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Modeling of the pyruvate production with Escherichia coli: comparison
of mechanistic and neural networks-based models

Received: 10 February 2006 / Accepted: 17 February 2006 / Published online: 10 March 2006
� Springer-Verlag 2006

Abstract Three different models: the unstructured
mechanistic black-box model, the input–output neural
network-based model and the externally recurrent neu-
ral network model were used to describe the pyruvate
production process from glucose and acetate using the
genetically modified Escherichia coli YYC202 ldhA::Kan
strain. The experimental data were used from the re-
cently described batch and fed-batch experiments [ Zelić
B, Study of the process development for Escherichia coli-
based pyruvate production. PhD Thesis, University of
Zagreb, Faculty of Chemical Engineering and Technol-
ogy, Zagreb, Croatia, July 2003. (In English); Zelić et al.
Bioproc Biosyst Eng 26:249–258 (2004); Zelić et al. Eng
Life Sci 3:299–305 (2003); Zelić et al Biotechnol Bioeng
85:638–646 (2004)]. The neural networks were built out
of the experimental data obtained in the fed-batch
pyruvate production experiments with the constant
glucose feed rate. The model validation was performed
using the experimental results obtained from the batch
and fed-batch pyruvate production experiments with the
constant acetate feed rate. Dynamics of the substrate
and product concentration changes was estimated using
two neural network-based models for biomass and
pyruvate. It was shown that neural networks could be
used for the modeling of complex microbial fermenta-
tion processes, even in conditions in which mechanistic
unstructured models cannot be applied.

Keywords Pyruvate Æ Escherichia coli Æ Unstructured
‘‘black-box’’ model Æ Input–output neural network-
based model Æ Externally recurrent neural network
model

Abbreviations cA: acetate concentration (g L�1) Æ cA,0:
acetate concentration in the feed (g L�1) Æ cG: gucose
concentration (g L�1) Æ cG,0: glucose concentration in
the feed (g L�1) Æ cP: pyruvate concentration
(g L�1) Æ cP,MAX: critical pyruvate concentration above
which reaction cannot proceed (g L�1) Æ cX: biomass
concentration (g L�1) Æ KP: inhibition constant of
Jerusalimsky (g L�1) Æ KS

A: monod growth constant for
acetate (g L�1) Æ KS

G: monod growth constant for
glucose (g L�1) Æ mA: Maintenance coefficient for
growth on acetate (g g�1 h�1) Æ mG: maintenance
coefficient for growth on glucose (g g�1 h�1) Æ qV:
volumetric flow rate (L h�1) Æ qVA: volumetric flow rate
of acetate (L h�1) Æ qVG: volumetric flow rate of glucose
(L h�1) Æ rA: specific rate of acetate consumption
(g g�1 h�1) Æ rG: specific rate of glucose consumption
(g g�1 h�1) Æ rP: specific rate of pyruvate production
(g g�1 h�1) Æ t: time (h) Æ V: reaction (broth) volume
(L) Æ YP/G: yield coefficient pyruvate from glucose
(g g�1) Æ YX/A: yield coefficient biomass from acetate
(g g�1) Æ YX/A,MAX: maximum yield coefficient biomass
from acetate (g g�1) Æ YX/G: yield coefficient biomass
from glucose (g g�1) Æ YX/G,MAX: maximum yield
coefficient biomass from glucose (g g�1) Æ u: input
variables (–) Æ x: current output state (–) Æ l: specific
growth rate (h�1) Æ lMAX: maximum specific growth rate
(h�1)

Introduction

The quantitative comprehension of the dominant met-
abolic processes in the production strain, for instance
substrate consumption, biomass growth, oxygen de-
mand etc., is an important step in the development,
optimization and scale-up of microbial fermentation
processes. It is difficult to model and control biopro-
cesses owing to uncertainties and non-linear dynamics of
biological phenomena. Therefore, black-box unstruc-
tured models were used due to their extreme simplicity
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and applicability to a variety of modeling tasks. On the
other hand, unstructured models required some rigorous
constraints such as the balanced growth and one com-
ponent cell system. Time-consuming and difficult
experiments essential for an accurate estimation of the
model parameter and cellular metabolism, which com-
prises many complex and interactive reactions irrespec-
tive of the unstructured models, would not produce
unstructured models suitable for the estimator and
control design [1, 2].

