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tTwo elements of quantum 
omputation are 
onsidered: quantum 
omputer logi
 and quantum re-peater. It is shown that the quantum gate logi
 does have two di�erent models and that it is thereforeambiguous. It is also shown that without additional 
onditions imposed on quantum gates one 
annotarrive at a general quantum 
omputer ma
hine language. In absen
e of su
h 
onditions quantumentanglement remains a sele
tion proto
ol whi
h makes quantum 
omputer equivalent to many pho-ton intensity interferometry. As an example for su
h an entanglement we dis
uss a quantum opti
alrepeater.1 Introdu
tionClassi
al 
omputers are based on 
lassi
al logi
 whi
h has a numeri
al algebrai
 model (Booleanalgebra) but also a probabilisti
 model: one takes the values of the logi
al propositions andmap them to [0,1℄ interval arriving immediately at a Kolmogorovian probability theory.[3℄ Forquantum 
omputers we still do not know of a quantum logi
 whi
h would|when mapped to[0,1℄|give us a Hilbertian probability theory. What we do know is how to make quantumlogi
 gates and superpose their inputs so as to enable novel quantum algorithms su
h as Shor'sand Grover's [14℄ whi
h in a polynomial time solve the problems for whi
h 
lassi
al algorithmsapparently request an exponential time and how to \simulate" a S
hr�odinger equation. [1℄Hen
e, we are still away from a \proper" quantum 
omputer whi
h would 
onvert input valuesfor quantum logi
 gates dire
tly to mean values of observables in a polynomial number ofsteps, i.e., whi
h would enable us to simply type in a S
hr�odinger equation and by simulatinga mole
ule or whatever quantum system get a desired result. This kind of usage of quantum
omputers|whi
h boils down to quantum mathemati
s|is what would represent not onlyqualitatively faster algorithms and a genuine parallel pro
essing but an essentially new wayof solving problems by simulating physi
al systems with the help of a dire
t 
onversion of theinput gate values. In this paper we present some results whi
h brings us 
loser to the goal.In Se
. 2 we show that in addition to its well-known model|Boolean algebra|
lassi
allogi
 unexpe
tedly turn out to have yet another model whi
h is not distributive. We explainwhy this dis
overy does not have an impa
t on 
lassi
al 
omputers. Then we present anotherresult, whi
h is that quantum logi
 also have two di�erent models and explain why the latterdis
overy does have an impa
t on quantum 
omputers, as opposed to the 
lassi
al 
ase. We also1E-mail: mpavi
i
�faust.irb.hr; Web page: http://m3k.grad.hr/pavi
i
1



