
Quantum Simulators and Quantum RepeatersMladen Pavi�i�1University of Zagreb, GF, Ka�i�eva 26, POB-217, HR-10001 Zagreb, Croatia.AbstratTwo elements of quantum omputation are onsidered: quantum omputer logi and quantum re-peater. It is shown that the quantum gate logi does have two di�erent models and that it is thereforeambiguous. It is also shown that without additional onditions imposed on quantum gates one annotarrive at a general quantum omputer mahine language. In absene of suh onditions quantumentanglement remains a seletion protool whih makes quantum omputer equivalent to many pho-ton intensity interferometry. As an example for suh an entanglement we disuss a quantum optialrepeater.1 IntrodutionClassial omputers are based on lassial logi whih has a numerial algebrai model (Booleanalgebra) but also a probabilisti model: one takes the values of the logial propositions andmap them to [0,1℄ interval arriving immediately at a Kolmogorovian probability theory.[3℄ Forquantum omputers we still do not know of a quantum logi whih would|when mapped to[0,1℄|give us a Hilbertian probability theory. What we do know is how to make quantumlogi gates and superpose their inputs so as to enable novel quantum algorithms suh as Shor'sand Grover's [14℄ whih in a polynomial time solve the problems for whih lassial algorithmsapparently request an exponential time and how to \simulate" a Shr�odinger equation. [1℄Hene, we are still away from a \proper" quantum omputer whih would onvert input valuesfor quantum logi gates diretly to mean values of observables in a polynomial number ofsteps, i.e., whih would enable us to simply type in a Shr�odinger equation and by simulatinga moleule or whatever quantum system get a desired result. This kind of usage of quantumomputers|whih boils down to quantum mathematis|is what would represent not onlyqualitatively faster algorithms and a genuine parallel proessing but an essentially new wayof solving problems by simulating physial systems with the help of a diret onversion of theinput gate values. In this paper we present some results whih brings us loser to the goal.In Se. 2 we show that in addition to its well-known model|Boolean algebra|lassiallogi unexpetedly turn out to have yet another model whih is not distributive. We explainwhy this disovery does not have an impat on lassial omputers. Then we present anotherresult, whih is that quantum logi also have two di�erent models and explain why the latterdisovery does have an impat on quantum omputers, as opposed to the lassial ase. We also1E-mail: mpavii�faust.irb.hr; Web page: http://m3k.grad.hr/pavii1



stress that quantum gates do yield quantum entanglement but not a Hilbertian representationof a general quantum system. In this respet, physis of quantum gates orresponds to physisof the many photon intensity interferometry.As an example of suh an analogy in Se. 3 we present an optial quantum repeater. Aphoton from a four photon system, obtained by a ontrolled entanglement of two downonvertedphoton pairs, is entangled with a photon from another suh four photon system. As a resulttwo other photons, eah from one of the systems appear in a singlet state with an eventprobability arbitrary lose to one. This is due to the fat that in suh an entanglement,through a seletion made by means of the remaining photons from the systems, the probabilityof photons oming out from the same side of a beam splitter an be made arbitrary small.By means of subpioseond lasers with nanoseond osillations loked to a master lok onean use the property to onstrut quantum repeaters for ommuniation of EPR pairs. Therepeater an be applied in quantum omputer, in teleportation, quantum ryptography, andfor loophole-free Bell experiments.2 Quantum Computer Logi and AlgebraIn lassial logi used by lassial omputers it is enough to asribe values, 0 and 1, to itspropositions to arrive at Boolean algebra of the propositions. In quantum logi of elementaryinput propositions for quantum omputers we annot do the same beause one annot asribea de�nite value to every proposition (Kohen-Speker's theorem). Still one an obtain a partialalgebra whih is a lattie. Complete spei�ation of suh a quantum algebra is an open problemas we shall see below.A omputer is a omputational devie in whih a 2� 2 unitary matries alled logi