Mechanistic models such as the unstructured models
of microbial fermentation processes based on mass and
energy balances may be of a very high order. In the case
of distributed parameter systems, the conversion of
mechanistic model described by partial differential
equations into a system of ordinary differential equa-
tions leads to a very high order model unsuitable for a
direct application in an estimator framework. Therefore,
it is important to create models that would be conve-
nient for the estimator and the process design. Fur-
thermore, the indicators of the bioprocess behavior,
such as biomass and product concentration, are usually
measured off-line, resulting in a very difficult recognition
of undesirable fermentation, and leading to a consider-
able waste of time and resources. This problem has led
to the development of a range of the so-called ‘‘software
sensors’’, which utilize mathematical models and algo-
rithms, together with the on-line available measured
process variables to estimate the behavior of the fer-
mentation process [3].

One of the main obstacles to the effective bioprocess
operation is a lack of on-line information regarding the
bioprocess condition. They are mostly model based and
as such require a good description of the mathematical
process. The excellent neural network characteristics
such as the treatment of non-linear systems, noisy and
approximate data, learning from the past data in order
to adapt to a changing environment and a prompt exe-
cution of actions once the network has been trained offer
a great potential in biosensor data processing, variable
prediction, optimization and advance control of dy-
namic bioprocess [4–9]. Inevitably, there must be some
simplifications in the model structure, leading to a sim-
plified model that does not truly represent the real
complexity and non-linearity of the process. Neverthe-
less, the accuracy provided by artificial neural networks
turns them into an attractive approach for the consid-
eration of bioprocess variable estimation [10]. The
variety of available neural network architectures allows
us to deal with a wide range of bioprocess modeling and
control problems. In comparison to other empirical
models, neural networks are relatively less sensitive to
noise and incomplete information, thus facilitating the
management of a higher level of uncertainty when ap-
plied in process control problems [11].

The advantage of using a neural network to simulate
a process lies in the fact that it represents a quick and
reliable way of dynamic performance prediction. It can
also be continuously updated. Two groups of methods

can be found in references that can be used for a dy-
namic process modeling by means of a neural network.
The first group is the so-called input–output models [12],
and the second group is recurrent neural networks [13].

The advantage of using the first group for the
approximation of the dynamic process is the possibility
of using any static neural net, since the dynamic
behavior of the process is enforced by the use of history
data. The problem with these models is a need to de-
trend the measurement data in order to achieve the
feasibility to model long-term dependencies. Hence, the
second group of methods is often used. This group in-
cludes the so-called recurrent neural nets [13]. Recurrent
nets are usually internally recurrent structures such as
the Elman network [14], the Jordan network [15] or the
classical dynamical system described by Perreto and
Niez [16].

Dynamical neural models can be internally or exter-
nally recurrent. Internally recurrent neural models are
differential equation systems requiring parameter deter-
mination. There are a number of methods for network
training in references. These methods are relatively
complex because they have to solve a series of practical
problems such as the possible numerical instability or
the information loss problem in terms of distant time
characteristics (gradient vanishing). Consequently,
Nerrand developed an externally recurrent neural net-
work [17].

Neural networks were shown to be superior to
mechanistic models in the description of bioprocesses in
many lab-scale and industrial, real or simulated pro-
cesses. The application of neural network ranges from
the estimation of biomass and product (penicillin, amino
acids, secondary metabolites) concentrations [18–20] to
on-line control and optimization of fed-batch fermen-
tation and enzyme production processes [21, 22].