stress that quantum gates do yield quantum entanglement but not a Hilbertian representationof a general quantum system. In this respe
t, physi
s of quantum gates 
orresponds to physi
sof the many photon intensity interferometry.As an example of su
h an analogy in Se
. 3 we present an opti
al quantum repeater. Aphoton from a four photon system, obtained by a 
ontrolled entanglement of two down
onvertedphoton pairs, is entangled with a photon from another su
h four photon system. As a resulttwo other photons, ea
h from one of the systems appear in a singlet state with an eventprobability arbitrary 
lose to one. This is due to the fa
t that in su
h an entanglement,through a sele
tion made by means of the remaining photons from the systems, the probabilityof photons 
oming out from the same side of a beam splitter 
an be made arbitrary small.By means of subpi
ose
ond lasers with nanose
ond os
illations lo
ked to a master 
lo
k one
an use the property to 
onstru
t quantum repeaters for 
ommuni
ation of EPR pairs. Therepeater 
an be applied in quantum 
omputer, in teleportation, quantum 
ryptography, andfor loophole-free Bell experiments.2 Quantum Computer Logi
 and AlgebraIn 
lassi
al logi
 used by 
lassi
al 
omputers it is enough to as
ribe values, 0 and 1, to itspropositions to arrive at Boolean algebra of the propositions. In quantum logi
 of elementaryinput propositions for quantum 
omputers we 
annot do the same be
ause one 
annot as
ribea de�nite value to every proposition (Ko
hen-Spe
ker's theorem). Still one 
an obtain a partialalgebra whi
h is a latti
e. Complete spe
i�
ation of su
h a quantum algebra is an open problemas we shall see below.A 
omputer is a 
omputational devi
e in whi
h a 2� 2 unitary matri
es 
alled logi
 gatesa
t on elementary bits j0i = (1; 0) and j1i = (0; 1) and on bits obtained by su
h operations.A 
lassi
al gate is for example a NOT gate whi
h 
ips bits in the following way: NOTj0i =NOT(1; 0) = j1i and NOTj1i = NOT(0; 1) = j0i. A quantum gate whi
h is 
hara
teristi
 of theexisting experimental hardware is the 
ontrolled NOT gate whi
h a
ts on two su
h bits (quantumbits, qubits) in a 
onditional way [as simple NOT gate on the se
ond (target) qubit provided the�rst (
ontrol) qubit is 1℄, e.g., CNOTj10i = j11i.We des
ribe the system of qubits by unit ve
tors in the Hilbert spa
e H2 over the �eld of
omplex numbers. We denote the two orthogonal states by j0i = (1; 0) and j1i = (0; 1). Thestates make an orthogonal basis for H2. In a quantum 
omputer we deal with a big number n ofqubits whi
h build up a 
omposite Hilbert spa
e H = H2
 : : :
H2. The 
omputational basis,i.e., the basis of this spa
e, 
onsists of the following 2n ve
tors: j00 � � �00i; j00 � � �01i; : : : ;j11 � � �11i, where, e.g., j00i means j0i 
 j0i. Classi
al bits 
orrespond to quantum states:i1i2:::in  ! jini � ji1::::ini.To 
ompute the fun
tion f : i1i2:::in 7�! f(i1; ::::in). means to let the 
orresponding statesevolve a

ording to the time evolution unitary operator U (S
hr�odinger equation):ji1i2:::ini 7�! U ji1i2:::ini = jf(i1; ::::in)i: (1)The unitarity of U assures reversibility and therefore prevents energy dissipation. This 
an bea
hieved with 
lassi
al devi
es as well but only at the 
ost of exponentially growing hardware or2



exponentially rising time. The reason for that is simple: n 
lassi
al states des
ribing a systemin a 
lassi
al 
omputer 
an only be spe
i�ed by as
ribing values all 2n basis states. So, in
lassi
al 
omputation we have the input values for propositions and by means of logi
 gates weobtain new propositions with de�nite values. Hen
e we do have a logi
.Do we have su
h a logi
 in quantum 
omputation? Quantum 
omputers a
hieve speed anda parallel way of 
omputing|whi
h are their essential features|by using superposition whi
hputs n quantum states in a superposition of all 2n basis states in one step. To see this let us
onsider the following superposition of n qubits: P1i1i2:::in=0 ji1i2 : : : ini. Applying the linear uni-tary operation whi
h 
omputes f , from Eq. (1), to this state, yields: P1i1;i2;:::;in=0 jf(i1i2 : : : in)i.U 
omputes f parallelly on all the 2n possible inputs i and in the end by a wave pa
ket 
ollapsea �nal output.To obtain su
h a parallel 
omputing in an assumed realisti
 
