple processors, clusters). Such an approach to
computation will apparently change completely in the quantum realm. Quantum hardware is exponential



in itself, and if we eventually succeed in making functional scalable quantum computers, we will dispense
with the need for a steadily growing quantum hardware development - to make a quantum computer faster
means to scale it up linearly or polynomially. We will also dispense with writing ever new software for
faster and faster hardware. Once developed, quantum software (quantum algorithms) will simply scale up
as we scale - and therefore speed up - quantum hardware. 
The "exponential" is built into quantum hardware from its very first quantum bit or qubit. Qubits,
physically supported by single atoms, electrons, or photons, can superpose and entangle themselves so as
to support an arbitrary number of states per unit. Recently devised algorithms - quantum software - relying
on the exponential feature of quantum hardware have explicitly demonstrated how one can reduce
important problems that are assumed to be exponentially complex, to polynomially complex tasks for
quantum computers. This has opened a vast new interdisciplinary field of quantum computation and
communication theories, together called quantum information theory, which along with its experimental
verifications are already taught at many universities and have resulted in several very successful
textbooks. 
The target of these courses, seminars, and textbooks is to teach and familiarize students and scientists with
this new field - in which new research projects will keep opening for decades to come - and to help
integrate the theory and experiments of quantum computation and communication into a would-be
quantum network implementation. The goal of the book in front of the reader is the same; however, it
allows her or him to digest the field "by reading." That means that there will be no homework and no
exercises. Instead, most of the required details are elaborated within the main body of the book, and a
polynomial complexity of reading is intended, optimally in one run. 
So, a few words about the reader. She or he is expected to be familiar with higher mathematics and the
basics of physics - in particular, quantum physics. The reader could be any former student who graduated
in the technical or natural sciences, although an undergraduate student might also find many if not all
sections of the book digestible. Students as well as specialists in the field might also find the nutshell
approach of the book helpful and stimulating. 

Chater 1

BITS AND QUBITS: THEORY AND ITS IMPLEMENTATION
In 1936 several authors showed, in effect, that if a function is effectively calculable, then it is Turing
computable and, of course, vice versa [Church, 1936c; Turing, 1936; Turing, 1937; Church, 1936a;
Church, 1936b; Kleene, 1936; Post, 1936]. Turing concluded: 

We do not need to have an infinity of different machines doing different jobs. A single one will
suffice. The engineering problem of producing various machines for various jobs is replaced by the
office work of "programming" the universal machine to do these jobs

This statement does not mean that Turing envisioned the "universal computer" we have today, although he
was well acquainted with the project of breaking the cryptographic codes of German messages carried out
on the Colossus (the British "computer" at Bletchley Park, which operated from 1943 until the 1950s). His 
universal Turing machine is a "universal computer" only in the sense that it keeps to the standard digital
(classical, 0-1) implementation, i.e., to the binary digits, or bits, of today’s hardware. 



1.1 The Turing Machine vs. a Computing Machine
The software used by any classical computer must be based on what a Turing machine can confirm to be
calculable, recursive, and decidable. A historical problem with the development of computers was that
there were few calculus categories of the latter kind. The only types of calculus that Turing machines can
show to be calculable are the simplest algebras with the simplest evaluations, such as propositional
calculus with Boolean (true-false) evaluation, or 0-1 Boolean algebra. It can be shown that even the
simplest propositional calculus with a nonordered evaluation [Pavicic and Megill, 1999] or simplest
arithmetic with natural numbers [Hermes, 1969] is not calculable simply because such types of algebra are
neither recursive nor decidable nor calculable. Directly, a Turing machine can only be used to prove that
no mathematics we know from primary school can be literally run on it. 
Turing machines, or any equivalent mathematical algorithms, are essential in order to decide whether a
chosen problem is calculable or not, but we do not use them to write down a new program for, say, 3D
modeling or speech recognition. Still, since there are many references to the Turing machine in the
literature on quantum computing, let us provide some details [Hermes, 1969]. In doing so, we bear in mind
that Turing machines and all related concepts are "concepts of pure mathematics. It is however very
suggestive to choose a technico-physical terminology suggested by the mental image of a machine"
[Hermes, 1969, p.31]. 
The Turing machine is neither today’s "universal" computing machine - generally called a computer - nor
a generator of new algorithms for the latter machine. Instead, it is simply a mathematical procedure to
check whether a chosen algebra and/or calculus can or cannot be implemented into a computer. To show
this, we present some details of the procedure. The details often appear in the literature without being put
into the context of a final outcome and so are just left hanging, giving the impression of being building
blocks for a computer, or an algorithm to be carried out on one. On the other hand, the notion of the
classical Turing machine is rather important for understanding the role that the quantum Turing machine
has in the theory of quantum computation. 
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