The purpose of this paper is to compare the experi-
mental results of batch, fed-batch and continuous
experiments with the simulation results of mechanistic
unstructured ‘‘black-box’’ model and the simulation re-
sults of neural network-based models in order to test the
effectiveness and accuracy of neural networks in bio-
process modeling and estimation. The pyruvate pro-
duction process from glucose and acetate, using
genetically modified Escherichia coli YYC202 ldhA::Kan
strain, was used as a model system. This strain is com-
pletely blocked in its ability to convert pyruvate into
acetyl–CoA or acetate [23, 24]. The production strain,
mediums, process conditions and cultivation methods,
as well as the experimental results, are described else-
where [1, 2, 23, 24].

Model description

In order to simplify the model, the bioconversion of
glucose to pyruvate is regarded as a one-step-enzymatic
reaction:
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C6H12O6 ����������������!
Escherichia coli; acetate; O2

2C3H4O3 þ 2H2O

The following constraints were used to define all the
models: glucose and acetate are only limiting substrates;
cell growth occurs only in the presence of both sub-
strates; there was no oxygen effect on biomass growth
and pyruvate production; product formation kinetics
should combine growth-associated and non-growth-
associated characteristics; bioconversion of glucose to
pyruvate was assumed to be a one-step-enzymatic reac-
tion; both biomass growth and pyruvate production
were inhibited by high pyruvate concentrations; the
viscosity of the reaction mixture remains constant dur-
ing experiments; and the potential mixing effects of the
highly concentrated feed with the cultivation medium
are neglected in order to protect the model simplicity.

Mechanistic unstructured model

Modeling of the pyruvate production process using
genetically modified E. coli YYC202 ldhA::Kan strain
was already presented [1, 2]. The model equations for the
batch and fed-batch pyruvate production process, which
describe biomass growth, pyruvate formation, glucose
and acetate uptake, followed by the volume change in
the case of fed-batch process, are represented by the
following set of differential equations (Eqs. 1–5).

dcX
dt
¼ � qV

V
� cX þ l � cX ð1Þ

dcG
dt
¼ �qV

V
� cGþ

qVG
V
� cG;0� rG� cX� rP�cX ð2Þ

dcA
dt
¼ � qV

V
� cA þ

qVA
V
� cA;0 � rA � cX ð3Þ

dcP
dt
¼ � qV

V
� cP þ rP � cX � YP=G ð4Þ

dV
dt
¼ qVG þ qVA ¼ qV ð5Þ

where, cX, cG, cA and cP are the biomass, glucose, ace-
tate and pyruvate concentrations, respectively, V is the
biosuspension volume, qV is the time-dependent overall
volumetric flow rate, qVG and qVA are glucose (G) and
acetate (A) analogues, and cG,0 and cA,0 are glucose and
acetate concentration in the feed. The kinetics of bio-
mass growth (l), pyruvate formation (rP), glucose up-
take (rG), acetate uptake (rA) are described as follows
(Eqs. 6–9):

l ¼ lMAX �
cG

KG
S þ cG

� cA
KA
S þ cA

� KP

cP þ KPð Þ ð6Þ

rP ¼ a � dcX
dt
þ b � cX

� �

� 1� cP
cP;MAX

� �

ð7Þ

rG ¼
l

YX=G
ð8Þ

rA ¼
l

YX=A

ð9Þ

The model combines the growth inhibition by pyru-
vate described by Jerusalimsky approach [25], and the
pyruvate inhibited product formation described by a
modified Luedeking-Piret/Levenspiel term [2]. The
model developed by Jerusalimsky represents an
approximate analogy to the non-competitive substrate
inhibition, which is often used in pure enzyme kinetic
models. The yields such as biomass/glucose, YX/G and
biomass/acetate, YX/A were assumed to be the functions
of biomass growth and maintenance energy demand
(Eqs. 10–11).