omputer, we start with an ini-tial state jii whi
h 
orresponds to an \input" to the 
omputation. We then perform elementaryoperations on the system using the quantum gates de�ned above. The operations 
orrespondto the 
omputational steps in the 
omputation, just like logi
 gates are the elementary stepsin 
lassi
al 
omputers, and are performed on an isolated system, so the evolution 
an alwaysbe des
ribed by a unitary matrix operating on the state of the system. But 
an we translatea general Hamiltonian into a set of instru
tions for quantum gates on how to transform inputstates in time? The answer is 
urrently in the negative. There is no known �nite and de�nitere
eipt for su
h a 
orresponden
e. To make it possible we try to narrow the gap between analgebra of elementary propositions (
orresponding to pure states) and the Hilbert spa
e de-s
ription. First, let us see whether we 
an unambiguously 
onstru
t su
h an algebra startingwith these propositions, i.e., with quantum logi
.Let us denote any Hilbert spa
e subspa
es (e.g., the afore-mentioned one and two dimen-sional ones) Ha; Hb; H
; : : : by a; b; 
; : : :. Let C(H) be a set of 
losed subspa
es. We de�neortho
omplementation for Ha, where Ha � H, as a0 = fx 2 Hjhxjyi = 0; 8y 2 Hag. On C(H)we de�ne meet a\ b as Ha \Hb and join a [ b as the smallest 
losed subspa
e of H 
ontainingHa [ Hb, whi
h always exists. We write 0 for the smallest element ; in C(H) and 1 for thelargest element H in C(H). Ordering a � b is de�ned as Ha � Hb whi
h 
an be shown to beequivalent to a = a\ b and to a[ b = b. The ordering 
orresponds (see below) to the operationof impli
ation (Sasaki) whi
h is de�ned as a! b = a0 [ (a \ b). The orthogonality Ha ? Hbis given by a � b0. Let us denote the set 
ontaining all a; b; 
; : : : by LÆ.De�nition. An ortholatti
e is algebra OL = hLÆOL;0 ;[i in whi
h the following 
onditions aresatis�ed for any a; b; 
 2 LÆ:L1. a � a00 & a00 � aL2. a � a [ b & b � a [ bL3. a � b & b � a ) a = bL4. a � 1L5. a � b ) b0 � a0L6. a � b & b � 
 ) a � 
L7. a � 
 & b � 
 ) a [ b � 
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An ortholatti
e is orthomodular (OML) if and only if 8a; b 2 LÆOL:L8a. b � a & 
 ? a =) a \ (b [ 
) = (a \ b) [ (a \ 
),or L8b. a [ b = ((a0 [ b0) \ a) [ b,or both; it is modular (ML) if and only if 8a; b 2 LÆOL:L9a. b � a =) a \ (b [ 
) = (a \ b) [ (a \ 
)or L9b. a \ (b [ (a \ 
)) = (a \ b) [ (a \ 
)or both, and it is distributive (DL) if and only if 8a; b 2 LÆOLL10. a \ (b [ 
) = (a \ b) [ (a \ 
)It is well-known that C(H) is orthomodular if H is in�nite dimensional and modular if His �nite dimensional (von Neumann and Birkho�). Subspa
es of a 
lassi
al phase spa
e builda distributive latti
e, i.e., the Boolean algebra.It is also well-known that in an orthomodular latti
e the following equivalen
es holds:a � b , a ! b = 1, where a ! b =def a0 [ (a \ b), and a = b , a � b = 1, wherea � b =def (a! b)\(b! a). In a Boolean algebra the following ones hold: a � b , a * b = 1,where a * b =def a0 [ b, and a = b , a � b = 1, where a � b =def (a * b) \ (b * a).Using these equivalen
es one 
an mimi
 any valid logi
al expression (w�), ` A by a = 1.So, we easily arrive at either quantum (for either in�nite or �nite Hilbert spa
es) or 
lassi
allogi
. We shall denote wwf's derivable in these quantum logi
s from a set � of their axiomsand/or their 
onsequen
es by � `OM A and � `M A and in 
lassi
al logi
 by `D A. However,on
e we go \there" we 
annot go ba
k.For, an ortholatti
e is weakly orthomodular (WOML) if and only if 8a; b 2 LÆOL:L11. a [ b � ((a0 [ b0) \ a) [ b = 1;a WOML is weakly modular (WML) if and only if 8a; b 2 LÆWOML:L12. a \ (b [ (a \ 
)) � (a \ b) [ (a \ 
) = 1;and a WOML is weakly distributive (WDL) if and only if 8a; b 2 LÆWOML:L10. a \ (b [ 
) � (a \ b) [ (a \ 
) = 1.None of these latti
es are orthomodular. Even more, we are able to prove the followingsoundness and 
ompleteness theorem for themTheorem 2.1 [Pavi�
i�
 and Megill℄[10, 11℄ � `X A if and only if A is true in all WXL models,where X is either OM, or M, or D.in addition to the standard theoremsTheorem 2.2 � `X A i� A is true in all XL models, where X is either OM, or M, or D.In other words, all the logi
s do have at least two di�erent models for whi
h both soundnessand 
ompleteness 
an be proved. In the parlan
e of the model theory: they are non-
ategori
al.The meaning and the reper
ussions of this �nding are as follows. As we have shown in [11℄, assoon as we as
ribe ordered numeri
al values to propositions of 
lassi
al logi
 it 
an have only4