gatesat on elementary bits j0i = (1; 0) and j1i = (0; 1) and on bits obtained by suh operations.A lassial gate is for example a NOT gate whih ips bits in the following way: NOTj0i =NOT(1; 0) = j1i and NOTj1i = NOT(0; 1) = j0i. A quantum gate whih is harateristi of theexisting experimental hardware is the ontrolled NOT gate whih ats on two suh bits (quantumbits, qubits) in a onditional way [as simple NOT gate on the seond (target) qubit provided the�rst (ontrol) qubit is 1℄, e.g., CNOTj10i = j11i.We desribe the system of qubits by unit vetors in the Hilbert spae H2 over the �eld ofomplex numbers. We denote the two orthogonal states by j0i = (1; 0) and j1i = (0; 1). Thestates make an orthogonal basis for H2. In a quantum omputer we deal with a big number n ofqubits whih build up a omposite Hilbert spae H = H2
 : : :
H2. The omputational basis,i.e., the basis of this spae, onsists of the following 2n vetors: j00 � � �00i; j00 � � �01i; : : : ;j11 � � �11i, where, e.g., j00i means j0i 
 j0i. Classial bits orrespond to quantum states:i1i2:::in  ! jini � ji1::::ini.To ompute the funtion f : i1i2:::in 7�! f(i1; ::::in). means to let the orresponding statesevolve aording to the time evolution unitary operator U (Shr�odinger equation):ji1i2:::ini 7�! U ji1i2:::ini = jf(i1; ::::in)i: (1)The unitarity of U assures reversibility and therefore prevents energy dissipation. This an beahieved with lassial devies as well but only at the ost of exponentially growing hardware or2



exponentially rising time. The reason for that is simple: n lassial states desribing a systemin a lassial omputer an only be spei�ed by asribing values all 2n basis states. So, inlassial omputation we have the input values for propositions and by means of logi gates weobtain new propositions with de�nite values. Hene we do have a logi.Do we have suh a logi in quantum omputation? Quantum omputers ahieve speed anda parallel way of omputing|whih are their essential features|by using superposition whihputs n quantum states in a superposition of all 2n basis states in one step. To see this let usonsider the following superposition of n qubits: P1i1i2:::in=0 ji1i2 : : : ini. Applying the linear uni-tary operation whih omputes f , from Eq. (1), to this state, yields: P1i1;i2;:::;in=0 jf(i1i2 : : : in)i.U omputes f parallelly on all the 2n possible inputs i and in the end by a wave paket ollapsea �nal output.To obtain suh a parallel omputing in an assumed realisti omputer, we start with an ini-tial state jii whih orresponds to an \input" to the omputation. We then perform elementaryoperations on the system using the quantum gates de�ned above. The operations orrespondto the omputational steps in the omputation, just like logi gates are the elementary stepsin lassial omputers, and are performed on an isolated system, so the evolution an alwaysbe desribed by a unitary matrix operating on the state of the system. But an we translatea general Hamiltonian into a set of instrutions for quantum gates on how to transform inputstates in time? The answer is urrently in the negative. There is no known �nite and de�nitereeipt for suh a orrespondene. To make it possible we try to narrow the gap between analgebra of elementary propositions (orresponding to pure states) and the Hilbert spae de-sription. First, let us see whether we an unambiguously onstrut suh an algebra startingwith these propositions, i.e., with quantum logi.Let us denote any Hilbert spae subspaes (e.g., the afore-mentioned one and two dimen-sional ones) Ha; Hb; H; : : : by a; b; ; : : :. Let C(H) be a set of losed subspaes. We de�neorthoomplementation for Ha, where Ha � H, as a0 = fx 2 Hjhxjyi = 0; 8y 2 Hag. On C(H)we de�ne meet a\ b as Ha \Hb and join a [ b as the smallest losed subspae of H ontainingHa [ Hb, whih always exists. We write 0 for the smallest element ; in C(H) and 1 for thelargest element H in C(H). Ordering a � b is de�ned as Ha � Hb whih an be shown to beequivalent to a = a\ b and to a[ b = b. The ordering orresponds (see below) to the operationof impliation (Sasaki) whih is de�ned as a! b = a0 [ (a \ b). The orthogonality Ha ? Hbis given by a � b0. Let us denote the set ontaining all a; b; ; : : : by LÆ.De�nition. An ortholattie is algebra OL = hLÆOL;0 ;[i in whih the following onditions aresatis�ed for any a; b;  2 LÆ:L1. a � a00 & a00 � aL2. a � a [ b & b � a [ bL3. a � b & b � a ) a = bL4. a � 1L5. a � b ) b0 � a0L6. a � b & b �  ) a � L7. a �  & b �  ) a [ b �  3