YX=G ¼
YX=G;MAX � l

YX=G;MAX � mG þ l
ð10Þ

YX=A ¼
YX=A;MAX � l

YX=A;MAX � mA þ l
ð11Þ

Neural network-based model of the pyruvate production
process

The objective was to estimate the biomass and pyruvate
concentrations that are difficult to measure on-line. The
estimation algorithms were developed using the two
above-mentioned techniques: the input–output neural
network-based model and the recurrent neural network
model. Both of the models were developed, fitted, sim-
ulated and tested using real pyruvate production
experimental data. The standard input–output ‘‘black-
box’’ model, shown in Fig. 1a, was previously described
[26].

All data are divided into train, test and validation
sets. The test set is indirectly used in the model con-
struction, whereas the validation set is completely inde-
pendent of the model construction. Twenty percent of all
data are chosen randomly from the data for the vali-
dation set, which is specified by the software package.
Although the explicit training of the model uses only the
training set, the performance on the test set is used to

Fig. 1 a Input–output neural network. b Continuous externally
recurrent neural network

41



guide choices during the model construction. Several
models are built using the train–test set, and then the
final model is chosen, based on its performance on the
validation set. Yet another level of validation set for the
final performance assessment is used with another fed-
batch experiment.

Continuous externally recurrent neural network

To improve the possibility of the neural approximation
and to prevent potential integration instability, the
continuous version of the externally recurrent network is
used (Eq. 12):

dx
dt
¼ f ðx; uÞ ð12Þ

In order to gather the data necessary for the neural
network training, the right-hand side of the system (7)
must be evaluated. This task can be accomplished by a
numerical derivation of the original measurement data
values with respect to time by one of the known tech-
niques [27]. Therefore, it is simpler to use the externally
recurrent dynamical neural model in the state space.
Such a model is also called a neural model in the state
space or a canonical neural model, with the mathemat-
ical description as follows (Eq. 13):

fkðxk; ukÞ �
Dx
Dt

� �

k
ð13Þ

The structure of the externally recurrent neural network
is shown in the Fig. 1b. It can be seen that the neural
network represents the right-hand side of the Eq. (12) as
a function of state and input variables.

During the recurrent neural network construction
procedure, several structures of feed forward networks
were evaluated with different sizes of the time window.
The size of the time window is optimized by the use of
the trial and error method [28]. After the training and
testing procedure, the chosen one has three equally
spaced time delay units of 0.05 h for input variables.

Building of the neural network model by cascade learning

Cascade learning based on the cascade-correlation
learning paradigm [29] is developed for the neural net-
work construction. Cascade learning starts off with no
hidden nodes. The only connection is a direct connection
from the input layer (and bias) to the output layer.
Hidden nodes are added one at a time, and the purpose
of each new hidden node is to predict the current
remaining output error in the network. Hidden nodes
receive the input from all previous hidden nodes as well
as from the input buffer; in other words, the hidden layer
has cascaded connections.

In our application the cascade-correlation algorithm
works as follows:

1. Train the direct connections from the input layer and
bias to the output layer. Train until the RMS (root
mean square) output error stabilizes.

2. Iterate on the following steps:

• – Train a new hidden node so as to maximize a
measure of the correlation between its output and
the residual error at the output for the current
training vector. The untrained hidden node is re-
ferred to as the ‘‘candidate’’. When training has
stabilized, or after a given number of training
iterations, learning is permanently disabled for the
incoming connections to that node. At this point,
the hidden node is said to be ‘‘tenured’’;

• – Connect the newly tenured hidden node to all
nodes in the output layer, and randomly initialize
the weights at those connections;

• – Train all the weights at all connections from the
input layer, bias and tenured hidden nodes to the
output layer. Train until the RMS output error
stabilizes.

The iterative steps are repeated until the performance
of the network (RMS error measured on a test set) no
longer shows any improvement.