one model|the Boolean algebra. What is pe
uliar though is that the syntax of the 
lassi
allogi
 literally 
orresponds to the syntax of the weakly distributive latti
e and not to the one ofthe Boolean algebra. To all propositions of the quantum logi
, on the other hand, one 
annotas
ribe de�nite numeri
al values in prin
iple. Therefore one 
an impose two di�erent algebrason input states (a
ting as propositions of quantum logi
) whi
h we will still dis
uss in Se
. 4.However, whatever algebra we 
hoose one 
an show [4℄ that any of them should be mu
hmore stru
tured than the algebra of plain quantum gates endowed with superpositions andentanglement, if we wanted to obtain a proper Hilbert spa
e representation|whether in�niteor �nite dimensional|and turn quantum 
omputer in a genuine quantum simulator.We have already stressed that the quantum entanglement whi
h obtain by 
ontrolled quan-tum gates 
orresponds to the se
ond quantization of the standard quantum theory. In otherwords, it enables basi
 quantum algebra endowed with superposition but it does not add any-thing new to the algebra of quantum gates.Consider for example the following entangled state of 2 parti
les whi
h 
an then be used for ateleportation of states or Bell experiments or quantum 
ryptography (we omit the normalizationfa
tors): j00i+ j11i (2)Here none of the two qubits has a de�nite state: the state of the system is not a tensor produ
tof the states, and we 
annot �nd a1; a2; b1; b2 su
h that(a1j0i+ b1j1i)
 (a2j0i+ b2j1i) = j00i+ j11isin
e (a1j0i+ b1j1i)
 (a2j0i+ b2j1i) = a1a2j00i+ a1b2j01i+ b1a2j10i+ b1b2j11iand a1b2 = 0 implies that either a1a2 = 0 or b1b2 = 0. These states represent situationsthat have no 
lassi
al 
ounterpart in the sense of many photons intensity interferometry. In aquantum 
omputer we 
an obtain them by 
ombining the Hadamard transformation (j0i 7�!j0i+ j1i; j1i 7�! j0i+ j1i) and the 
ontrolled NOT (CNOT) transformation and enable exe
utingalgorithms (Shor's, Grover's, Bogoshian's) or 
onstru
ting parts su
h as the repeater we presentin the next se
tion. But without a general algebrai
 syntax they do not enable imposing anarbitrary Hamiltonian on them.3 Quantum Opti
al RepeaterSending EPR pairs over distan
es as well as their entanglement is essential for quantum 
ryp-tography, teleportation [2℄, and 
omputation. A serious drawba
k of su
h sending is that aquantum signal 
annot be ampli�ed.Here we give a physi
al model of a quantum opti
al repeaters not as a realisti
 proposalbut in order to dis
uss its 
hara
teristi
. We start with the devi
es we des
ribed in detailhere in Trieste three years ago and elsewhere. [6, 7, 9℄ They \prepare entanglements betweenphotons that nowhere intera
ted and whose paths nowhere 
rossed... and put together twophotons ... from two photon pairs and make them interfere ... at a beam splitter. As a result5



one �nds polarization 
orrelations between the other 
ompanion photons from the pairs whosepaths nowhere 
rossed ea
h other ... [and℄ we 
an 
onsider them event-ready prepared in anentangled state. [8℄
Fig. 1