An ortholattie is orthomodular (OML) if and only if 8a; b 2 LÆOL:L8a. b � a &  ? a =) a \ (b [ ) = (a \ b) [ (a \ ),or L8b. a [ b = ((a0 [ b0) \ a) [ b,or both; it is modular (ML) if and only if 8a; b 2 LÆOL:L9a. b � a =) a \ (b [ ) = (a \ b) [ (a \ )or L9b. a \ (b [ (a \ )) = (a \ b) [ (a \ )or both, and it is distributive (DL) if and only if 8a; b 2 LÆOLL10. a \ (b [ ) = (a \ b) [ (a \ )It is well-known that C(H) is orthomodular if H is in�nite dimensional and modular if His �nite dimensional (von Neumann and Birkho�). Subspaes of a lassial phase spae builda distributive lattie, i.e., the Boolean algebra.It is also well-known that in an orthomodular lattie the following equivalenes holds:a � b , a ! b = 1, where a ! b =def a0 [ (a \ b), and a = b , a � b = 1, wherea � b =def (a! b)\(b! a). In a Boolean algebra the following ones hold: a � b , a * b = 1,where a * b =def a0 [ b, and a = b , a � b = 1, where a � b =def (a * b) \ (b * a).Using these equivalenes one an mimi any valid logial expression (w�), ` A by a = 1.So, we easily arrive at either quantum (for either in�nite or �nite Hilbert spaes) or lassiallogi. We shall denote wwf's derivable in these quantum logis from a set � of their axiomsand/or their onsequenes by � `OM A and � `M A and in lassial logi by `D A. However,one we go \there" we annot go bak.For, an ortholattie is weakly orthomodular (WOML) if and only if 8a; b 2 LÆOL:L11. a [ b � ((a0 [ b0) \ a) [ b = 1;a WOML is weakly modular (WML) if and only if 8a; b 2 LÆWOML:L12. a \ (b [ (a \ )) � (a \ b) [ (a \ ) = 1;and a WOML is weakly distributive (WDL) if and only if 8a; b 2 LÆWOML:L10. a \ (b [ ) � (a \ b) [ (a \ ) = 1.None of these latties are orthomodular. Even more, we are able to prove the followingsoundness and ompleteness theorem for themTheorem 2.1 [Pavi�i� and Megill℄[10, 11℄ � `X A if and only if A is true in all WXL models,where X is either OM, or M, or D.in addition to the standard theoremsTheorem 2.2 � `X A i� A is true in all XL models, where X is either OM, or M, or D.In other words, all the logis do have at least two di�erent models for whih both soundnessand ompleteness an be proved. In the parlane of the model theory: they are non-ategorial.The meaning and the reperussions of this �nding are as follows. As we have shown in [11℄, assoon as we asribe ordered numerial values to propositions of lassial logi it an have only4



one model|the Boolean algebra. What is peuliar though is that the syntax of the lassiallogi literally orresponds to the syntax of the weakly distributive lattie and not to the one ofthe Boolean algebra. To all propositions of the quantum logi, on the other hand, one annotasribe de�nite numerial values in priniple. Therefore one an impose two di�erent algebrason input states (ating as propositions of quantum logi) whih we will still disuss in Se. 4.However, whatever algebra we hoose one an show [4℄ that any of them should be muhmore strutured than the algebra of plain quantum gates endowed with superpositions andentanglement, if we wanted to obtain a proper Hilbert spae representation|whether in�niteor �nite dimensional|and turn quantum omputer in a genuine quantum simulator.We have already stressed that the quantum entanglement whih obtain by ontrolled quan-tum gates orresponds to the seond quantization of the standard quantum theory. In otherwords, it enables basi quantum algebra endowed with superposition but it does not add any-thing new to the algebra of quantum gates.Consider for example the following entangled state of 2 partiles whih an then be used for ateleportation of states or Bell experiments or quantum ryptography (we omit the normalizationfators): j00i+ j11i (2)Here none of the two qubits has a de�nite state: the state of the system is not a tensor produtof the states, and we annot �nd a1; a2; b1; b2 suh that(a1j0i+ b1j1i)
 (a2j0i+ b2j1i) = j00i+ j11isine (a1j0i+ b1j1i)