Results and discussion

Model development and training of the neural networks

The development of the unstructured mechanistic
model, estimation of parameters and validation of the
model for the bioconversion of glucose to pyruvate using
genetically modified E. coli strain were described else-
where [2]. All experiments were carried out in a 7.5 L
bioreactor at a temperature of 37�C. Sufficient aeration
(dissolved oxygen[DO]‡40%) was obtained by vigorous
stirring (200–1,800 rpm), airflow rate (1–10 L min�1)
and reactor overpressure (0.2–0.8 bar).

The estimation of model parameters and model val-
idation were performed using the data from fed-batch
fermentations carried out at the constant glucose feed
rates (glucose concentration in the feed medium of
700 g dm�3) of 10, 20 and 30 cm3 h�1 . On the other
hand, acetate was fed according to the previously
developed feeding strategy [23]. In this heuristic ap-
proach, the acetate consumption was calculated based
on the on-line estimated CO2 production rate. The
acetate concentration in the acetate feed medium was
109 g dm�3 . The model identification was realized by
the least-square fit, and the model discrimination was
based on the model selection criterion (MSC), respec-
tively.

Using this modeling approach, the acceptable model
prediction for pyruvate formation was achieved (Figs. 2,
3 and 4). Unfortunately, the dynamics of pyruvate for-
mation is just one of the essential variables to model
process alternatives and scale-up. In the case of biomass,
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acetate and glucose, further studies must be performed
to increase the model predictive quality. The need to
incorporate additional aspects of energy demand or by-
product formation was identified, necessitating the
extension of the extant model by the structured model-
ing terms. Nevertheless, the identified unstructured
model was qualified as a promising tool for modeling
studies as well as for further, more detailed kinetic
modeling approaches. However, these kinds of models
are very sensitive to noises and disturbances, e.g., pro-
cess failures such as in the feed pump, level controller,
valve or coolant flow. The complex interactions between
kinetics and fluid mixing and the difficulty of main-
taining strict sterility over a long period are additional
points that cannot be covered by the use of the
unstructured model.

Unstructured models are, in most of the cases, inap-
plicable to process monitoring and control of large-scale
fermentations [30]. Therefore, neural network-based
models, which have been shown to be very useful in
describing bioreactor behavior [18, 20–22] in both real

and simulated industrial conditions, were used to rep-
resent pyruvate production process. To train externally
recurrent neural networks, it was necessary to generate
additional data and derive original concentration tra-
jectories. For that purpose the negative exponential
smoothing method was used, and the obtained sets of
data were applied as training sets. The smoothing
method weighs the data contained in a window sur-
rounding the smoothing location. The radius of this
window, the so-called bandwidth radius, was constant
and dependent on the data set time window (each data
set was divided into 500 intervals). The negative expo-
nential smoothing method applies a Gaussian weight
function to weigh the data and the quadratic fit. The
applied smoothing method parameters encompassed the
sampling proportion 0.1 and the polynomial degree 1–4.
The network was trained by the adaptive gradient
learning algorithm.

The input layer consists of four state variables (bio-
mass, glucose, acetate and pyruvate concentrations) and
two input variables (glucose and acetate feed rates).
Since the glucose and acetate flow rates were maintained
constant, the volume was not introduced as a state
variable in this modeling approach. In the general case
where the flows vary with time volume, it should be
included in the structure of neural networks. The output
layer includes the prediction of future values for biomass
(first network) and pyruvate concentration (second net-
work). Neural networks were built afterward within
hidden layers by cascade learning, adding hidden nodes
as described in ‘‘Building of the neural network model
by cascade learning’’ section. This procedure was
undertaken using the NeuralWare software package
Predict and ProfII/Plus running within Microsoft Excel
[29]. The final network architectures applied for the
prediction of biomass and pyruvate concentration have
one hidden layer consisting of four and eight hidden
nodes, respectively.