We 
ombine three su
h devi
es as shown in Fig. 1. Ea
h devi
e is a sour
e of a photonsinglet and 
an work, e.g., as a non-linear 
rystal in whi
h a down
onversion o

urs. Forexample, an ultra-short laser beam simultaneously pumps up three type-II 
rystals. Looking atpolarization, we �nd the photons 1 and 6 entangled and we might say that a state is teleportedfrom photon 1 to photon 6: we put parallel polarizer in the paths 1 and 6 and �nd that either alldete
tors rea
t or only 2-5. But, however intriguing this might be the devi
e has no appli
ation:it 
annot transmit a genuine quantum state. It is said that by su
h a devi
e we 
an 
arry outa genuine teleportation between photon 2 and 6. This is true but su
h a teleportation also hasno appli
ation be
ause a down
onverted EPR pair (obtained at interse
tions of 
rystal output
ones) is un
ontrollable. What we need in quantum 
omputing is a teleportation of a parti
ularde�nite quantum state from one part of a quantum 
omputer to another without destroying it(i.e., without �nding it out) so that we 
an use it for further 
omputation.There are several pra
ti
al reasons why we 
annot do that with the available sour
es anddete
tors. First, in order to have 
oin
iden
e dete
tion instead of 
oin
idental sub-pi
ose
ondpumping of 
rystals we should have sub-pi
ose
ond responding time dete
tors whi
h do notexist. Then we should have 
ontrollable sour
es and this is in prin
iple impossible with sponta-neous down
onversion. Let us however assume that we found a 
ontrollable EPR pair sour
e.The next problem are the beam splitters be
ause we must dis
ard events whenever photons
ome out from the same side of a beam splitter whi
h is 75% of events for ea
h beam splitterand 42% for all three. [5℄ Let us 
onsider asymmetri
al (highly transparent or highly re
e
tive)beam splitters. Ea
h su

essful entanglement 
orresponds to a nonmaximal singlet state [6, 9℄
6



whi
h has the following representationj	i = 1pR2 + T 2 (Rj !i1j "i2 � T j "i1j !i2) ; (3)Now we 
ombine two su
h outputs at the middle beam splitter as shown in Fig. 1. Singletsfrom ea
h unit 
ombine to the following input produ
t for the repeater:j	i = 1R2 + T 2 (Rj !i1j "i100 � T j "i1j !i100)
 (T j !i1j "i2 �Rj "i1j !i2) : (4)Coin
idental �ring of dete
tors over all beam splitters puts the photons 1 and 6 into fol-lowing nonmaximal singlet:j	i = 1R2 + T 2 (R3j !i1j "i2 � T 3j "i1j !i2) : (5)If we had su
h a sour
e whi
h would always produ
e only one pair we would have a 
om-pletely feasible and reliable loophole-free Bell experiment at hand, be
ause the probability ofobtaining the above state for, e.g., R = 0:9999 is 0.9998. Expli
itly P!" = 1�TR(2�TR)=(1�2TR). All the other probabilities (for P1", P2" oriented as "!, or !!, or "" and for bothphotons exiting from the same side of BS") 
ontain T as a fa
tor and are therefore all less thanT = 1�0:9999 = 0:0001 in the above example. This means that we would not be for
ed to relyon 
oin
idental �ring of dete
tors 1 and 6 to obtain reliable singles probabilities: �ring of, e.g.,dete
tor 1 would mean that photon 6 emerges from the sour
e III with a probability arbitrary
lose to one (provided all the dete
tors over the beam splitters �red).But an assymetri
al state is of little use for a teleportation within a quantum 
omputer.To teleport a state by EPR singlets we have to have symmetri
al singlets and they waste 75%of events in the above s
heme. And the s
heme is general and 
an also be obtained by meansof Hadamar and CNOT gates within a quantum 
omputer itself. Whether one 
an re-use thewaste in 
al
ulation remains to be seen.4 Con
lusionIn Se
. 2 we show that there are two non-isomorphi
 models of the propositional 
al
ulusof quantum logi
 