 (a2j0i+ b2j1i) = a1a2j00i+ a1b2j01i+ b1a2j10i+ b1b2j11iand a1b2 = 0 implies that either a1a2 = 0 or b1b2 = 0. These states represent situationsthat have no lassial ounterpart in the sense of many photons intensity interferometry. In aquantum omputer we an obtain them by ombining the Hadamard transformation (j0i 7�!j0i+ j1i; j1i 7�! j0i+ j1i) and the ontrolled NOT (CNOT) transformation and enable exeutingalgorithms (Shor's, Grover's, Bogoshian's) or onstruting parts suh as the repeater we presentin the next setion. But without a general algebrai syntax they do not enable imposing anarbitrary Hamiltonian on them.3 Quantum Optial RepeaterSending EPR pairs over distanes as well as their entanglement is essential for quantum ryp-tography, teleportation [2℄, and omputation. A serious drawbak of suh sending is that aquantum signal annot be ampli�ed.Here we give a physial model of a quantum optial repeaters not as a realisti proposalbut in order to disuss its harateristi. We start with the devies we desribed in detailhere in Trieste three years ago and elsewhere. [6, 7, 9℄ They \prepare entanglements betweenphotons that nowhere interated and whose paths nowhere rossed... and put together twophotons ... from two photon pairs and make them interfere ... at a beam splitter. As a result5



one �nds polarization orrelations between the other ompanion photons from the pairs whosepaths nowhere rossed eah other ... [and℄ we an onsider them event-ready prepared in anentangled state. [8℄
Fig. 1

We ombine three suh devies as shown in Fig. 1. Eah devie is a soure of a photonsinglet and an work, e.g., as a non-linear rystal in whih a downonversion ours. Forexample, an ultra-short laser beam simultaneously pumps up three type-II rystals. Looking atpolarization, we �nd the photons 1 and 6 entangled and we might say that a state is teleportedfrom photon 1 to photon 6: we put parallel polarizer in the paths 1 and 6 and �nd that either alldetetors reat or only 2-5. But, however intriguing this might be the devie has no appliation:it annot transmit a genuine quantum state. It is said that by suh a devie we an arry outa genuine teleportation between photon 2 and 6. This is true but suh a teleportation also hasno appliation beause a downonverted EPR pair (obtained at intersetions of rystal outputones) is unontrollable. What we need in quantum omputing is a teleportation of a partiularde�nite quantum state from one part of a quantum omputer to another without destroying it(i.e., without �nding it out) so that we an use it for further omputation.There are several pratial reasons why we annot do that with the available soures anddetetors. First, in order to have oinidene detetion instead of oinidental sub-pioseondpumping of rystals we should have sub-pioseond responding time detetors whih do notexist. Then we should have ontrollable soures and this is in priniple impossible with sponta-neous downonversion. Let us however assume that we found a ontrollable EPR pair soure.The next problem are the beam splitters beause we must disard events whenever photonsome out from the same side of a beam splitter whih is 75% of events for eah beam splitterand 42% for all three. [5℄ Let us onsider asymmetrial (highly transparent or highly reetive)beam splitters. Eah suessful entanglement orresponds to a nonmaximal singlet state [6, 9℄
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whih has the following representationj	i = 1pR2 + T 2 (Rj !i1j "i2 � T j "i1j !i2) ; (3)Now we ombine two suh outputs at the middle beam splitter as shown in Fig. 1. Singletsfrom eah unit ombine to the following input produt for the repeater:j	i = 1R2 + T 2 (Rj !i1j "i100 � T j "i1j !i100)
 (T j !i1j "i2 �Rj "i1j !i2) : (4)Coinidental �ring of detetors over all beam splitters puts the photons 1 and 6 into fol-lowing nonmaximal singlet:j	i = 1R2 + T 2 (R3j !i1j "i2 � T 3j "i1j !i2) : (5)If we had suh a soure whih would always produe only one pair we would have a om-pletely feasible and reliable loophole-free Bell experiment at hand, beause the probability ofobtaining the above state for, e.g., R = 0:9999 is 0.9998. Expliitly P!" = 1�TR(2�TR)=(1�2TR). All the other probabilities (for P1", P2" oriented as "!, or !!, or "" and for bothphotons exiting from the same side of BS") ontain T as a fator and are therefore all less thanT = 1�0:9999 = 0:0001 in the above example. This means that we would not be fored to relyon oinidental �ring of detetors 1 and 6 to obtain reliable singles probabilities: �ring of, e.g.,detetor 1 would mean that photon 