The number of samples used in the training set (680)
and the specified number of hidden nodes (4 and 8)
satisfied the criteria that the number of freedom is within
a half or a quarter of the number of samples used in the
training procedure [12, 31].

Validation of the models

Being aware that kinetic modeling is a difficult task for
bioprocesses, a succession of decisions must be made in
respect of those systematic methodologies that are still
lacking. Therefore, it is important to validate a model by
using data other than those applied to identify para-
meters. Furthermore, since the development of an
appropriate feeding strategy is critical in fed-batch
fermentation, the unstructured model and both neural
network- based models, respectively, were validated
on experimental data set collected in the fed-batch
fermentation with constant acetate flow rate
qVA=1.3 cm3 h�1, but glucose was not fed in the
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Fig. 2 Data obtained by model simulation (unstructured black-box
model ÆÆÆÆÆÆ; neural network model - - -; externally recurrent neural
network model —) and experimental data for biomass (filled
square) and pyruvate (filled circle) concentration in fed-batch
process at constant glucose volumetric flow rate of
qVG=10 cm3 h�1
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bioreactor. In this experiment, the initial glucose con-
centration was cG=23 g dm�3, and glucose was in ex-
cess during the experiment (data not shown).

Obviously, the unstructured black-box model is un-
able to predict process dynamics quantitatively, e.g., it is
unable to predict biomass and pyruvate concentrations
with acceptable accuracy (Fig. 5). Interestingly, pyru-
vate levels predicted by those models were approxi-
mately 50% lower, and biomass levels were 50% higher
than the experimental observations. One of the main
reasons for this kind of behavior of the unstructured
model simulation results is the impossibility to use this
kind of model for the description of experimental results
collected in the conditions different from those used for
the estimation of model parameters. Namely, the initial
glucose concentration in the fed-batch experiment with
constant glucose feed rate (cG,0=10 g dm�3) was two-
fold lower than in the fed-batch experiment with con-
stant acetate feed rate (cG,0=20 g dm�3). Furthermore,
during the fed-batch phase of the experiment performed

with constant glucose feed rate, the glucose concentra-
tion level was under the detection limit. In the fed-batch
experiment with constant acetate feed rate, the glucose
was in excess during complete fermentation, which
obviously resulted in a different response of complex and
various intracellular reactions, which were not covered
with the present unstructured ‘‘black-box’’ model. This
statement appears more reasonable after the comparison
of experimental and simulation results for the batch
experiment. The initial glucose and acetate concentra-
tion in the batch experiment were 17.4 g dm�3 and
0.5 g dm�3, respectively. In the batch experiment, the
differences observed in the fed-batch experiment with
the constant acetate feed are more intensive for both the
biomass and pyruvate concentration profiles investi-
gated (Fig. 6).

On the other hand, the applied neural network-based
models are able to follow the dynamic behavior of the
process quite well. Figures 2–4 show the results achieved
with the data set used for network training. After the
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Fig. 3 Data obtained by model simulation (unstructured black-box
model ÆÆÆÆÆÆ; neural network model - - -; externally recurrent neural
network model —) and experimental data for biomass (filled
square) and pyruvate (filled circle) concentration in fed-batch
process at constant glucose volumetric flow rate of
qVG=20 cm3 h�1
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model ÆÆÆÆÆÆ; neural network model - - -; externally recurrent neural
network model —) and experimental data for biomass (filled
square) and pyruvate (filled circle) concentration in fed-batch
process at constant glucose volumetric flow rate of
qVG=30 cm3 h�1
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examination of the data (glucose feed rate 10, 20 and
30 cm3 h�1), it can be observed that the biomass model
follows the experimental data fairly accurately. As for
the pyruvate concentration, the input/output neural
network model slightly oscillates, which can be linked to
an imbalance in the accessibility of the experimental
data. Moreover, a certain deviation in the pyruvate
concentration can be seen even prior to the end of the
experiment for the input–output neural model.