orresponding to an in�nite dimensional Hilbert spa
e representation: anorthomodular latti
e and a weakly orthomodular latti
e; that there are two non-isomorphi
models of the propositional 
al
ulus of quantum logi
 
orresponding to a �nite dimensionalHilbert spa
e representation: a modular latti
e and a weakly modular latti
e; and that there aretwo non-isomorphi
 models of the propositional 
al
ulus of 
lassi
al logi
: a distributive latti
e(Boolean algebra) and a weakly distributive latti
e. Hen
e, all 
al
uluses are non-
ategori
aland none of them does map its synta
ti
al stru
ture to both models. They do so to one ofthe models and do not to the other. Surprisingly the models whi
h do preserve the synta
ti
alstru
ture of the logi
s are not the standard ones (Boolean algebra and the orthomodular latti
e)but the other ones: weakly distributive and weakly orthomodular latti
es.7



Classi
al 
omputer appli
ations are not a�e
ted by this �nding sin
e the usual ordered nu-meri
al valuation of 
lassi
al logi
 ex
ludes the weakly distributive model: two-valued 
lassi
allogi
 admits only the two-element Boolean algebra|and the usual many-valued 
lassi
al logi
also admits only Boolean algebra as its model. Weakly distributive model for 
lassi
al logi

annot be numeri
ally valuated. It admits only a non-ar
himedean (non-ordered) valuation.This opens a possibility of using non-ordered latti
e models for a faithful re
e
tion of the syntaxof the logi
.With quantum logi
 it is just the opposite|yes-no values 
annot be as
ribed to all quantumpropositions due to the Ko
hen-Spe
ker theorem. [13℄ This is the di�eren
e between quantumand 
lassi
al 
omputation: the 
lassi
al one pro
eeds by swit
hing logi
 gates and as
ribingvalues to propositions by the gate on the way till the �nal output of a sequen
e of 
al
ulation;the quantum one pro
eed in a synta
ti
al way, e.g., by 
ombining Hadamar transformation,CNOT transformation, phase shifts, et
., arriving at a genuinely entangled state in whi
h no oneof the subsystems (propositions) is in any de�nite state. On the example of a quantum repeaterwe argued that without a 
omplete syntax quantum 
omputer is but a huge interfometer whi
halways requires spe
ial algorithms to work.We have shown above that there are two possible syntaxes 
orresponding to two possiblealgebras: an orthomodular one and a weakly orthomodular one for a most general 
ase, and amodular and a weakly modular one for the �nite dimensional one. Orthomodular and modularalgebras enable 
an mathemati
ally be made isomorphi
 to in�nite and �nite Hilbert spa
e,respe
tively. Whether one 
an do that by a quantum 
omputer is an open question be
ause one�rst have to solve the problem of translating additional mathemati
al 
onditions into 
ommandsand transformations for quantum gates. On the other hand, one should see whether weaklyorthomodular and modular algebras might o�er a simpler syntax and whether it might turn outthat a non-ar
himedean valuation is manageable. After all, �nite-dimensional Hilbert spa
esallow nonstandard non-ar
himedean Keller �elds in addition to the standard (real, 
omplex,and quaternioni
) ones and it has been shown that this does not disable their usage for properphysi
al measurements.A
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Figure 1: Outline of the devi
e whi
h entangles photons 1 and 6.
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