6 emerges from the soure III with a probability arbitrarylose to one (provided all the detetors over the beam splitters �red).But an assymetrial state is of little use for a teleportation within a quantum omputer.To teleport a state by EPR singlets we have to have symmetrial singlets and they waste 75%of events in the above sheme. And the sheme is general and an also be obtained by meansof Hadamar and CNOT gates within a quantum omputer itself. Whether one an re-use thewaste in alulation remains to be seen.4 ConlusionIn Se. 2 we show that there are two non-isomorphi models of the propositional alulusof quantum logi orresponding to an in�nite dimensional Hilbert spae representation: anorthomodular lattie and a weakly orthomodular lattie; that there are two non-isomorphimodels of the propositional alulus of quantum logi orresponding to a �nite dimensionalHilbert spae representation: a modular lattie and a weakly modular lattie; and that there aretwo non-isomorphi models of the propositional alulus of lassial logi: a distributive lattie(Boolean algebra) and a weakly distributive lattie. Hene, all aluluses are non-ategorialand none of them does map its syntatial struture to both models. They do so to one ofthe models and do not to the other. Surprisingly the models whih do preserve the syntatialstruture of the logis are not the standard ones (Boolean algebra and the orthomodular lattie)but the other ones: weakly distributive and weakly orthomodular latties.7



Classial omputer appliations are not a�eted by this �nding sine the usual ordered nu-merial valuation of lassial logi exludes the weakly distributive model: two-valued lassiallogi admits only the two-element Boolean algebra|and the usual many-valued lassial logialso admits only Boolean algebra as its model. Weakly distributive model for lassial logiannot be numerially valuated. It admits only a non-arhimedean (non-ordered) valuation.This opens a possibility of using non-ordered lattie models for a faithful reetion of the syntaxof the logi.With quantum logi it is just the opposite|yes-no values annot be asribed to all quantumpropositions due to the Kohen-Speker theorem. [13℄ This is the di�erene between quantumand lassial omputation: the lassial one proeeds by swithing logi gates and asribingvalues to propositions by the gate on the way till the �nal output of a sequene of alulation;the quantum one proeed in a syntatial way, e.g., by ombining Hadamar transformation,CNOT transformation, phase shifts, et., arriving at a genuinely entangled state in whih no oneof the subsystems (propositions) is in any de�nite state. On the example of a quantum repeaterwe argued that without a omplete syntax quantum omputer is but a huge interfometer whihalways requires speial algorithms to work.We have shown above that there are two possible syntaxes orresponding to two possiblealgebras: an orthomodular one and a weakly orthomodular one for a most general ase, and amodular and a weakly modular one for the �nite dimensional one. Orthomodular and modularalgebras enable an mathematially be made isomorphi to in�nite and �nite Hilbert spae,respetively. Whether one an do that by a quantum omputer is an open question beause one�rst have to solve the problem of translating additional mathematial onditions into ommandsand transformations for quantum gates. On the other hand, one should see whether weaklyorthomodular and modular algebras might o�er a simpler syntax and whether it might turn outthat a non-arhimedean valuation is manageable. After all, �nite-dimensional Hilbert spaesallow nonstandard non-arhimedean Keller �elds in addition to the standard (real, omplex,and quaternioni) ones and it has been shown that this does not disable their usage for properphysial measurements.AknowledgmentsM. P. aknowledges a support of the Ministry of Siene of Croatia.Referenes[1℄ B. M. Boghosian and W. Taylor, Physia D 120, (1998) 30.[2℄ D. Boshi, S. Brana, F. De Martini, L. Hardy, and S. Popesu, Phys. Rev.Lett. 80, (1998) 1121.[3℄ H. Leblan, in Handbook of Philosophial Logi, D. Gabbay and F. Guenthner, Eds.,vol. I (D. Reidel, Dordreht, 1983), pp. 189{274.8
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Figure 1: Outline of the devie whih entangles photons 1 and 6.
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