When applying the neural network models to the
constant acetate flow experiment (Fig. 5), a slight
oscillation in the models and deviations can still be seen
by the end of the experiment. Nevertheless, the experi-
mental data are gathered in a more balanced manner, so
the model follows the given values fairly well. For the
batch experiment, both the models follow the
experimental data accurately (Fig. 6), although there are
less of them but with shorter experimentation time.

Table 1 shows the comparison of average absolute
errors and maximum absolute errors for neural network

models. In this context, the training set is a set of points
that are used to fit the model parameters. The test set is
used as a part of the model-building process to prevent
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Fig. 5 Data obtained by model simulation (unstructured black-box
model ÆÆÆÆÆÆ; neural network model - - -; externally recurrent neural
network model —) and experimental data for biomass (filled
square) and pyruvate (filled circle) concentration in fed-batch
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Table 1 Parameters of input–output (NN1) and externally recur-
rent neural network (NN2) performances. Avg. Abs., the average
absolute error between the target output and the prediction; Max.
Abs., maximal absolute error between the target output and the
prediction

Data Set Avg. Abs. Max. Abs.

cX(NN1) Train 0.8346 4.8319
Test 0.8156 4.6155

Validation 0.8543 4.9350
cP(NN1) Train 0.6072 1.8212

Test 0.5983 1.8620
Validation 0.6045 1.8740

cX(NN2) Train 0.8127 4.0158
Test 0.8125 4.0167

Validation 0.8132 4.0137
cP(NN2) Train 0.1210 2.3261

Test 0.1240 0.6839
Validation 0.1236 1.2294
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over-fitting. The validation set is used as an additional
independent validation test set. According to these
measures, the externally recurrent network shows better
performance. Table 2 shows the sum of the squared er-
ror comparison for the three applied models. The table
clearly shows the applicability of the neural network
model in comparison to the unstructured mechanistical
model. Both networks have proven to be equally good in
the batch process, while the externally recurrent network
has been better in validating the fed-batch. The input/
output neural network has shown slightly better per-
formance on the training set, but the externally recurrent
neural network model is also applicable.

Based on our experience, the externally recurrent
neural network should have some advantage over input–
output network. This advantage is due to the fact that
the integration can be performed with an arbitrary
method for the integration of differential equation sys-
tems. In practice, that means capability to deal with stiff
and instable systems. The obvious disadvantage of the
externally recurrent network is a necessity to do a con-
siderable amount of data manipulation in order to pre-
pare data for network learning, such as smoothing and
derivation. The method is useful only for an autono-
mous (time invariant) process where time is not con-
tained explicitly in the process model, so any static
neural net can be used.

Conclusion

The unstructured mechanistic ‘‘black-box’’ model for
the bioconversion of glucose to pyruvate using E. coli
YYC202 ldhA::Kan strain cannot fit adequately the
experimental data obtained in the different processes.
The developed model is able to give some basic infor-
mation about the process and possible process optimi-
zation, and scale-up further model enlargement on
structural modeling terms.

The developed neural network-based models are
relatively simple methods for real-world application.
The results obtained using the neural networks show
satisfactory compliance with experimental values. The
performances of the neural networks show conclu-
sively that they have the potential to be implemented
as an online state-estimator, facilitating the control of
pyruvate production, and also be used in process
optimization.
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1. Zelić B (2003) Study of the process development for Escherichia
coli based pyruvate production. PhD Thesis, University of
Zagreb, Faculty of Chemical Engineering and Technology,
Zagreb, Croatia (In English)

2. Zelić B, Vasić-Rački Ð, Wandrey C, Takors R (2004) Modeling
of the pyruvate production with Escherichia coli in a fed-batch
bioreactor. Bioproc Biosyst Eng 26:249–258

3. Prasad V, Bequette BW (2003) Nonlinear system identification
and model reduction using artificial neural networks. Comp
Chem Eng 27:1741–1754

4. DiMassimo C, Montague GA, Willis MJ, Morris AJ, Tham
MT (1992) Enhancing industrial bioprocess monitoring
through artificial neural networks. IFAC Modeling and Con-
trol of Biotech Proc, Keystone, Colorado, 395–398

5. Linko P, Zhu YH (1991) Neural network programming in
bioprocess variable estimation and state prediction. J Biotech-
nol 21:253–270

6. James S, Legge R, Budmann H (2002) Comparative study of
black-box and hybrid estimation methods in fed-batch fer-
mentation. J Proc Control 12:113–121

7. Linko S, Luopa J, Zhu YH (1997) Neural networks as ‘‘soft-
ware sensors’’ in enzyme production. J Biotechnol 52:257–266

8. Martin GD (1997) Consider soft sensors. Chem Eng Prog 66–
70

9. Dochain D, Perrier M (1997) Dynamical modeling, analysis,
monitoring and control design for nonlinear bioprocesses. Adv
Biochem Eng 56:149–197

10. Kapil GG, Mehra S, Gomes J (2005) On-line adaptation of
neural network for bioprocess control. Comp Chem Eng
29:1047–1057

11. Baughman DR, Liu YA (1995) Neural networks in biopro-
cessing and chemical engineering. Academic, San Diego, CA

12. Masters T (1995) Neural, novel & hybrid algorithms for con-
tinually running fully recurrent neural networks. Wiley, New
York

13. Gosak D, Vampola M (2001) Generic neural model control of
batch distillation process. IchemE symposium ‘‘Advances in
Process Control’’, CD-ROM

14. Elman JL (1990) Finding structure in time. Cogn Sci 14:179–
211

15. Jordan MI (1986) Attractor dynamics and parallelism in a
connectionist sequential machine. The eight annual conference
of the cognitive science society, Amherst, USA, 531–546

16. Perretto P, Niez JJ (1986) Stochastic dynamics of neural net-
works. IEEE Trans Syst Man Cybern 16:73–83

17. Nerrand O (1994) Training recurrent neural networks: why and
how? An illustration in dynamical process modelling. IEEE
Trans Neural Netw 5:178–184

Table 2 Residual sum of squares for unstructured mechanistics model (UMM), input–output (NN1) and externally recurrent neural
network (NN2)

Experiment Residual sum of squares

UMM NN1 NN2
Batch 2.05·103 35.79 35.51
Fed-batch (constant acetate flow rate qVA=1.3 cm3 h�1) 8.37·103 64.65 50.90
Fed-batch (constant glucose flow rate qVG=10 cm3 h�1) 1.99 102 24.75 67.38
Fed-batch (constant glucose flow rate qVG=20 cm3 h�1) 3.14·102 44.23 67.56
Fed-batch (constant glucose flow rate qVG=30 cm3 h�1) 1.02·103 74.14 101.55

46



18. Warnes MR, Glassey J, Montague GA, Kara B (1998) Appli-
cation of radial basis function and feedforward artificial neural
networks to the Escherichia coli fermentation process. Neuro-
computing 20:67–82

19. Bachinger TH, Martensson P, Mandenius CF (1998) Estima-
tion of biomass and specific growth rate in a recombinant
Escherichia coli batch cultivation process using a chemical
multisensor array. J Biotechnol 60:55–66

20. Hajmeer MN, Basheer IA (2003) A hybrid Bayesian–
neural network approach for probabilistic modeling of
bacterial growth/no-growth interface. Int J Food Microbiol
82:233–243

21. Lee J, Lee SY, Park S, Middelberg APJ (1999) Control of fed-
batch fermentations. Biotechnol Adv 17:29–48

22. Vlassides S, Ferrier JG, Block DE (2001) Using historical data
for bioprocess optimization: modeling wine characteristics
using artificial neural networks and archived process informa-
tion. Biotechnol Bioeng 73:55–68
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